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1. Introduction

Few people knowledgeable in computer science would deny the assertion
that we are in the midst of a revolution caused by the increased availability
and power of computers. Yet, few can predict what lies ahead just two
decades from now based purely on what modern electronic computers have
accomplished over the last 25 years. But one thing is sure, the information
explosion will continue and at an ever increasing rate. This, coﬁpled with
the continued declining cost in computing, will make data processing our
number one national asset in the management and organization of our resources.
We predict that the need for computer-based decision support system (DSS)
will increase dramatically.

During the 60's, much hope has been placed on the so called "Information
Management Systems" to support humans in various stages of decision making.

While many systems have been developed, the dream was never quite realized

-due to the fact that technology was not there. If history is any- guide in . )

computing, we can safely say thatwdédand om the sdﬁhistication and usage -
of DSS will exceed its actual capa$ility by a wide margin. In light of the
trend that this nation will become so dependent on such systems that/mistakes
can haﬁe serious economic, political or environmental impacts, it is iﬂportant
that resources be devoted now toward the understanding and construction of
such systems.

This report contains findings of a summer study, supported by ARPA, on
the requirements and design of future decision support systems (FDSS). It
is our opinion that computer science as a discipline has finally reached

sufficient maturity to provide a technological basis for realizing much of

the goal of "information management systems" of the last decade.



Characteristics and Requirements for Future Decision Support Systems

There are many decision support systems (DSS) which work well today.
However, most of these with any sophistication are specialized small systems.
Large systems are usually badly designed with ad hoc techniques. As a con-
sequence, it is usually extremely costly to modify such systems. The study
here is not intended to come up with piecemeal solutions to the existing
problems, bﬁt rather to investigate the feasibility of developing a methodology
for constructing decision support systems which can meet the demands of the
next decade. We think that through this more systematic approach to the problem
as a whole, many of the existing problems will also be solved. We shall first
outline some of the important features of FDSS.

a. Physical Characteristics of FDSS.

i) System is geographically distributed.

We expect most large systems to consist of a -number of smaller -

DSS, organized iﬁ-iaraliel”pr in hierarchies, -and commuﬂigatiag

with each other (see example in section 3).
ii) System is large.
- It usually contains vast amounts of data of different types,
and many processors.

iii) System will be used by many different kinds of users for

decision support.

iv) Dynamic environment.
Data is constantly added or deleted from the system, and
requirements are changing (due to new applications or new
machines, etc.).

b. Requirements for FDSS

i) Adaptability and Modifiability

DSS should be adaptable to a wide variety of problem domains.
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In particular, the system should be able to evolve to improve the
- quality of its support. This can be done by adjustments made either
on the information content or structure of the system;_
The design for the system should be such that usually small
changes in the environment of the system should cause correspondingly
small changes in the system.

ii) Intelligence

We expect that more sophisticated DSS should be capable of
engaging in complex dialogues with users, and is capable of providing
fast response to complex queries most of the time. We shall make
explicit two features that DSS should have to achieve this goal.

ii. a) Domain and goal knowledge

\

Be31des the obvious knowledge of the domain, the DSS should

have general knowledge of the types of goals of interest to the user.

Why a knowledge of goals7 Since the data base is assumed very

large; we mustvassume that the uger does not know all the imp;icatiens.

Hence, it is the system's responsibility to point out to the user

relevant data of which the user may not be aware, and which he may

not have thought to asi; but which would help his goals. For example,
a system to support software design should be able to evaluate and
‘respond to a query such as "I intend to make such-and-such changes

in the design, whag are the effects of these changes? Why?" The
system must therefore maintain a general awareness of the domain

as it is being queried and modified by the user. This knowledge
about goals represents the knowledge of (human) experts in different

problem situations.



The DSS's answers should be relevant, i(e., be directed
toward the known general goals of the user. They should also be
explicit and given at the level of thought that is familiar and
comfortable to the user.

ii.b) Generality

DSS should handle unexpected situations, by asking questions
of the user if necessary. We cannot anticipate every type of query
by having a specific program to answer it.

iii) Trustworthiness

We must have a high degree of confidence in such a system.
The notion of trustworthiness implies that the system should be

reliable, robust, available on demand, and secure.

3. An Example. A scenario is described in the following to illustrate some

of the desirable properties of FDSS and the environments that surround it.

- Dramatis Personae = - - - i -

- A client interested in ordéting 0oil. Several DSS: local, reéional, nétai&nal.

A salesman (we may assume that the salesman converses with the DSS), trans-
- lating the client's requests into a language understood by the DSS. (By DSS
we shall mean the local DSS, and generally assume a combination Salesman/DSS
to avoid problems of translating‘client's requests to the DSS, or intetpreting
output from the DSS.)
C = client.

DSS = local DSS with salesman's help.

S = Salesman as distinguished for the DSS (i.e., the human being).

Scenario: (parenthesized statements are explanatory comments about the DSS).
C: I need 1,000 units of oil, quality premium, at Harlingen depot.

DSS: when?

(an order needs a date of delivery)
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C: within ten days.
DSS: 1,000 units will be available at $14/unit within the specified time
period. 800 units will be shipped from A and 200 from B.
(System uses operations research tools. For example, it may utilize
a "Linear Programming" program to determine an optimal solution.
This implies that the DSS knows about the existence of this program,
and the kind of inputs and outputs associated with it.)
S: Consider shipping all 1,000 units from A to save extra shipping cost.
(Salesman intervenes to try to improve the solution from the DSS.)
DSS: Sending the additional 200 units from A would increase overall cost.
S: why?
DSS: An additional truck from A would be required carrying only 200 units.

In the proposed solution, the truck from A is full, as it is delivering

oilvto other customer. - -

__(bSS explaingfaﬁsyer by comparing the solutions. The "diséoﬂtinuity"

"in the truck capacities is moticed.)
C: Okay.
DSS: Before confirming, let me mention that if you are satisfied with

only 800 units, the cost per unit will be oniy $13.40/unit. -

(The dimensions of an order are: size, cost,delivery date, delivery
delay, security of the delivery, price guarantee, etc., the system

is now looking for discontinuities near the order as given by the

customer.)

C: WNo, 800 is not enough.

DSS: I can ship up to 1,500 units at almost no additional shipping cost.
(First, a discontinuity down from the size of the order was notiged.
It was found by considering tables of prices and amounts of oil

availéble at the price. Now the system has found a discontinuity

up from the order size.)



C: OK, ship 1,200
DSS: If you can wait 4-6 extra days, I should be able to ship these amounts

for less.

(The system now looks for discontinuities in the price of the oil
if the delivery date is changed. It consults tables of expected
deliveries of oil in times close to the order.)

C: How come?

DSS: There is a scheduled ship arrival with cheaper oil.
(DSS explains, using some inferencing.)

C: What will be the cost then?
(The original DSS answer was qualitative: "for less'. The customer

wants something more precise.)
DSS: 1I'1l1l need 20 minutes before I can compute that exactly.
Approximate price: $12.80 - $13.35. If you call back after

5:00 p.m. I can compute the price immediately." - -

(The system can give approximate aﬁswe:s,'anérknows about its

- 1~4'cap;bilities,~and ;ypigal'gystem.loads.) -
C: T can't wait 4-6 days for the shipment, and I am willing to pay up
to $14.50/unit. Please confirm.
S. I'll try to confirm the order now.
(DSS has access to summary information about available oil at various
sites. This information is updated periodically, say every half day.)
DSS2 (Regional DSS): There are only 400 units left at A.
(In the meantime some capacity at A has been utilized. DSS did not
know about it. At confirmation time, DSS2 is interrogated.)
DSS: I can confirm shipment of 400 units from A and 600 ffom B, average

cost, $14.25.



DSS3 (National DSS): Stock at A keeps running out. We must increase
shipments to A. I suggest a shipment increase of 25%.
(The National DSS keeps dynamic information on transactions, and
attempts to improve oil delivery performance.)

C: I want to plan next month's delivery schedule. I want 800 units on

the 1st, fth, 18th and 30thf How much would it cost me?
DSS: I cannot confirm delivery on the lst, closest date would be the 3rd.
C:v Okay.

DSS: Shall I confirm the following delivery schedule and cost?

Location Date Cost/Unit
A 3rd $12
B 10th 12.50
C 19th 11
- D - 30th 13 \ -

C: Okay. - - - - - N - . -

DSS: All confirmed except‘deliveriron.BOth. Change to dgiivery from-
location A at $13.10/unit. Okay?

C: OkaYc- /,,‘ -

(An illustration of unexpected events.)

DSS3 to DSS: Bad weather at sea. Arrival of ship at D delayed 8 days
approximately.

DSS to S: Customers C2 and C3 have confirmed orders from D. They
must be contacted to check whether they can accept the delay. If
not, we need to find other sources to fill their order.

(DSS keeps a watch on the weather to the extent that it can
influence such dimensions of an order as: time of arrival,
quantity of arrival, possible loss at sea, increased cost due

to delays, strikes, etc.)



Problem Domain

In the previous example, we try to exemplify several concepts which we
shall discuss in this section and point out general problems to be encountered
in FDSS research.

a. Discontinuities

The decision support system (DSS) provides information to the
user about discontinuities near the area presently being considered
by the user. (A discontinuity exists if a small change in one parémeter
of the domain results in a large change in another parameter of the
~domain.) Although the use of "discontinuity" concept for the design of
DSS is new, we have quite a bit of experience in the design of an airline

reservation system for western Europe utilizing this idea.

b. Distributed data

Data is distributed at different sites. Some sites may have only =

sumﬁary or probabilistic gata.A‘ih ou};écenario,~there;is ajhierarcﬁ&l

;f authority, with higher level DSé"havihé only-the summary information:
Some problems encountered here include the consistency of information at
different sites, data and process migration, access rights, performance -

issues, etc.

c. Knowledge bases

i) Decision support capabilities - the system can help the user make
knowledgeable decisions. This not only implies that the system
has épecific knowledge bases, but also must contain general know-
ledge about the world. (For example, simulation models.)

ii) Self-knowledge - the DSS has information about ité own'capabilities

such as expected costs of running its programs.



d.

Inference capabilities

This aspect is of course something that artificial intelligence (A.1.)
has been concerned with for sometime. However, most of the‘existing A.1.
systems are small by comparison, and it is not clear that techniques
and principles used in constructing small systems can scale up. To
overcome this barrier of size, it seems that certain conceptual tools
are necessary. We list a few here:

i) Ready accesss to data and procedures

The designer must be able to think of his large data and
large procedure base as readily accessable, so that he does not

get sidetracked in data access issues.

ii) Conceptual neighborhoods
This idea is used during retrieval (relevant information is

information in the sgmegnéighbofhéed) and while searching a problem

_space knearﬁéss to a disconfinu@;&-or»approximafion of a solution).

It is an obvi;us‘extension of focused access to dat;. ﬁe not
only wish to access specific data, but also data "close" to these
specific dafa. Imélemeniation would depend on the metrics or
topology of the data.

iii) Problem-solving tools

The designer should have a set of formalized concepts or
techniques such as planning (subgoaling, problem reduction),
backtracking, plan execution (simulation), eté., ét his disposal
as tools for general prdblem solving.

iv) Concurrency
For large systems, it must be the case that a designer can

think in terms of many processes running concurrently.



v) Information types

The information in a DSS must be of many types. We can
distinguish at least:
- environment knowledge (position and status of troops, trans-
port capabilities, etc.).
~ user models. In the past they were often implicit. They must
be made explicit. (For the same questions, the answers given
to the Secretary of State or a colonel stationed in Turkey
will usually differ.)
~ system self-knowledge. The DSS should be able to describe its
capabilities, explain its logical organization and the methods
it used to answer questions, etc,
We think that adequate quineering support for tbese conceptual

- tools can overcome the barrier of size. We also believe that new

"~ computer hérdwafe is c;uéial foéqproﬁidiné the necessaryméng@neeging -
support. In particular, support for content~addressibilit§ (parallel
access to data gnd proqedureé), context—addressibility )"semantic
paging" for retrieving relevant information), and concurr;nt
evaluation of conditions (hardware implementations of demons.)

More detailed discussions of the hardware support will be provided

in the next section.

e. Dynamic environment

The example illustrated that data changes through time. However,
in reality, the whole environment; requirements, processors, data, etc.,

changes through time.
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When constructigg very large systems with dynamic environment, the’
designer is forced to consider evolving systems rather than fixed
systems. One‘may approach this problem by designing a flexible system
structure so that small changes in system environment will impact a
correspondingly small change of the system. Or, one may predicate the
system's usage and its environmental changes in the near future so that
contengencies for growth can be provided in the design of the system.
In both approaches, a methodology for design and modeling is neéded.
Whilé it is possible to borrow from existing software design methodology
and performance modeling techniques, much more is needed. For example,
in current design methodology, design documentation is almost totally
ignored. Similarly, performancé evaluation is usually done too late -
after the system has been constructed. How can performance modeling

_ be incorporated into the design phase is an important problem in the

T n " _design of evalviﬁg:systems! . N - ’ -

iﬁ order tovdevéiop‘h meéhodolééy for the realization of FDSS,

we conclude that knowledge in many diverse disciplines of computer
science including software engineering, artificial -intelligence,
modeling, data management, and computer architecture, mist be brought
to bear on these problems. We shall present our technical findings in
the next section.

5. Technical Findings

a. System Structure

It is a well accepted principle today that large software systems
should be structured hierarchically with each level in the hierarchy
described by an abstract machine which is implemented by the machine at

the next lower level.



In Figure 1, we propose a hierarchical organization of language
interpreters, memory maﬁagement systems, and hardware that we believé
can provide an integrated data system for decision support in the near
future.

| The proposed system can be accessed by the user via many languages;
a subset of English, a Formal Data language, and Predicate Logic, etc.
Other languages are implied by the various support systems such as
statistical and mathematicallpackages, graphics, and various models;
economic, political, etc. Much complexity is implied for understanding
statements, questions and commands in the several languages that have
been megtioned. Each language requires an interpreter that embodies a
description of the language it can accept and a set of transformationsA
to produce representations of its input in the common language of

-semantic-relations. The prevalence of inference rules introduces ST

?i:;ual data paths of;bdtenfially infinite length and questions -

requiring many inference rules for éomputing their answers may greatly
multiply the number of data accesses in the system.

Effective computation of inferences will require'improved architecture
with parallel processing capability among shared fast memories as well
as disc processois such as the proposed CASSM system that can provide

parallel disc searching capability. (see Appendix 6).

It éhould be pointed out that levels in the proposed system are not
fixed, but is rather flexible depending on the specific‘system (see
part d below). In the next few subsections, we shall focus our attention
on various problems and issues associated with such a proposed system.

Semantic Representation

One goal for data management research is an integrated data system
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FIGURE 1. - A proposed organization for an Integrated Data System



that uses a common representation for tables, logical assertions, and
text. Tabular information is the stock in trade of current data
management systems and its usefulness is well established. Text is a
term that describes the content of general files of symbolic material
such as programs, unprocessed data, and natural language. Loglcal
assertions include simple propositions, inference rules, and systems
of assertions that are in fact predicate logic programs to accomplish
certain computations, e.g., proofs of programs, grammatical analyéis
and problem solving.

A unified representation for all these materials is required to
minimize the complexity of the system. A possible common representation
formalism into which logical assertions (tuples), tables, and text may
be transformed is Quantified Semantic Networks. The networks provide
indexing to any extent‘desired‘and a classification system f°§7§11
élemengs of vocabulary used. They'é;e géﬁérally opexatedién by three
'ope;:ators, ASSERT, DELETE, and QUERY, and include full logical inference -

capability. 1In Appendix 1, the power of quantified semantic network
for the proposed integrated data system will be discussed in detail.

c. Performance Modeling

Modeling will play a curcial role in the development of a design
methodlolgy for FDSS. We shall identify a few areas involving modeling.
i) One of the contrasts of existing data base management systems and

Al systems is that in DBMS design extreme care is used to minimize
the storage, whereas full indexing is usually employed for AI
systems for flexibility. It is clear that flexibility is necessary
for FDSS and must be paid for. The question is, how much? 1In

our proposed system for an integrated data system, we advocate the

\
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ii)

" resource avaiiability to the given sﬁbsystem aetermined under

use of quantified semantic networks for representing all kinds of
data. It is necessary fo know the tradeoff between flexibility

and storage inefficiency at each level of the system hierarchy!

We believe that performance models should be set up for such a
system, with levels of abstraction clearly identified, so that such
tradeoffs can be measured in a relatively precise manner.

Subsystem Performance: Competition and Interference in Distributed

Systems

Performance modeling of program subsystems within a larger
geographically distribured hardware system configuration have not
been fully accomplished. The transition to a distributed environment

with network interconnections and hetergeneous host computers adds

an extra dimension of complexity. Performance Characteristics of

the computer network and the associated host computers must be

estimated under varying worklo;d‘coh&itioas ags the effective

varying load conditions. The performance of the specific subSystam
in question can‘then be predicgad through analysis of competition
with other programs for the effective amounts of system resources.
This characterization will require, however, the determination of
the performance of the program as a function of the competing pro-
grams, the system configuration and the effective resource levels
available under varying workloads. The National Software Works. (NSW)
is a prime example of a program which operates in such a competitive
distributed environment. NSW competes with the other processes
extant on the ARPANET, both for network resources and for resources

with the host computers.
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1i1)

We can use NSW as an example of the types of factors which
are involved in subsystem performance analysis. Questions that
we are interested in (in WW terminology) include:

. How does MSG response time vary with the TENEX "pie-slice
(fraction of CPU time dedicatedkto NSW)?

. How does the non-NSW workload on the TENEX PDP-10's impact
NSW performance?

. How will changing the hardware configuration (for instance,
increasing the amount of main memory) impact performance?

. Can similar performance tools be used to analyze MSG running
on other machines, such as an IBM 370?

. How will network load impact performance of NSW functions

operating on geographically distributed machines?

Reliability Models _ =

~ because of the number of factors that need te be considered. _ -

Reliability plans for diétribéged data hasefgystems,arewqupléx

Enhanced reliability is achieve& at the expense of additional hard-
ware and increased processing and communication requirements.- It
is very important to estimate the overhead in enhanced reliability
protocols. It is, theréfore, necessary to have modleing tools to{
predict the impact of performance of different reliability plams.
Our overall goal is to model the interrelationships between
reliability and performance. For instance, from the point of

view of rapid recovery it is helpful to have two copies of a file
stored in proximate locations in a network (RECOVERY ISSUE).
Proximate copies also reduce the overhead of maintaining consistent

copies (CONSISTENCY ISSUE). However, from the viewpoint of obtaining
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iv)

rapid responses to queries it may be preferable to have copies
placed in widely separated locations (PERFORMANCE ISSUE). We pro-
pose to build performance models to help resolve these tradeoffs.

Design of Evolving Systems

We cannot afford systems which require drastic expenditures
to adapt to changing environmehts. It is generally accepted that
rapidly chanéing environments are a fact of life in the computing
area and especially so in decision support systems. There are two
ways of designing systems- to handle the costs required to adapt
systems to constantly changing user requirements. One approach is -
to design systems to meet all eventualities without attempting to
specify what contingencies are likely to arise in eaéh specific
case. The second approach is to require planners to consider

possible contingencies, evaluate (rough) probability estimates of

different scenarios, and then plan systems to adapt gracefully to

_probable contingencieé.; Sceparios-maywbe specified in terms of -

pessimistic, average and optimistic estimates. The process of
gauging future contingencies must proceed periodigally, as the
system evolves. A static design is concerned with howvto distribute
data and processors, select communication line topologies, and so on.
However, a contingency plan must include a complete design for the
current period and then specify appropriate actions for probable
contingencies in future periods; for instance, IF after two years,
the level of activity in the Gulf region develops as expected,vTHEN
increase the processing capability in that region as planned;

HOWEVER, IF the level of activity is much less than expected, THEN

shift processing capability to headquarters...,.. It is important
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that such performance models be part of the overall design model
so that performance 6f the system can be controlled at the design

level.

d. Software Design: Development of a Comprehensive Methodology and Tools

i) Design Philosophy

We advacate a design approach that is somewhat like the process
of sculpting a block of stone; this is done by chipping it away
gradually as the finalized sculpture takes shape. 1In order for the
software designers to do their refinement steps effectively, the
designers need guidance as to wﬁere to chip next, and tools for
measuring how close they are getting to their goal.

Formally, we propose to characterize the design process by
means of three interacting models: a model of the system structure,

a model for system (performancé) evaluation, andAabmodel for design _ -

. W'sErqctﬁ:g documentation. These three models will be refined T
B siﬁulta;eously during the design. Furthermore, in order to allow
a designer to "tinker'" with his design, we propose a computer
processable specification language and toois so that early feedback
can be provided to both the deisgner for the quality of his design,
or to the user for the inadequacy (if any) of his requirements. -

In the next few subsections, we shall describe briefly the
progress we have made toward the development of a comprehensive
design methodology with the aforementioned philosophy in mind,
and identify the problems that remain to be tackled.

ii) Design Process

Our concept of the design process is that it consists of many
stages, each of which has a model that satisfies some of the con-

straints on the design and a set of constraints that have yet to
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iii)

be satisfied. Figure 2 shows the different paths that the process
can follow from the original constraints (requirements) and the null
model to the final model and.null constraints.

As can be seen from the figure, each step along a path can be
expanded in several different directions to reach different final
designs. Thus, each model represents a family of designs. By
providing suitable means for documenting models, we make it easier
for the designers to back up and try another member of the family
when one path leads to a bad design. We also make it possible to
consider other designs in the family when system requirements are
changed, either during the design process or after the system has
been in service for some time.

Each model along the design path is a refinement of the pre-

vious one. The first models only exhibit the gross behavior of the

desired system without conside?atiqp”qf performanceAénd hardware

requirements. This is an especiﬁliyvieportaﬁi phase>iu’the develop-
ment of the decision sup#ort systems because it clarifies the purpose
of the system by requiring the designers to state precisely what it
is they want the system to do. Ag the same time they are able to
simulate the system at this early stage and modify it until it
appears to be what they really want. Later‘models begin to reflect
the efficiency and hardware considerations as the designers begin |
to outline the algorithms that will actually be run on the target
machine. Eventually through this process, the original constraints
get satiefied and the design is ready for transfer to the hardware

of the actual system.

Three Models of Design
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FIGURE 2. - Possible paths in the design process.
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iii.a) System Structure

We envision the desigﬁ of a DSS as a stepwise
refinement process of functional abstraction which begins with the
construction of a "top-level" abstract machine, M, satisfying the
functional requirements of some high level requirements specification.
This machine consists of a set of data abstractions represented by
formal module specifications. Each module specification is self-
contained in the sense that it specifies the complete set of
operations which define the nature of the dataAabstraction.
Collectively, these data abstractions define the data model which
is visible to the uéer of the machine.

In the next step of the process, another abstract
machine, Mﬁrl’ representing a "refinement" of Mniis designed. Its

data abstractions are chosen in such a way that they can_"implement"

~ those oﬁan.A,Basigally, this implementation consists of a set of

abstract programs each of which defines an operdtion of Mn'in terms

accesses to functions of machine Mn—l‘ A verification process can
then be used to ensure that the implementation is consistent with
the specification of both machiné;.

This stepwise process of machine specificatioﬁ,
implementation, and verification proceeds until, at some point, the
data abstractions of the lowest level machine can be easily
implemented on a specified "target" machine, which may be the
data abstractions of some programming language, a low-level file
management system, or the operations of some appropriate hardware

configuration. This design process results in a structure con-

sisting of a hierarchy of abstract machines, or levels, Mh’Mn—l""MO
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connected by a set of n programs In, Iﬁ—l""ll' Each machine Hi
in the hierarchy represents a complete "view" of the system at a
11(15;5p) represents the implementation of that view upon the next

level machine Mi—li

e el o i e e
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We observe -that the nogioﬁ_of levels of abstraction
translates to a natural interpretation within the context of decision
support systems. That is, we can expect that any inﬁegrated data
system will have a wide variety of users whose views ‘of the system
andvacceés~requirements will be quite different. Through the hier—~
aréhical design approach’different levels of design may be comstructed
to accommodate this bariety of views and access requirements. A

specific view representing one path of Figure 1 is shown in Figure 3.

It is observed that through hierarchical design,

many different users may be accommodated, and that reliability and B

A;:understanéability of the system is enhanced. ‘Furthermore, such a
_ system is machine and application indepéﬁaent and hence can evolve - -
with its environment. More detailed discussion of this model is

contained in Appendix 2.

iii.b) Design Structure Documentation

The role of specifications in the development of
large software systems is quite important. Specifications are used
not only as a means of communication between members of the design
team, but also serve to enhance the understandability of the system.
This is important both for users of the systemiand for future design
teams which must perform modifications. |

In order to understand a system as a whole or
for explaining why a particular design was developed, there exists

the need to document the system design and the design process.
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Fig. 3. A hierarchy of formally specified machines
showing modularity. Levels may be constructed

to accommodate the different views required by

various users.
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Such documentation would suppress details - concentrating rather on
the global properties of the system design and the design structure.

We have introduced a System Design Langauge (SDL)

which can be used to document the design process and record infor-
mation about the decision—méking processes that occur during it.
The features of the SDL include methods for:
1. specifying the design alternatives at
each level,
2. specifying the hierarchical relationships
betweén system modules, and
3. specifying thé structure of each system
level.
More detailed information of this language is contained in Appendix 2.
qugver, mqéy more development is needed in order for-the language

to accommodate the design;stiucture of concurrené, multiple user

pfﬁgrams. - - .

iii.c) Hierarchical Performance Evaluation

The success or failure of any DSS, of coutrse,
depends greatly upon the level of performance which the system
achieves during actual operation. Based upon the results of
current research efforts, however, it would seem that our approaches
_to performance evaluation are somewhat less than satisfactory. This
section contains a very generalkdescription of a performance evalu-
ation technique which can be used with the hierarchical design
approach and which seems to have several advantages over current
performance evaluation procedures. This technique involves the

construction of a hierarchical performance evaluation model. The

purpose of this model is two-fold:
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1. to provide the designer with feedback at

each step of the design process as to the
performance characteristics of his design,

2. to\provide part of a basis for choosing

between alternative designs at each level.

In this approach thé designer develops the system
design and evaluation model in parallel - the evaluation model being
constructed so that it represenﬁs tﬁe relevant performance aspecfs
of the current system design. The evaluation model provides con-
stant feedback to the deisgner at all levels of design as to the
performance characteristics of the system. Through constant inter—
action between designer, the system design, and the evaluation mndel,
it is hoped that a reasonably efficient system can be developed with

a minimum of backtrackingjanq_redesignt

Evaluation Model Structure ) - -

The structure of a hierarchical evaluation model -
reflects that of the system design itself. Corresponding to the
ith level is a set of performance parameters, Pi’ which represents

the relevant performance aspects of the machine at each level.

Data structure parameters represent information about the abstract

data objects of the level (e.g., number of relations, average

number of records per block, etc,). - While function parameters

characterize the operations of Mi»in»terms of expected execution
speed and expected frequency or probability of access. Parameters

may also be classified as design parameters or scenario parameters.

Deisgn parameters are variables whose values may be changed by the
designer to determine the effects of various database designs and

implementations upon the performance of the system. Scenario
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parameters, however, represent an expected usage of the system in
terms of the operations and data objects of level i. Their values
are determined by the values of parameters of Pi+1 according to a
performance parameter mapping set Ti+l' Each mapping in this set
defines a performance parameter of Pi as a function of the parameters
of Pi+1' A set of values for the scenario parameters of level i

is called a scenario for level 1i.

The values of scenario parameters of Pn are deter-

mined by an application scenario supplied as part of the high level

requirements specifications. The application scenario is a state-
‘ment of the expected use of the system in terms of the operations

and structures of machine Mn' The requirements specification also

contains a performance assertion which specifies the level of
performance expected from tﬁe system forlthe given scenario. This
éerform;nce asseftion, by<its_struct;re,'?§ll iﬂéicage the measure
“to be used in analyzing system‘performéhée,‘fVarioﬁé performéﬁber
measures might include:
_ 1. mean response time for a given load,
2. expected total exeéﬁfion time for a specified
mix of operatiomns,

3. toial storage requirements, or

4. a suitably weighted mixture of the above.
The specification of this performance assertion enables the designer
to construct a cost function, Cn’ for Hn using the parameters of
Pn. This cost function may be used by the designer to estimate

the performance characteristics of Mn.

It should be noted that this model is only a proposal
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iv)

experiments are needed to evaluate the adequacy of this model,
particularly, in the multiple user environment.

Design of Concurrent Systems

The progress made so far is primarily in sequential systems

and must be extended to concurrent systems.to be viable for DSS.
We discuss some of the issues that are peculiar to concurrent
systems here. In addition to the usual problems‘encountered in
sequential programs, the two most important problems are

(1) managing the interaction between proéesses;

(ii) supporting multiple views of the system (simultaneously)

for multiple users.

In recent years, a number‘of techniques have been advocated

for dealing ﬁith the design isgues of concurrent systems. These

may be summarized as the following:

1) Hierérch{pal Decdﬁépsitign: "This technique has begn;

used with great success for sequential programs. For-
concurrent programs, it has so far been much less suc-
cessful, .since the decomposition of a part needs to
take into account the in;eraction of that part with
several other parts.

We propose a methodology for decomposing a cluster
of functions simultaneoulsy, where the cluster members
greatly interact with each other, and interact only
slightly with functions outside the cluster.v

(ii) ©Notion of information hiding: A way to enforce the

module independence is to place a discipline for limiting

the interactions among them. Furthermore, the modules
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do not exhibit their internal details, thus enforcing

a8 discipline in their invokation. These ideas are

applicable to concurrent processes; we propose a view

of process interaction which takes this into account.
(1ii) Enforcement of Coordination: Coordination of the inter-
actions among processes has been studied at great depth,
since the pioneering work by Dijkstra. On cooperating
Sequential Processes [Dijkstra, 1968], solutions using ‘
P,V seﬁaphores dealt with machine level concepts.
Ultimatély synchronizing mechanisms have to rely on
such low level concepts for théir implementations.
However, it is counterproductive to study é complicated
system synchronizatioﬁ problem in terms of these
primitives._ Many diffeggdi high level constructs hafe B

- been proposed for synchronihatidé{ each of these can be -

viewed asué means of event driven coordination. -
"Demons" have been used in A.I. work to trigger
4 processes whenever an associated condition arises. Thus,
some processes are driven by events rather than through
explicit invocations. Current attémpt is to implement |
demons efficiently.

Another method of synchronization is through explicit
transfer of messages between processes. It is usually
implemented through a central "post office" with "mail
boxes" which actually are message buffers. This method
has been found to be useful in communicating with processes

whose identities are known to the communicating process.

-28~



A notibﬁ of'#adhit§2*fhas beeﬁ‘aévocstéd by Bf1§¢h~ﬁ£nsea {1373}
and Hoare [1974]. Monitors are attached to shared global data, through
which processes may interact. Monitors enforce mutual exclusion in
access to shared data. Théy also implement a scheduling policy for
access to that data‘(first come, first serve, for instance). Thus,
the monitor acts as a central scheduler for access to the data.

For performance, as well as the information hiding point of
view, the following process interaction figure illustrates a number

of ideas related to process coordination ideas:
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Processes interact explicitly with messages sent through
implicitly shared data. The process scheduler is transparent both
to the process and to the data. A process is not aware of other
processes when accessing shared data. Hence, it may be designed
and verified as a sequential program, given only the semantics of
operations on data.

| Similarly, the data object is not aware of multiple simultaneous
accesses to it. Hence, it may be designed and verified independent
of the invokation sequence.

The scheduler handles the various aspects related to proéess
synchronization in accessing shared data. Each request for access
to a shared data is routed to the proper scheduler who decides
whether to grant access or not. If a process is granted access to

" shared data, it returns to the §éhedu1er on éompietion. If a

prqéess—is denied access to ;pared data, the scheduler may puii;he
pioceés in a wait sequence. The scheduler, in fact; implemghts,ghe
scheduling policy. It may grant multiple processes to acéess the’
same data simultaneously (as in the reader/writer problem). It

may furthermore enforce security constraints. ‘

This decomposition of the problem into its three esseﬁtial
components results in a decomposition in design and verification.
Essentially different properties may be proven corresponding to
each part.

(i) Process: Correctness of computation. This may use

traditional techniques in program verification.

(ii) Scheduler: Absence of deadlock; fair scheduling;

absence of indefinite postponement of processes;

correctness of access sequences to data.
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(iii) Data: Correctness of impleméntation; integrity. Data
verification techniques for sequential programs are
applicable here.

An open problem is how to partition data base so that different
schedulers are'assigned to different portions of the data base while
activities are still coordinated.

We propose to study the verification issues in the scheduler,
particularly the problem of verifying each property independently.
The basic idea is to verify each property based on certain axioms
so that the verification of another propérty does not nullify the
axioms. A formalism for studying such a partitioned environment

has been developed and is discussed in detail in Appendix 4.

-31-



v)

Data Base Design

Data bases form an integral part of any DSS. However, the
systematic design of data bases has eluded researchers in this area.
In this section, we shall describe how automatic theorem proving can
be used in data base design, and how system design methodology might
be applied to data base design.

We are concerned with a data base system which consists of a
very large memory and mechanisms for processing and answering
queries. Also mechanism should be available for processing and
storing information in the memory.

Some queries would require the finding of one or more items in
the memory on the basis of a given KEY, while others would require
calculations and inference on the information im memory.

We envision a hierarchical system whereby (in some cases) a query

cauégs the féiéhingmof ?g}ected items from the large mgmory;:and f» N
pufting’tgeﬁ ;nté ;ﬁ,éuéiliary memdfy (é}g.aﬁﬁigh speedjéoreiwforf;r
further processing i; order to answer the query. For eiample, we
might fetch a part of a semantic net from the large memory, and
bring it into auxili;ry memory for further précessiné. e
| The fetching operation itself may require "intelligent"

mechanisms, such as simple inferencing (e.g., and-gates, or-gates,
matching, table lookup, etc.), calculations (counting, averaging,
weighted sums, etc.), and various other methods.

Also, within the auxiliary memory, more complex mechanisms would
be used to complete the answer to the query. Since the amount of
material being processed in the auxiliary memory is drastically

reduced (from the amount in the large memory) we could afford to

employ much more sophisticated inferencing programs and calculatioms.
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The large memory might be "distributed" over a large number of |
sites, with different formats for data in each site, so the
hierarchi§a1 system might be required to employ different local
mechanisms for different sites. And these might be more than two
levels in the hierarchy, thereby processing a query in a number of
stages. .

The large memory might employ new and/or novel concepts in
hardware design, including parallel searching ability, coﬂtent
addressability, and ability to do minimal inferences and calculations.‘
The design and implementation of these concepts should be correiated
closely with the design of the overall system.

v.a) Automatic Theorem Proving as an aid to Data Base Design

and use.
It is highly desirable to have data base systems

which can give answers which are not eiplicitly_pgoreé in their

mémor&iA For egaméle;Aa data"base4ﬁhich:containedf6nly the gwba« - -

entfies (A is an ancestor of B) and (B is an ancestor of c), shéﬁld
be able to answer "yes" to the question: (A is an ancestor of C),
even though th;t~entry ié not explicitlf storeé in tﬁefdata base,
(provided that it was given an édditional inference rule on the
transitivity of "ancestor-of"). |

Much more complicated examples than this can be
handled using inferencing mechanisms, but the problem gets more
difficult as the size of the data base memory and the complexity
(or depth) of the inference is increased. It depends of course on
how the entries are stored (as relations, semantic nets, etc.) and
what inferencing mechanisms are used. But it is clear that automatic
theorem proving (ATP) plays a central role here. It is not that we

can use our existing provers as off the shelf items to be "plugged"
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into this new application, but rather we expect to use the concepts
and experience with provers. This situation is similar to that of
Program Verification where existing theorem proving programs were
heavily modified before they were inserted as modules in several
program verification systems.

A good deal of research has already been conducted
on inferential data bases. For example, the rather large effort in
natural language understanding [Chester & Simmons, 1977] falls in the
category as well as many others. Some of these workers have had con-
siderable experience in automatic theorem proving. But, their efforts
have 1ef£ much left to do, especially for large scale systems. Also,
it is importaﬁt that in designing and building new large data base
systems (or in deyeloping general procedures for large data base

design), that-iﬁfe:encingAieéhanisﬁs properly interface with the

rest of the systen. It;is’imbortént that ATPMpeople_work as part
of the larger team.

As mentioned earlier, the inferencing mechanisms

might be minimal at the fetching point in the large memory. It
would probably not be feasible to carry out there more than simplg
and-or gates, and matches. A possibility would be to ré;fieve a
subset of the data base which is clearly relevant, and to perforﬁ
inferences andrcalculations on it in the fast auxiliary memory.
Such an interaction might require several references to the large
memory, when and if the processing uncovered the need for further
data from the large memory.

Even in the fast auxiliary memory we do not expect
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the inferencing to be very deep (like, for example, the proving
of a difficult mathematical theorem).

A more detailed explanation of ATP in data base
design is provided in Appendix 5.

v.b) Hierarchical Design of Data Bases

Because of the dynamic environment faced by DSS,
the data bases supporting a DSS must be able to adapt frequent
changes without extensive reorganization. The top-down system
design methodology can be applied in the design of data bases to
improve their adaptability. The data bases designed with such
methodology will also provide automafic linkages between decision
models aﬁd have self-organizing qapabilities.

| The data base design process starts with a high level

description of the universe of discourse (U0D) - the part of reality

that is of interest to the users. A top level data base schema is—
just desigﬂed to réﬁreggnt this high level qbsttaction of data. Th;n
the stepwise refinement process begins; at each step of refinement,

~a new data base schema is formed with more details of the UOD and/or

more details gf how the data base is actually stored. A hierarchy of
data base schemata is thus generated. The schema at the lowest level
of the hierarchy contains the storage structure of the whole data base.
By using this approach, related data can be "clustered" together and
small changes of the environment will only induce small changes in
the data base. -

Note that in the top-down data base design process,
there is no distinction between "logical data base design" and

"physical data base design'. Traditionally, "logical designs" only
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consider the user convenience and data semantics in constructing data
base schemata; the "physical designs" only consider the efficiency
factors in designing storage structures. However, the convenience
factors and efficiency factors should not be considered separately

as they can influence each other. Our top-down methodology will
design data bases by evaluating different factors in their order of
importance without a rigid separation between "logical" and "physiéal"
factors. The data bases thus designed should have a better overall
performance than those designed using traditional methods.

When the details of the UOD are added to a data base
schema, some data abstraction techniques (such as the ones developed
by Smith and Smith [ 1) can be used as a guide for refinement. We
will develop more "abstraction operators" as the two operators

developed in [ }, aggregation and generalization, are not sufficient

for the construction of the schema hierarchy. _For example, ?tfone»::

level the schema may contain é field total sale per year; and at a

lower level the other schema may contain the field total sale per

gg§£§;>5he "abstraction operator" we neeqvin this case is a summation
operator. This concept of "abstraction ;perator" can be generaliiéd
to contain a whole decision model: the schema in a higher level
contains the output of a decision model which uses the data in a
lower level schema as its input. The schema hierarchy constructed
by using such operators can provide each decision model the required
data and can support automatic linkage between different decision
models. A strategic model (e.g., a cooporation model) may need some
data from the outputs of different tactical models (e.g., financial
planning models) or operational models (e.g., payroll model and

marketing model). Upon the activation of the strategic model, the
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éata base system can autoﬁatically activate the tactical and operational
models that are needed. Sprague [ ] noted that the successfulness
of a DSS largely depends on the system's ability to link different
decision models together. Our design methodology provides a solution
to the linkage problem.

The characteristics of the multi-level virtual machines
(fig. 2) designed with top-down DBMS design methodology can also be
utilized in the data base design process; I1f a data base schema is
based on a level of virtual machines in the system hierarchy, the
performance of the schema can bevprediéted by using the performance
evaluation functions developed for the virtual machines. Such per-
formance evaluation can alsb be applied to guide the self-orgénizing
activities of the data base, the data base schemata can evolve with

changing environment in order to optimize the performance.

v.c) Design of distributed data base which uses summarﬁ_;

- . information _ - - - -

The désign problem is related to responseé‘baéed on
incomplete or partial information. An example of a flight reservation
will illustrate the idea. Considef‘a primary data base (central computer)
which has (all) the information regarding a fligﬁt Booking; There are
several secondaries (mini-computers with slight memory) which can be
used to make a reservation. Each secondary holds 1 bit of iﬁformation,
which denotes whether the number of vacant seats in the flight exceeds
102 of the flight capacity. The secondary uses the following logic
to book a seat or deny a request.

If the bit shows availability of vacant seats (more
than 10% of flight capacity) then a seat is booked on request and the |

primary is informed of the booking. OtherwiSe, the request is denied.
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vi)

Periodically, the secondary might feceive messages from primary to
turn the bit off (vacant seats less than 10Z of flight capacity due
to a number of bookings) or on (following cancellations).

Primary uses the information received from the secon-
daries to decide whether the bit should be off or on; it transmits any
change in the status of the bit to all the secondaries.

The point of this example was to show that rapid
response to queries can be provided based on incomplete information.
However, the dangef in the above example is that of overbooking (too
many secondaries book simultaneously) and underbooking (all secondaries
were instructed to cease booking while there were a number of vacant

seats). It seems that this method can be used to keep summary

information to serve several sites most of the time; however, some

time (with‘1owmpr9bability)~all the current {nfor@ation may be needed.

We propose to -study thé'use?d},summary»;nformationiin several reéiAiifef

problems and to géneraliig fhe/idea. Furthermore, the effectiveness of -
snch strategies have to be studied with probabilities of erroneous
response and probability -of querying the primary data base.
Tools | A

-~ A set of soffware tools must be developed along with the methodology
in our project to aid the construction of decision support systems. We
should include four classes of tools: languages for communication,

modeling system for testing out our ideas, reasoning systems for exploring

the consequences of our ideas at a general level, and knowledge systems

for gaining from our past experiences. It is envisioned that such an

integrated set,of tools is itself a decision support system. With such

tools, a designer can tinker with his designs by executing and testing
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specifications, or ask the system questions such as, "I intend to make
such a change to my design, what will the consequences be, and why?"
We will explain in the following an initia& set of such tools.
a) Languages
i) A requirements language. This should be a restricted form of
English and/or graphics for stating the problem initially. It
is characterized by its vagueness and high level of abstraction.
ii) A specifications language. This should be a formal, non-
procedural language for stating the problem after it has been -
clarified. A specification in this language fixes a particular’
representation of the problem so that finitary procedures can'
be applied to obtain a solution. This language.is considerably
less vague than the previous language. It may even be precise.

L -A computer executable specification language is developed, a

) _ sample is giveﬁvin Appendix 3. : - = . -

iii) A programmming languageé. This is-the procedqrel language Ebat -
we use to state our proposed solutions. It may be at the level

of a modern computer language like Pascal, or it might be

higher.

iv) A meta-language. This is the language that we use to talk to
each other (and to the computer) about our engineering efforts,
that is, about requirements, specifications, programs, assertions,
documentation, models, simulations, testing, debugging, problem
solviné, reporting, etc. This may just be English, but we should
try to formalize at least some of it so that we can get help
from the computer.

We may in fact have several examples of each of the above languages to

serve special purposes. In any case, each language consists of a
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vocabulary of concepts that are "natural” for the intended application;
this means that they are as close to common sense concepts as possible.

b) Modeling systems

i) An interpreter and/or compiler for the specifications and
programming 1anguageé. This allows us to test our evolving
software to see whether it does what we expect. This kind of
testing will catch many of the simpler errors and will help us
to see whether we really want the properties given in the
requirements or specificationsQ We need an interpreter for the
specifications language ﬁecause a precise statement of the
problem is in a sense a high level solution to the vague ﬁroblem
posed by the requirements.

ii) Special simulation packages. These are used to model only part

qf the behavior-of a system. gueuing models, for example,

simulate ﬁhé,intégactiéns between processes while ignoring most

“of the detailé of the processes. We may have a different
package for each major performance parameter that interests us.
"iii) Hierarchical performance evaluator. This will be the :tool to
support the hiera;chical*perfofmance modeling discussed in
iii.c). We envision that such a tool has some gross similariiy
to current program verifiers in that inference capabilify is
needed, and hierarchical performéncé requirements (analogous
to the verification conditions) will need to be generated.

The development of this tool will be a major undertaking.

¢) Reasoning Systems

i) An interacting theorem prover, It can be used to verify con-
jectures about the developing software. The most important

kind of conjecture will probably be that one system design is
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a refinement of another design or of the specifications.

ii) An inference engine. This is different from a theorem prover
in that it is not given a conjecﬁure to prove. Instead it
derives "interesting" generalizations about a program or pair
of programs. It will need some guidance to know whét "interesting"
means. This is the system thatAhas the ability to discover
important facts as an active agent for thg engineering team.
It can also be used to determine the c;;sequences of a proposed
program mgdification will be.

iii) A monitor. This is the agent that uses the inference engine
(and perhaps the theorem prover) to detect violations of
project standards and undesirable interactions between different

programs. It can inform a designer that what he is doing con-

- = - flicts yiih what someone else has done, or that someone else -

has airgad&*dong,éomething similar. - B o

iv) A symbolic debugginé aid. There will be debuggiﬁg aids for

use with the modeling systems, but this aid helps the designer
1déate avbug by looking at the codevaith him. It will make
heavy use of the theorem prover and inference engine.

v) A code analysis system. This is more general than the debugger
in that it helps the designér find the relevant code that pro-

duced some effect.

d) Knowledge Systems
1) An advice-giver. This can help the designer clarify his problem.
It is a data base of knowledge about high level concepts,
algorithms, heuristics for solving special problems%and for
general éroblem solving, and the technical literature. It will
be especially helpful when the designer is trying to clarify

his problem.
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i1) A project library. Here is where all written material con-
cerning the design effort is stored and made readily accessible.
It will have an extensive association network so that specific
information can be found with a minimum of keyword guessing.
It will thus give some question answering ability like the
advice-giver.

iii) A knowledge acquisition systém. This‘is the system that we
need to put all the detailed knowledge into the other systems.
Instead of one system it might be a separate component of each
of the other systems. The success of the overall system depends
directly on the ease with which its subsystems can be brought
up to a satisfactory level of performance.

Computer Architecture for Decision Support Systems

- The DSS computer architecture will use recent hardware advances

(especially iSI) techﬁolog} to facilitate the development offtie very

large distributed and intelligent data base management‘sistem. We
sketch here architectural features of a planned system and some
problems for architecture research and development. : -
Three major computing 3ystems are to be accommodated. Firséi&,
users interface with the data base system through a network of
intelligent terminals. Secondly, intelligent discs are located at
various nodes in this network and are powerful enough to search the
data where it is stored to avoid shipping large quantities of data
through the network. Thirdly, an array computer wiil use parallelism
to extend the analytical capacity of artificially intelligent soft-
ware. We submit that these tﬁree major systems have to be accommodated

because none of them alone, nor any pair of them, are adeéuate to

support the envisioned software.
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In the following paragraph, we shall give a brief description of
the intelligent Disc Architecture since it is used to support the
important conceptual tools by providing both content- and context-
addressability. It also can be designed to support distributed
queries in the network and to support deep theorem proving in the
array computer. Other system architecture as well as details of
how an intelligent disc can achieve content and context searching
is described in Appendix 6.

i) Intelligent Disc Architecture

From our earlier work on the CASSM system at the University
of Florida and from related work on the RAP system at the
University of Toronto, we haﬁe established techniques which
will efficiéntly store relational data bases and semantic net-

works on a disc. The logic associated with the disc makes it

- -sufficientl& intel;}geng to resolve-almost all typical r;iétional -

queries and sufficiently intelligent to greatly éssisﬁvextracting

useful data from a semantic network for artificial intelligence

~-  programs. - - -

The disc architecture will consist of multiple moving head
discs (we are looking at IBM 3330 or equivalent stores of about
109 bits per removable disc pack) in which all heads are on a

_ common frame, and there is one head on each disc surface. By
moving the frame, the heads are located over a given Yeylinder”.
One or more such discs will be operated fogether sb éhat their
"eylinders" form a larger cylinder; the data on this larger
cylinder we call a file. Each head will have a "microprocessor"
similar in complexity to current popular microprocessors bﬁt

having quite different organization and instruction set. It
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will be attractive to put each "microprocessor" in an LSI chip.
The disc track and "microprocessor" we call here a cell. The
logic looks like a chain of identical cells. In one revolution

of the discs, an "instruction" is executed on the entire file.

The file consists of records oan variable number of words, and
the words are fixed length. Records correspond to tuples in

the relational data base system and to nodes in semantic networks.
The first word of each record stores a bit stack. Other words
appear to store domain names aﬁd items in the tuple, or‘arcs
incident from the node in the network. A typical "instruction"
pushes a bit in the bit stack of every record in the file, which
is the result of a search for a domain name and item in the tuple,
or the result of transfering from one node to another node through
an arc in "the petwork. Altefnatively, one can AND or OR thg

- result ofvth; search or:frgnsf;r onto the to;wiit of fhéﬂgiti
stack in each record.- éhééé 6perétions ;re'accomplisheé Sy E
means of a one bit wide randoﬁ access memory, with as many bits

as there are records in a cell, in each cell. Significantly,

as the data base size increases, it is possible to add more discs,

so _that retrieval time is relatively independent of the size of

the data base. (If tertiary memory is used, as will be necessary
15

for 1012—10 bit data bases, this feature will be harder to
maintain but is still possible). Furthermgre, Both tuples of
relational data bases and nodes of semantic netvorks can be
efficiently stored in the same record, and that record can be

accessed by two users who are working in either semantic net-

works or relations.
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ii)

Problems for Research and Developmqu

Since the intelligent disc is common to studies in networks,
relational queries and artificial intelligence, it is necessary
to build a prototype disc system and make it available to the
other researchers. Since research on the architecture of an

intelligent disc has been essentially completed in the design

‘of the CASSM,maéhine, this aspect of the work is more like

development of a tool bésed-on that research. However, the
added requirements imposed by network and artificial intelli-
gence pose some new research problems. Significant among

these are the techniques to lock out records on the file and to
regenerate a query from one file that is to be sent to another
fi%e.

" In the network architecture we expect the usual problems

bfﬂdéadloék, ;ouiiqé, and<pfotecﬁion. “Considerable résearghvu -

has to be cariied’out to evaluate how té take advantage of
intelligent discs that permit locking of records. Performance
studies will be required to determine the efféct of strategies
to search multiple files on traffic through the network.

In the array architecture, further studies are indicated to
determine if cannonical forms can be used to make vector
operations out of operations like COND (from LISP). Studies of
the utilization of memory by concurrent vector techniques will
indicafe how successful the cannonical forms may be.

Other research questions interrelate with.other areas and

will be described in other sections,



f. Reliability Issues in the Design of Distributed Data Bases
A distributed data base has a number of different specifications

associated with it. Broadly, we may diﬁide them into two categories:
those dealing with the user and those pertaining to the functioning
of the system.

The specifications associated with uses ;nclude (a) specification
of query language through which the usér communicates with the systemn,
(b) specification of the (uset) view of data that the system supports,
(c) response time and other performance specifications. System
specifications may include those aspects dealing with,integritﬁ,
consistency, absence of deadlock, specification of a fair scheduling
policy, etc.

A number of new problems arise in dealing with system function
spec}ficgt%on. In particular, a language formalizing such speci-

_,ficapions:is a muéfiréow;yer,'Vefy }iﬁf}e work ﬁas:ﬁeen éoge in
formal ;becificétionsvof propéities of-éoncurrentvéystém. “The -
problem can be explained informally in terms of a simple reader-
writer problem. "Readers access é data base In query mode; writers
perform updates on the data base. For performahce reasons, it is
desired that

(i) a number of readers may simultaneously access the data
base.
In order to avoid unpredictable modification, it is required that
(ii) no more than one wirter may access the data base at any
time. Furthermore, no reader may access the data base if

a writer has been granted access,
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A fair scheduling policy must also ensurelthat no process is inde-
finitely postponed. Hence, it is required that
(111) no readér is granted access to data base if there is a
writer previously waiting. Similarly, no writer is
granted access if there is a reader previously waiting
before it. |
Finally,
(iv) a reader or a writer may be granted access if no other
process has been currently granted access to the data base.
A reader must be granted access if only readers are currently
accessing data base and no writer is waiting.
This problem, though simple in nature, results in a number of
distinct solutions of varying complexity. In order to verify that

a solution meets the requirements, we need to state the requirements

in a formal manner, 1h&égendeﬂt of any specific solution. This

v;mall problem highliggis some ;f the difficulties._ Fof*largé%
problems, specifications are required not only for verification, but
also to check for the consistency of the requirements.

A number of other forms of assertions, to be called "soft
assertions" [Saltzer, 1977], seem to arise in distributed data base
specifications. Soft assertions involve the notion of time and
probabilities. While probabilistic assertions have beeﬁ found
useful in other areas (operating systems in particular, where oné
may assert that the probability of system deadlock is less than
10-5, etc.), "time" has not been used as a pérameter in specifi¢ations
of systems, The reason for this is simple: normally we deal with

‘algorithms or processes which do not exist for extended periods of

time or which model a part of a real system evolving in time. Data
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bases exist for years and hence must include "eime'" as an improtant

parameter in the system specifications.

The time dependent assertions can have a variety of types, as

illustrated below:

(i) Copy at a location A is consistent with copy at another

location B, to within one day.

(i1) Every March 31, every copy is current.
(ii1) On the 1lst of every month, automatic transfer of a certain
amount takes place from one account to another.
At present, no formal technique exists for succinctly stating
such assertions or verifying a system with respect to these assertions.
Probabilistic assertions deal with probabilities of events. An

event, such as total system deadlock, may not be preventable in any

- 'réasonéble manner. Héwever, it may be‘ggserted that the probability _

_ of sich an event is negligibly small. A number of efficient solutions

to several”syétem“progiems ﬁ;y be designed, if one is willi;g to riék
an undesirable event; however, it must then be shown that the event
is highly unlikely. For instance, an airiine might follow a bookiﬁgf
policy where the probability of overbooking by x seats does not exceed
10—(x+1)' Probabilistic assertions may also relate the software's
ability to deal with physical component failures, given the proba-
bility of such é failure.

A number of research issues arise in dealing with-éuch
assertions.

(1) fofmal specification technique for soft assertidns,

(ii) didentification ofﬁreasonable (tractable) classes of

assertions which are pertinent to distributed data bases,
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(i1i) design and verification of system based on such assertionms.
A system constraint of special importance is that of integrity.
It is a constraint either dictated by the application or enforced by

the data base administrator. An integrity constraint is an assertion

about the data base which holds following every transaction. Hence, it

must be verified that every transaction maintains integrity. An example
is a constraint such as "no employee earns more than his manager', or

"ho manager manages less than 3 persons or more than 20 persons", etc.
However, it is expensive to verify through run time checks that integrity
is preserved. Fortunately, we have found that most of the integrity
constraints deal with the structure of the data rather than the value

of the data. For instance, social security number is an integer with

9 digits; no employee belongs to more than one department, etc. Such

constraints are routinely handled by compilers through type checking.

_ This idea can be exploited by preprocessing the transaction struiture’

to deterﬁipe.wheéher it would violate the structure constraints. jﬂoﬁevéf,
most run time checks are usually limited to a single tuple or a small
number of them. ("Salary of no employee bélow the rank of a manager

may exceed $20,000-" can be checked whenever a tuple is updated). " This
type of integrity constraint does not require us to go over'the entire
data base.

Another commonly occurring form of constraint dealing with an

entire data base can be checked incrementally. For instance, a
constraint might require that the average sélariés for males and
females must be within 10% of each other. Normally, it would be
required to verify this following addition of every new employee and
change in salarj of any employee. This constraint involves the entire

data base. However, the relevant quantities can be computed incrementally,
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if we keep track of total number of male and female employees and their
total respective salaries.

Most integrity constraints dealing with an entire data base exhibit
this property of incremental computation. |

A problem studied by Eswaran, et al, [1976] is the sequence in which
multiple transactions may interact to destroy integrity, though each
transaction preserves integrity when executed above. They showed that
integrity is preserved if and only if every tranmsaction lggggvall pileces
of data used by it prior to any unlock. This has the interesting property
that a system wide requirement is unnecessary, so long as every transaction
meets this requirement. However, the proposed method also implies a
specific order for locking data items in order to avoid potential dead-
locks. This, in turn, implies that dynamic decisions which items should

be locked during a transaction, are dangerous. Furthermore, their

solution is based around a central schedulér which grants (or denies) -

locking privilieges baséd_on the.gntries in a-l;ck téblg,tthch shows -
the items currently under lock. Sevéral problems arise in connection

with multiple copies of the same data base, location of the lock table

aﬂd recovéry problems when the scheduler (or the lock tabie) site fails. -
A number of issues arise in héndling multiple copies. The central

problem is that of recovery from a faulty transaction or hardwaré failure.
In the latter case, it may be necessary to suspend all operatioms on all
copies; otherwise, some queries may receive incorrect responses. A
statistical approach is needed. Certain other problems dealing with
multiple copies are the following:

(1) How consistent do the copies need to be? Absolutely consistent,

within 1 day of each other, etc.?
(ii) Given sufficient time and no further updates, do all the copies

converge to the same state?
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(iii) How can the lock tables and file directories be maintained
absolutely consistently?
(iv) How are updates broadcast so that older updates do not over-
write the newer updates? This problem has been addressed by
Bunch [1977] with time-stamping and Allsberg [1977], for
invenfory type data bases.

A further area of research is transaction preprocessing. If the
transaction is not dynamic, i.e., decisions about data accessing etc.,
are not made based on the outcomes of responses in the same transaction,
then it is possible to preprocess the transaction to guarantee certain
properties. As we have mentioned earlier, this can be used to éliminate
checks on the resulting data base for integrity constraints. It can be

used to guarantee legality and authorization of access.
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APPENDIX 1

SEMANTIC REPRESENTATIONS
FOR AN INTEGRATED DATA SYSTEM

R. F. Simmons
I. Languages
Semantic Networks evolved primarily to represent the deep logical semantics

of natural language discourse. Consequently communicatiom in English is the

raison d'etre of the system and we have previously described interpreters and
grammars that we have developed to tranélate sehtences and queries in English
into the networks and from network structures back into English (see Simmons, 1977).
The language of semantic relations an& predigates evolved as a linear ex-
pression of the networks, and statements in it may be used as arguments of the
functions, ASSERT, QUERY and DELETE to communicate directly with the system.
This language is an alternate notation for predicate logic and it is fu-ly
quantified and includes logical functions — AND,‘OR NOT, and IMPLIES - and

can include general functions (see Simmons and Chester, 1977).

~ The user may prefér for some purposes to use a 31mpler language of “tuples.
predlcate log;c in thls form was 1ntroduced to computation by F. Black (1964)
and has been further developed by Kowalski (1974). NA simple assertion such as:A
"the pencil is in the desk", is represented in Kowalski's notation as: (IN PENCIL
DESK?«. The transitivity of "in" is expressed as: (IN X Z)<«(IN X Y) (IN Y 2),
i.e. if X 1is in Y and Y is in Z, then X isAin Z, where X, Y, and Z are free
variables. The tuples to the left of the arrow are consequents, to the right
are antecedents. A query has the form, <(IN PENCIL Y). Both Black and Kowalski

show that this is a complete logical system. This language translates easily

into semantic networks. An example will illustrate:

~ (IN PENCIL DESK)<+ == (ASSERT(IN R1 PENCIL R2 DESK))
(INX Z)(INX Y) (IN Y Z)=
(ASSERT(IN R1 X R2 Z ANTE ((IN R1 X R2 Y)(IN R1 Y R2 2))))

<(IN PENCIL X) == (QUERY (IN R1 PENCIL R2 X))
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The logic of answeriﬁg questions in‘seméntic~networks is similar to the logic
of Kowalski's system which he has shown is very powerful for solving problems
and even for evaluating programs. |
Of primary interest to data management, special functions are introduced
for asserting, querying and deleting tables. ASSERTAB as exemplified in a
following section, takes a tablename, a list of headings,'and a list of
tuples as arguments:
(ASSERTAB TABLE COURSE*TAB
FORM (COURSE STUDENTS)
DATA ((CS343 23)(CS375 37)...(CS399 9)) )
The res&lt of ASSERTAB is to comstruct a network representing the table.
DELETAB is provided to delete all or parts of a table. Although the ordinary
ASSERT, DELETE and.QUERerunptions work on tables, a speci§lvquantified func--

tion is provided in therollawiné form: _

(FOR QFY CLASS PARTITION OPERATION),

an example call might be:

(FOR SOME STUDENTS COURSE*TAB (IF (GR STUDENTS 5)
(PRINT COURSE STUDENTS)))

The operation can be any program in a language decided to be suitable for the
user. It is of particular importance that the operations include the capability
of constructing new tables, e.g.
(FOR SOME NAMES EMPLOYEE*TAB (IF (GR SALARY 20000)
(ASSERTABR NAME TEMP*TAB

FORM (NAME SALARY DEPT)
DATA (NAMES SALARY DEPT))))



fége.é

This will construct the new table, TEMP*TAB selecting NAMES, SALARY and DEPT
from the old one when entries have a salary greater than 20000.
Additional functions ASSERTEXT, DELETEXT and KEY* are provided for intro-

ducing text to the semantic networks and for retrieving bestmatching strings

from it.
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II. Basic Structures

Semantic networks can be viewed as a representation that reduces all data
to sets of binary relations. A semantic network can be drawn as a directed
graph in which each arc represents a relation term and the two nodes* which
it connects are the arguments. Since a node can participate in many binary
relations, a node, its arcs and the nodes to which they directly connect it

comprise a set of binary relatipns. A simple example follows:

"Five students enrolled in CS381."

enroll student
SUP SUP
enro11l —28Ly sTUDENTL —BR 4 5
) Ty csapm—F—yeszel . .

The subscripted terms, e.g. enrolll, stﬁdeﬁgl, etc. can be seen_as a special -
encoding for instances of the concept to which they are in a SUP relation. The
arcs are relation names which in this example are derived from the names,

Agent, Theme, Number and Superclasé. Each arc is understood to have an inverse

as follows:

SUPerclass~-~INSTance

AGT~~AGT*
TH-- TH*
NBR--NBR*

*In fact, in our implementations, an arc connects a node to a set of nodes,
e.g. stately and graceful ceconut palm is represented as
"(PALM MOD y (STATELY GRACEFUL)). This proves most economical for representing
tables and texts. : .



