NI YR V'Y

‘Page 6

The unsubscripted concept is also in relation to other concepts; e.g. ENRGLi
SUP JOIN, STUDENT SUP PERSON, CS381 SUP COURSE, etc., thus classifying the
vocabulary of the system. |

The above graph can be represented also as triples which is an attractive

form at the machine implementation level.

(ENROLL1 SUP ENROLL) (CS381* SUP CS381)
(ENROLL1 AGT STUDENT1) _ (CS381*1 TH* ENROLL)
(ENROLL1 TH CS381*1) = (5 NBR* STUDENT1)

(STUDENT1 SUP STUDENT)
(STUDENT1 NBR 5)
(STUDENT1 AGT* ENROLL1)

The triples facilitate implementation in that they reduce any form of data to
a fixed dimension array. Their use of indirect reference is advantageous for

defining recursive and iterative inference procedures but results in signifi-

cant difficulties in terms of the number of auxiliary storage accesses that

they may imply. - o -

Most of our work locally has been accomplisheé in a LISP 1.5 environment
in which the semantic networks are conveniently represented as property list
structures. A pfopertyvlist can be viewed as a node associat.o.. . »et of
pairs. The first member of a pair is the name of an arc or relation and the
second is the name of the node that it connects. For the above graph or set
of triples a property list structure appears as follows:

(ENROLL1 SUP ENROLL AGT STUDENT1 TH CS381%1)

(STUDENT1 SUP STUDENT AGT* ENROLL1 NBR 5)

(CS381*1 SUP CS381 TH* ENROLL1)

(ENROLL SUP JOIN INSTANS ENROLL1)

The LISP environment is additionally helpful in providing a transformation from

linear machine organization of memory to a logically organized memory in which

LSS

Page 7

the names of atoms and lists point to their addresses. This list organization
represents a difficult problem when auxiliary storage is required as in a

large data management system.

NS Y

Page 8

I1I. Tuples and Tables

In ordinary conventions of mathematical notation a statement such as our
example, '"Five students enrolled in CS381", might be represented as the fol-

lowing data 2-tuple:
(Cs381 5).

The author of such a tuple would remember that he is talking about a course and
its enrollment of students. His understanding of the tuple can be represented
by a corresponding form 2-tuple, (COURSE STUDENTS). These two forms may be
combined into a semantic network representation: (COURSE 381 STUDENTS 5) thus
making explicit the form that is requifed to understand the original 2-tuple.

If he wishes to organize or present data for several courses, he may

- construct a table such as~;he following: _ - - - - -

TABLENAME " COURSE*TAB - - -

HEADINGS COURSE STUDENTS
| cs381 5
DATA CS382 7

Alternatively, he can present the same. information in semantic network

. form.

(COURSE*TAB INSTANS (COURSE#TAB1l, COURSE*TAB2))
(COURSE*TABl SUP COURSE*TAB COURSE CS381 STUDENTS 5)

(COURSE*TAB2 SUP COURSE*TAB COURSE CS382 STUDENTS 7)

BTV N
(O3 Pt Vi

Page 9

The tablename, COURSE*TAB, is a partitioning -of the semantic network that
organizes assertions about courses and students into a subnetwork that is
easily accessible by the name, COURSE*TAB. Additional specifications of the
kind of data in the partition can be associated with the tablename to
facilitate retrieval or to insure accuracy of its entries as in the following

example:

(COURSE*TAB ARCS (COURSE STUDENTS) ACCESS UNRESTRICTED
ENTRIES 2
COURSE NAME
STUDENTS (NBR LS 500))

So the node, COURSE*TAB specifies that its headings are COURSE and STUDENT,
its access is unrestricted, it has 2 entries, COURSE is a NAME and STUDENT a

NUMBER less than 500. The INSTANS arc as seen earlier indexes the entries.

Various- ordering arcs can be pr0v1ded to subset large tables into alphabetlc

_or numerical categories. T -

Interpreters for two forms of query can be provided. The first is the

standard form called a Case Relation query:

(QUERY (Y COURSE CS381 STUDENTS X))

where the argumént of ASK is a partial specific#tidn of a case relation and
X is a variable that matches the value associated with the matching case
relation. The value returned by ASK is (COURSE*TAB1 COURSE CS381 STUDENTS 5).
The partial specification succeeds by finding the instances of CS381 aﬁd
discoyering if any have the arc, STUDENTS. If we knew that courses were par-

titioned in COURSE*TAB, we might have asked:
(QUERY (COURSE*TAB COURSE CS381 STUDENTS X))

and retrieved the same answer by examining the instances of COURSE*TAB. The

Y as

Page 10
value returned in this case would be (COURSE*TAB1 COURSE CS381 STUDENTS 5).

The second general type of query is a quantified form, similar to formal

data management languages;
(FOR QFY CLASS PARTITION OPERATION)

FOR establishes an iteration where QFY specifies the number of instances de-
sired, e.g. 1,17, some, all; CLASS specifies an arc name Or a function on its
values, PARTITION specifies a partition or table if any and OPERATION is a

set of procedures to be accomplished on the set that has been specified. ,we

might wish to ask COURSE*TAB for all courses with more than 5 students;

(FOR SOME STUDENTS COURSE*TAB (IF STUDENTS GR 5
(PRINT COURSE STUDENTS)))

The OPERATION argument accepts a program of procedures in a data language

- eonvenient for the user. - - _

The i@tefpréteﬁﬁmust also_accept Assertions and Deletions. A seﬁ‘of
predicates may be asserted to the network with the following command:
~ (ASSERT ((COURSE*TAB COURSE 375 STUDENTS 7)
(COURSE*TAB COURSE 343 STUDENTS 23)))
The result of the ASSERT is to create INST and SUP arcs from COURSE*TAB to
COURSE*TAB3 and COURSE*TAB4, and to create the arcs COURSE, COURSE*, STUDENTS
and STUDENTS* between the data items. Convenient brief forms such as
ASSERTAB can also be provided, e.g. (ASSERTAB TABLE COURSE*TAB

FORM (COURSE STUDENTS)
DATA ((CS375 37)(343 23)))

DELETE can accept the same forms as ASSERT and delete them from the network.

Lo
i RekA w

Page il

In some applications where many small tables characterize the data,
it may prove desirable (in order to save memory) to avoid indexing the values
of data in the tables. In this event the semantic network form of the table
is exactly the same as the argument form of ASSERTAB. For example the unin-
dexed form for COURSE#TAB appears as follows:

(COURSE*TAB FORM (COURSE STUDENTS)

DATA ((CS380 5)(cs381 7)))

Since this is a well-formed semantic network, it may be directly Asserted.

A variation of the quantified FORvstatement, FOR*, can be provided to query

unindexed tables.

AR
TS ¥ T

Page iz

IV, Text

In its printed forﬁ a text is an ordered set of word symbols. For .
retrieval purposes it is best represented as an index of Word-types and a list
of occurrances of Tokens. Consider the sentences, "Big fish eat little fish.
Little fish eat littler fish." The representation as types and tokens is

shown below.

TYPES INDEX) TOKENS
1 Big (1) (1234242352)
2 Fish (2,5,7,10)
3 Eat (3,8)
4 Little . (4,6)
5 Littler 9

The tokens are references to entries in the type list which for each word~-

type shows a list of its occurrences as sequence numbers referring to_the B

string of tokens. - B - - - - - -

For refrieﬁal from such a structure, ;ny lisé_ofvwgrds ma; be takenAas
a request and the Token substrings containing hits can be returned as answers
ordered by the number of hits in each substring. “?@is is the general approach
to keyword retrieval as used in many kinds of system.

This approach is adapted easily to representation in>semantic networks
almost literally as shown below: A

(BIG NER 1 TEXT1 (1)) (TEXT1 SEQ (1 23 4 24 2.3 5 2))

(FISH NBR 2 TEXT1 (2 5 7 10)) .

" (EAT NBR 3 TEXT1 (3 8))

(LITTLE NBR 4 TEXT1 (4 6))
(LITTLER NBR 5 TEXTL (9))

é;geWXS

If we query with the procedure KEY* to retrieve what it said about "little"

fish";
(KEY* (LITTLE FISH))

under the requirement of returning sentences as answers, both sentences would
be returned. In the process the tokens would be translated back to words. The
procedure for retrieval operates wholly on the index to deiermine an ordering
of the sentences in the text, then reconstructs those sentences from the token

list.

Many heuristics have been developed as variations on this éimple retrieval
scheme to improve the ordering of answers. If the text is large its token list
can be subcategorized by volume, chapter, parégraph and sehtence so that the

index numbers each become tuples and the search through the text string is

shertened to ény extent desirable. For example, if we partition the text by‘i

sentences marking each sentence in TEXTL with paventhesis,

1. BIG TEXT1 (1.1)

2. FISH TEXTls(I:%, 1.5 2.2 2.5) B, - -

3. EAT TEXT1>(1.3, 2.3)
4. LITTLE TEXT1>(1.4, 2.1)
5. LITTLER TEXT1>(2.4)

TEXTL SEQ ((1 2 3 4 2)(4 2 3 5 2))

we then use Z-tuples‘lx, 1Y as indexing numbers. If we wished to further
partition fhe_text to chapters and paragraphs weiwoqld use a 4-tuple as an

index number:

chapter*paragraph-sentence-sequence-

Page .u

The network representation for text is designed to minimize storage
requirements by representing each text as a vector of tokens where each word-
type occurring in the text references the vector locations of its occurrences.

As with tuples and tables, the procedures ASSERTEXT and DELETEXT can be

defined.

V. Discussion

A core-limited prototype of the proposed system exists innLISP 1.5 on
both the CDC and DEC10 systems. As it stands it can translate English state-.
ments and questions into semantic network forms. A translator is provided to
enable a user to use Kowalski's form of predicate logic notatiom. Ouf
experimentation with this system has been primarily oriented toward insuring
that the semantic network representation is logically complete and that its
proof procedures for answering questions are adeﬁuate. Tables can be directly
asserted to ﬁhis system as it is and their contents éan be queried.

Procedures for interpreting the quantified FOR statement are not yet
developed. Additional procedures are needed to provide for storing and |
querying ﬁnprocessed teg;.

If-a large INTERLISP system were available, with its paging control as

a disc memory manager, the prototype could dealwéucceésfu;}i with several
million words of data. In the locéi environment it is limited to about
300K words for system and data and is expected to be useful primarily for

developing data structures and language interpreters. . -

REFERENCES

Black, Fischer, A Deductive Question Answering System, in Minsky, M., (ed.)
Semantic Information Processing, MIT Press, Boston, 1969.

Kowalski, Robert, "Predicate Logic as Programming Language', IFIP Congress,
Stockholm, 1974.

Simmons, Robert F., Rule-Based Computations on English, in Hayes-Roth, R.
and Waterman, D., (eds.) Pattern-Directed Inference Systems, Academic
Press, N.Y., 1977 (in press). Also, University of Texas, Department
of Computer Science, Technical Report, NL31l, Austin, 1977.

Simmons, R.F. and Chester, D., Inferences in Quantified Semantic Networks,
IJCAI77 (in press), and University of Texas Department of Computer
Science, Technical Report NL32, Austin, 1977.

APPENDIX 2

TOWARD A DESIGN METHODOLOGY FOR DBMS:

A SOFTWARE ENGINEERING APPROACH

by

Raymond T. Yeh and Jerry W. Baker

A design methodology for DBMS is presented. The methodology consists of

three interacting models: a model _for the system structure, a hierarchical

~“performance evaluation model, and a model-for design structure documentation,

Awﬁ&ch éré developed’concurrentlyvthroughii'tqp~dowﬁ design process. fhus,i
using this methodology, the design is evaluated and its consistency checked
during each phase of the design p:bcess‘ It is shown that systems designed
using this methodology are reasonabl& independent of their environments,

reliable, and can be easily modified. A modest example is used to illustrate

the methodology.

s

TOWARD A DESIGN METHODOLOGY FOR DBMS: A SOFTWARE ENGINEERING A?PBGACS*

Raymond T. Yeh and Jerry W. Baker

Department of Computer Science
University of Texas
Austin, Texas U.S.A.

A design methodology for DBMS {s presented.
acting models:

The methodology consists of three inter-
a model for the system structure, a hierarchical performance evaluation

model, and a model for design structure documentation, which are developed concurrently

through a top~down design process.

and fts consisteacy checked during each phase of the design process.

Thus, using this methodology, the design is evaluated

It 1s shown that

systems designed using this methodology are reasonably independent of their environments,

reliable, and can be easily modified.
ology.

INTRODUCTION

The environment of a DBMS can be partitioned
into three categories of things: machines, data,
snd applications {or users). Furthermore, they
are dynamic and constantly changing. Thus, it
seems reasonable to require that the design of a
DBMS be such that the resulting system is as
independent of its environment as possible so
that' it can evolve along with its environment.

Although a significant amount of research
has been dedicated to specific aspects of data
base systems (data models, query languages,
performance modeling, etec.), relatively little
has been accomplished in the way of integrating
these ideas iato a design methodology which can
be used to systematically construct data base _
Bystems for large classes_of applications. Part
of the reason for the lack of a design methodology
for DBMS is, we believe, due to the complexity of
its environment. For example, the environment of
an operating system only consists of machines
{processes) and data (resources). Since the de-
sign problems for a DBMS are diverse, we believe
that appropriate knowledge from other disciplines,
especially in softwaré engineering, can contribute
toward a unified design methodology for DBMS.

In this paper we shall describe a design
methodology for DBMS. Our basic philosophy is
that the design process can be grossly described
by three models: a model for the system being
designed, a wodel for system design evaluation,
and a model for design structure documentation.

The system structure is modeled by a set of
ot+l abstract machines, Mn, Hu—l""" connected by

0
a set of n {implementation programs, In’ In~1""'
11. Each machine in the hierarchy represents a

"vicw" of the system at a particular level of

* This research is supported by AFSOR under contract
AFOSR-77-3409 and by ARPA under contract

. NOO039-27-C-0254 and by an IBH Pre-Doctoral
Fellowship to the second author,

**This papef was invited for the VLDB held in Tokyo, Japan, 1977,

A modest example is used %o illustrate the method-

abstraction and, moreover, constitutes a refine-
ment of the previous (higher) level ia the sense
that its data abstractions are used to "implement"
those of the previous machine.
: In order to minimize the system redesign ef-
fort, we believe that design must be evaluated
during the design process. To do so, we propose
2 hierarchical performance evaluation model which
is to be developed top-down alongside the develop-
ment of system structure. Its main function is to
provide feedback to the designer as to which alter-
natives at the current level can satisfy the per-
formance constraints. However, even with perform-
ance evaluation provided, backtracking is inevi-
-table. It-would be very desirable to know during
backtracking - why_some of the previous alter-
natives were not chosen. Thus, a language for
documenting the desigu structure is desirable and
will be discussed in a later section.

In summary, we will introduce a design method-
ology for DBMS which allows constant -evaluation cof
the system as the design unfolds.

DESIGN OF HIERARCHICALLY STRUCTURED DBMS

In this section we present a methodology in
vhich we borrow heavily from software engineering.
This methodology provides for the systematic de-~
sign, specification, and implementation of a re~
liable DBMS such that integrity and security con-
straints can be automatically included and that
correctness proofs can be established for the
resulting system. Using this methodology, a2 DBMS
can be described and structured in a hierarchical
fashion. The design is top-down and the resulting
system will consist of multiple levels - each
level being described by a self contained speciff-
cation.

.Abstraction, Stepwise Refinement, and DBMS Design

One of the most powerf{ul tools in software
development is abstraction. The use of abstrac-
tion allows a designer to initially express his
solution to a problem in a very gencral term and

H]

-

-

“of Hn is designed.

wiia é&ry Xiitie repard tatyibé éétaiin of inplea

wentation. This initial solution wmay be refined
in o step by step manner by gradually inteoducing

‘wmore and wore detalls of implementation. The

process continues until the solution s finally
expressed within the frowework of some appropriate
“tarpet" language. This combination of abstraction
and stepwise refinement enables the designer to
overcome the problem of complexity inherent in the
construction of systems by allowing him to concen-
traste on the relevant aspects of his design, at any
given time, without worrying about other details.
An important resulc of this approach is the devel-
opment of a hierarchically structured system
{function abstraction) such that each level con-
gists of & number of mwodules (data abstractions).
Thus, the system is both horizontally and vertically
modular.,

The notion of abstraction is also impor-
tant from the standpoint of protection. Through
data abstraction a designer may limit the access to
a data object through a specified set of well~-
defined operations. Likewise, by hiding the

fmplementation of a data abstraction from its users

the designer protects them from any changes which
might occur in that implementation.

We envision the design of a DEMS as a step-
wise refinement process of functional abstraction
which begins with the construction of a "top-
level™ ashstract machine, M_, satisfying the
functional requirements of some high level require-
weats specification. This machine consists of a
set data sbstractions represented by formal wodule
specifications. Each module specification is self-
contained in the sense that {t specifies the com-~
plete set of operations which define the nature of
the data abstraction. Collectively, these data
shstractions define the data model which is*visible

~ ~to the user of the machine, _

- In the next step of the process, another

abstract smachine, M __,s representing a "refinement"

Its data abstractions a;e chosen

in such a way that they can "implement" those of
Hn' Basically, this fmplementation consists of a

set of abstract programs each of which defines an
operation of Hn in terms of accesses té functions

of machine un—l' A verificgtion process can then

be used to ensure that the implementation is con-
sistent with the specification of both machines
(the implementation and verification processes are
described in more detail in a later section).

This stepwise process of machine specification,
implementation, and verification proceeds until, at

‘some point, the data abstractions of the lowest

level machine can be easily implemented on a speci-
fied "target" machine, which may be the data ab-

stractions of some programming language, a low-level

file management system, or the operations of some
appropriste hardware configuration. This design
process results in a DBMS structure consisting of
a hierarchy of abstract machines, or levels,
nn.un_l,....no tonnected by a set of n programs

In"n—l""’ll' Each machine H1 in the hierarchy

represents a complete "view" of the DBMS at a par~
ticular level of abstraction while the corresponding

M

_program 11(25_19; teyre:&ﬁti the iwlm&tium ot

that view upon the next level machine M, ,.

Module Specification

The method of module apecification used in
this hierarchical spproach is based upon the work
of Paranas [1972] and Robinson and Levite {1977}
with slight modifications (sec Baker & Yeh,{1977)).

" The specification of cach wodule defines two types

of access functions, SV and ST. SV functions
return values and the set of all SV functions of a
machine 18 said to characterize the machine's

abstract "state". ST functions, on the other hand,

produce a state change in a machine. The state
change which a function produces in a machine {s
defined in an EFFECIS section of the module
specification. Each “effect” 13 an assertion
defining the change in the value of an SV function
of the machine when the ST function is success-
fully invoked. The only observable change in the
state of the machine produced by the execution of
the ST function 1is that defined in the EFFECTS

© section.

The specification of each module also includes
a set of exception conditions each of which
defines & condition about which the invoker of an
operation must be notified. An exception condi~
tion definition consists of a name with a formal
parameter list and a predicate using the SV
functions of the module and the formal parameters.
The specification of each function in the module
contains a list of exception conditions with the
parameters of the function call appropriately’
substituted for the formal parameters of the
exception condition 1list. 1If any predicate de-
fining an exception condition in the 1list is true
when the function is invoked, then a specified

action is taken by the system. I1f the exception - ~

condition is "fatal"™ and the function is of type
ST, then the effects specified in the function

- definition will not be cobserved and the user is

appropriately notified. 1f the function is of
type SV, then the value(s) returned is (are)
undefined. For a "non-fatal" exception condition
a simple warning message is issued.

Implementation and Verification

The implementation between two adjaceént

machines Hi and Hi 1 is the process by which the

data abstractions of Mi are defined in terms of

the data abstractions of M More formally, if

i-1°

{fi'fi""’f } is the set of module functions

fcr Mi then the implementation of H1 by Hi-l
defined by
1 2 k
Ii - {gi’pi’Pi, L Dpi}
vhere ﬂ is a mapping from the states of M, to
the states of H and pj is an abstract program

which 1mp1ements the function fJ on machine Hi 1

The mapping function 91 has the effect of "binding"

each state of H1 to a state or set of states of
That is, if Si and S are the state sets

1-1* i-1

){~A.-:'.

of M urd sz, respectively, then the mapping
’i s defincd such that for cvery state s, ¢ s,

ve have s, = 8, (’iol) for some state s, , of 8, ,.

The wmapping function is sctually constructed by
expressing each SV function of H1 as an expression

containing the SV functions of "i-l' Each such

expression is referred to as a partial mapping
function and the set of all.partial mapping func-
tions for "i comprises the mapping ’1'

The purpose of abstract program py is to
express the function fi of "1 in terms of the
functions of Hi—l' Thus, the program 1is constructed

using well-defined control constructs and the func-
tion set Fi—l' This implementation process must

be consistent with the formal specifications of

H, and “i—l' That is, the following commutative
diagram must be satisfled!
e fj ’
'1 i 8 4 ;
$y 1o,
_ - . : ; -
41 ~ o *31

Fig. 1

1]
where s, and si are states of Hi and 851 and
2

i~1 .
The verification of the implementation Ii

e are states ?ﬁ-ni-l'

requires a formal proof that the commutative dia-
gram of Fig. 1 is satisfied for every abstract

program pi. This verification process is basically

2 standard inductive assertion proof (Hoare, [1970])

on pi and ve, thercfore, only give a brief descrip-
tion of it. However, the reader is referred to
Robiuson and Levitt {1977] which contains a de-
tailed discussion of the hierarchical proof tech-
niques used in the methodology. .

In general, the precondition for each abstract
 program pi is true because the program contains its
own mechanisms for exception handling. The output
assertions for pi are derived from the assertions

in the FFFECTS scction of the specification for

3

function fi

and from the mapping function ﬂi. Each

A

output assertion is obtained by taking an EFFECTS
assertion and replacing each reference to aan SV ¢
function by the instantiation of the appropriate
partial mapping function of !1.

Inductive assertions for pi can be taken

directly from the EFFECTS sections of the ST
operations used to construct the program. Verifi-
cation conditions can then be derived and used to
establish the validity of these assertions. The |,
verification of the output assertious then follows.

Design and Specification - An Example

The concepts discussed in the previous section
can perhaps be best understood by looking at s
pBMS designed using this hierarchical approach.
A partial outline of such a system is shown in
Tables 1 and 2. Table 1 contains a brief descrip-
tion of the nature of each system wodule, while
Table 2 outlines the basic properties of the
different level machines.

Table 1. A descriﬁtion of the system modules.
Only a partisal list is given for each level.

Level 5

UNIV - Defines operations for recording
and accessing information about
university departments and
professors.

Level &

¥

REL ~ Defines the concept of a relation
through relational algebraie
- operations. .

__INT -~ Specifies operations for creating -
“and enforcing "integrity assertions”

Ghich specify allowable data values

for relations. -

. AUTH - Defines opérations for creating and
enforcing "authorizations" which
specify allowable interactions for
users..

Level 3-_ , -

RT ~ Defines operations for creating,
updating, and accessing logical
"record tables”..

RDIR - Represents a directory of existing

record tables.

. pefines tables containing information
about field values for each existing
record table.

IDS - Specifies operations for creating and
accessing sets of record identifiers.
Used to implement the concept of a

cursor (Astrahan [1976]).

Represents logical reorderings of
records (Astrahan [1976]}).

Defines a catalog of existing images.

IMAGE -

IMCAT -~

SEL - Specifics operations for creating,
maintaining, and accessing partial

indexes to record tables.

\/!a " 3

Table) (ceat*é } :
SLCAT = Represents a catalog of existinz par- .RBDX - Specifies operations for creating snd

Level 2 (Cont'd.)

+

 tial ig&exen. A using directories to RBLX structures,

INK ~ Defines operations for creating, main- RIDX ~ Represents fixed-length blocks of
taining and using logical assoclations record pointers. Used to implement
betwveen records of different record . - the TDS, SEL, and LNK modules of
tables. Level 3.

LCAT ~ Represents s catalog of associations.

Level 2

Level 1
VP - Defines the concept of a virtual pege

BTR - Defines the concept of a B-tree. space.
Used to implement the IMAGE module
of Level 3. Level 0
. RBLK ~ Represents fixed-length blocks of Machine hardware
t tecords. Used to implement the FT .

and LNK modules of Level 3,‘

—

Table 2. A brief description of six levels in a hierarchically
structured DBMS. The actual system contains eight levels.
However, for purposes of presentation, several levels were

combined.
,)] Concepts Hidden
Level Visible Concepts Operations ‘ By Level
5 eatities (university operations corresponding logical structure of
departments, professors, to real-world transitions data
etc.), and their ("hire", “"terminate", etc)
attributes - end queries ("get_salary”,
- " “get_age”, etc.). N - =)
4 relations, tuples, cursors,] algebraic relational | access pa:@;; record - -
B authorization and integrity] operations, creation table structure, record
assertions

and enforcement of identifiers
authorization and .
integrity assertions,
cursor creation and
sequencing operations . .

3 record tables, records, creation, access, and record block structure,
images, partial indexes, maintenance of record implementation of access
record table associations, tables, access paths, paths
record identifier sets and record identifier

sets

2 fixcd-length record and record block access, bit representation of
pointer blocks, B-trees, B-tree¢ operations information, distribution
1inks between record of reccord block and B-tree
blocks nodes on virtual memory

pages

1 virtual page space bit and byte extraction distribution of papes

and encoding . in memory devices
0 primary and secondary paging operations

memory devices

The top-level machine, ui. represents an appli-

catfon view of the systom. The UNIV module pro- .
vides operations for recording and accessing infor-
mation about university departments and professors.
Specifically, the information represented includes
the following:

1. the nanme, social sccurity number, age
© salary, rank, and department of afl
professors employed by the university,and

2. the chairman, number of professors, and
average salary for each university depart-
sent.

-

The ST operations of the module are semanti-
cally meaningful -~ each corresponding to a real
world transiticn. They include “hire”, "terminate",

“promote™, "raise_salary", and * ‘change_chairman"
Ihe SV functions of the module include "get salary
"get_chairman”, and "get_rank”. At this level of
interaction a user is well~-protected from organi-
zational changes in the database system because no
physical (access paths, storage structures, etc.)
or logical (relations, etc.) structures are visible.
Rather, the user is aware only of very abstract
. relationships and transitions which may occur in
bis application.

The operations of the UNIV module are imple~
mented on the next level machine, M,, which repre-’
sents a relational algebrz view of the database
system. The REL module, for example, defines the
concept of a relation in terms of relational alge-
braic operations while the RDIR module represents a
relation directory which contains information about
all existing relations. The two other modules .
shown, INT and AUTH, relate to the concepts of
integrity and authorization a2nd are described in
‘more-detail in 2 later section. We note that at
this level of fnteraction the concept of an access
path is completely hidden from the useér. That is,
the operations at this level provide no mechanisms

for defining, deleting, or using any type of access

path.
At the level of machine M§ the DBMS teyresents

-a somewhat different view. A user of this level
can create and manipulate logical record tables
{RT module) and a directory (RDIR module) to record
information about existing record tables. Also,
several modules - IMAGE, LINK, and SELECTOR - make
it possible to create fast access paths to records
-of existing record tables. The implementation of
‘ by M 4 of course, consists of programs which

fmplement the module functions of H6>in terms of

the module functions of M Thus, for example,

4
the relational algebraic operations of the REL
mnodule are implemented in terms of record table
operations and calls to the appropriate functions
of the fast access path modules.

As the DBMS is viewed at lower levels‘the data
abstractions become more “physically” oriented un~
til the Jevel of the machine hardwvare is reached.
Hissing is the sharp transition from logical to
physical representation found in many systems.
Rather, there is a gradual progressfon from a very
sbstract view to machine hardware occurring in a
sequence of discrete steps.

R R L R

OO~ El

Levels of Abstraction and DBMS Design

We observe that the notion of levels of
abstraction translates to a natural interpretation
within the context of database systems. That is,
it can be expected that any integrated data base
will have a wide varlety of users whose views of
the system and access requirements will be quite
different. Through the hierarchical design ap-
proach different levels of design may be con-
structed to accommodate this variety of views and
sccess requirements (Fig., 2).

The design of the system shown in Tables 1 and
2 1llustrates how different users may be accom-
modated through hierarchical design. At the
highest level of abstraction, for example, 1s the
casual user who 1is concerned primarily with acces-
sing the information relevant to his application
with as lictle trouble as possible. He {3 uncon-
cerned about efficiency and organizational
properties of the data and, therefore, is provided
with a set of high-level, semantically meaningful
operations which hide such details.

EXTERNAL
USER

|
e [QO- -0
\/

OO O“ﬂfl

- ., <1

n-1 -

. O H - "' ,

Target Machine L

Fig. 2. A hierarchy of formwally specified
- machines showing modularity. Levels may
be constructed to accommodate the different
views required by various users.

A The privileged programmer, while st111 being
concerned with the information relevant to his
application, is also concerned with the efficiency
of his interactions with the system. Therefore,
he may be willing to sacrifice a certain amount of
data independence for increased efficiency. A
privileged programmer may therefore require access

to levels 3 or 4.

The application programmer'’s job is to create
interfaces for new applications when they arise.
This may require a modification to the top-level
machine or possibly the specification of new
machines to be implemented on existing levels.

The application programmer would most likely
require interaction with levels 3, 4 and 5. .

The access path programmer hos the tesk of
creating fast access paths for the system., Like
the spplication programmer he is not interested in
the information content of the system, but rather
in defining access paths which enhance the effi~
clency of other users. The sccess path programmer

would thus interact at level 3.
' Finally, the storage structure development
programmer fnteracts with the system at level 2,
His task is to ensure that logical access paths
are implemented as efficiently as possible.

Our mention of the different levels of users
is neither intended to be exhaustive or even the
best possible. Ve merely wish to emphasize that
the hicrarchical design approach can be used to
construct levels which correspond directly to the
views of the system desired by different types of
users and that this is a useful way of partitioning
the different interfaces required. We do not mean
to imply, hovever, that every level in a hierarch-
ically structured system will correspond to a type
of user. Different levels may in fact be intro-
duced during the design process merely as an aid
to the designer himself.

Design of Authorization and Integrity Mechanisms

Protecting a data base from semantic errors
and from use by unauthorized persons is, of course,
an important function of any DBMS. The develop-
ment of. integrity and suthorization subsystems,
then, is an integral part of the DBMS design
process. Through the use of exception conditions
the hierarchical design approach provides a reliable
mechanism for handling such problems. Exception
cornditions provide a means by which the designer.
can specify that a function cannot be successfully
invoked when certain integrity or authoriza:ion
conditions are not satisfied. - -
, Consider, for example, the @hire"»function of-
the UNIV module of level 5.7 This function requires,
- among other things, the specification of values for_
the parameters rank and salary. The furction has
a fatal exception condition

BAD SALARY (salary,rank)
wvhich is defined as

BAD SALARY(s,r): -
case r of
"assistant professor™: £>18000;
"associate professor™: s5>24000;
"professor": s>40000;
end.

Therefore, 1f the “hire"” function were invoked with
salary=19500 and rank="assistant professor” then
the effects of the function (as stated in the
wodule specifications) would not be observed. That
is, the function would have no effect on the state

of machine MS'

The approach is simlilar at lower levels of the
design. The design of the INT module, for ‘example,
provides for operations which enable the creation
of "integrity assertions” which define the scmantic
correctness of existing relations. Moreover, the
module contains certain SV functions which can be
used to determine ifF a particular update operation
would violate defincd integrity assertfons., This
module combined with the appropriate exception

to a data object.

conditiona in the REL wodule can be used to ensure
that any update functlon vhich would violate de-
fined integrity assertions cannot be executed.

For example, the function

insert_tuple(r,R)

of the REL module has the effect of inserting
tuple r into relation R, One fatal exception
condition for this function is

BAD_TVAL(r,R)
wvhich is defined as

BAD_TVAL(t,T): 34(1l<i<ncomp(t))
{check val(domain(i,T),T,t(1))=
false]

where ncomp(t) returns the number of components
of tuple t, t(1) is the ith component of tuple t,
and domain(i,T) returns the name of the ith domain
of T. Also, check val(d,S,v) is a boolean
function of INT which returns true {f v is an
ascceptable value for domain d of relation § and
false otherwise., This specification indicates
that the operation insert_tuple(r,R) cannot be
executed if the tuple r contains data values
which are non-allowed by any defined integrity
assertions. Moreover, the verification process
ensures that the abstract program implementing
the insert tuple function satisfies this specifi-
cation.

Protecting data objects ftom unauthorized use
can be handled in a similar manner. For example,
the AUTH module enables the creation of "authori-
zations" which define the allowed accessed to
level 4 data objects. Also, an SV function can
be used to check if a user has a certain access
Each module function of level 3
contains an exception condition which prevents -
unauthorized access from occurring. For example,
the -insert _tuple(r,R) function has the exception
condition_ h

.- NO_AUTH(uid,R, 'INSERT')

which is defined as

NO_AUTH(4id,S,op): check_auth(id,S,op)=false

where uid {is the identifiration number of the user T

invoking the function and check auth(id,S,op) is
a boolcan function of AUTH which returns true if -
user "id" has "op" access to relation S. Again,
the verification process can be used to ensure
that the implementation of insert_tuple satisfies
this specification.

An Assessment of the Methodology

The methodology presented in this section is
but a small step in the development of a design
theory for DBMS. This approach has several
advantages over ad hoc methods curreatly used.

We summarize a few of the most important ones here.

1. Reliability of Design

The multi-level design process enables the
designer to concentrate on the relevant

. aspects of cach level without worrying
about implementation details. Also,
because the {mplementation occurs in small

steps the probability of design errors is
reduced,

e .

[

2

3.

Hachine, Application, and Data
Independence

The horizontal and vertical modularicy
provided by this approach to DBMS design
enhances machine, application, and data
independence of a system. Machine {nde-
pendence is enhanced because the infor-
mation hiding properties of each level
1imit the cffects of modifications to
hardware architecture. Vertical modu-
larity provides a degrec of application
independence because the addition and
deletion of applications can be accom~
modated through changes in columns
(modules and their vertical refine-
ments) but not the whole system.

It should also be clear that each
level of a hierarchically structured
system provides a measure of data
independence. That is, each level tends
to hide from its users tuae organizational
properties of lower levels. Providing a
hierarchical structure can thus be useful
in protecting the system itself from the
effects of internal modifications.

FPormal Consistency Proofs

The hierarchical nature of the implemen-
tation reduces the verification of the
entire system into a sequence of the
hierarchical proofs designed to insure
the consistency of the specification and
implementation of adjacent levels. Be-
cause the verification proceeds in
sequence with the design process,
implementation errors can be detected

at the same level in which they are
introduced. -

Localized Effects -of Modification

A database system is a dynamic -entity which
tequires constant modification and mainte-
nance. Even after the system is installed
and operating, frequent modifications may
be required to correct programming errors
or to increase system efficiency. Like-
wise, design changes may be necessary to-
adapt the system to changing user require--
ments or to a new operating environment.

If the system is poorly designed then the
impact of such modifications may be so
great that maintenance is a significant
part of the overall development cost.

At each level of a hierarchically
structured, modular system, an abstract
concept is realized by a formally speci-
fied module. Because the module structures
hide all aspects of the implementationm,
wodifying a machine design or implemen—
tation requires only localized changes

in the systenm.

Understandability

The hierarchical design process allows the
designer to understand the operation of
the systew at cach level of abstraction
before procecding with the {mplementation.

DESIGN STRUCTURE DOCUMENTATION - -

6. Formal Specification of Exception ¢
Conditions

The hierarchical nature of the system

: structurc cnables the specification of
exception conditions at the most
appropriate level of abstraction. As
a result, integrity snd security checks
can be easily specified.

There are, of course, many difficult problems
remaining to be tackled in order for the method-
ology to be effective. We will point out a few
here.

1. The methodology needs to be extended to
incorporate the concept of multiple users
and concurrent access.

2. There needs to be additional design
tools for testing formal specification
so that a designer 13 reassured that a
lengthy formal statement is "consistent™
with his intuition.

3. Development of hierarchical performance
models for design evaluation. The per-
formance modeling subsystem not only
should be able to predict the gross
system performance characteristic at
each level, but should also be able to
provide guidelines for structuring data
bases which can best fit the system. An
informal approach will be presented in a
later section. ’

&4, There is a great need for methods and
automatic aids to document the design
structure. . This is important for-

_ generation and evaluation of altefnative
designs. We will present am-approach in
the next section. - L

The role of specifications in the development
of large software systems is certainly an important
one. Specifications are used not only as a means
of communication between members of the design
team, but also serve to enhance the understanda-
bility of the sys<em. This is important both for
users of the system and for future design teams
which must perform modifications.

The previous sections have described certain
"jocal™ specifications which are required in the
hierarchical design approach -~ module specification,
abstract programs, and mapping functions. Each
such specification describes in detail the pature
of a very small part of the total system. Yet
these specifications are inadequate for purposes
of understanding the system as a whole or for

explaining why a particular design was developed.

There exists the neced, then, to document the
system design and the design process at a much
higher level of abstraction. Such documentation
would suppress detajls - concentrating rather on
the global properties of the system design and the
design structure.

The following sections briefly describe a
System Design Language (SDL) which can be uscd to
document the design process and record information

’%/,LA -7

about the decisfon-making processes that occur
during it. The features of the SDL described
in the following sections include methods for:

1., specifying the design alternstives at
each level,

2. specifying the hierarchical relationships
between system modules, and .

3. specifying the structure of each system
Yevel. :

Specification of Alternative Designs

One aspect of the hierarchical design approach
which has yet to be emphasized is that of developing
alternative designs at each level. In general a
podule at level { may be implemented in many dif-
fereat ways and, therefore, at level i-1 the
designer may specify various alternative modules
to accomplish this task. There exists the nced, |
then, to document exactly how the various alter~
pative modules for implementing the data abstrac-
tions of level { may be combined to form designs
for level i-1. The designer may then choose the
most appropriate alternative design as part of the
system (based perhaps upon expected performance).

Using the SDL the designer may accomplish this
task of specifying the various alternatives through
8 process of constructing level components. The
syntax of component specification is defined
formally in the following BNF grammar:

<compname> ::= C<integer>
<modlist> ::= <modname>
<complist> :i= <compname>
_ - <compname>,<complist>
- <compdef> 1im <modlist> | <complist> ‘
<compdef>,<modlist> | -

- - . ~<compdef>,<complist> .
<ctype> :t= REQ { ALT] OPT - T
<cspec®> i:= <compname>: (%ctype>,{<compdef>})

<modname? ,<modlist>

The simplest type of level component is a single
wmodule. However, more complex components can be
constructed by combining modules or previously
defined components.

‘Associated with each cowponent constructed
is a component type specification (<ctype>) which
indicates how "members' of the component may be
combined or used in any alternative design. The
meanings of the three component types are as
follows:

1. REQ - each member of the compoﬁent must
be included in any design.

2. ALT - exactly one member of the component
must be included in any design.

3. OPT -~ exactly one subset of the members
of the component must be present in any
design (this includes the null set).

Formation of alternative designs begins when
the designer has developed all alternative modules
for implementing each data abstractiom of level 1.
The designer then begpins to construct a hierarchy
of components ~ each component in the hierarchy
being n composition of lower level components.
This process of composition continucs until a

- single component has been constructed which

encompasses, direct]y or indirectly, every module
of the initial set. This finsl component specifi~
cation 1s then the starting point for the develop~
ment of possiblc alternatives for level {-1.

The process of component construction and
slternative desipn formation for level 3 of
Table 1 can be illustrated by the following example.

C1: (REQ,{YMAGE,IMCAT))

€2: (REQ,[LNK,LCAT})

€3: (REQ,{SEL,SLCAT})

C4: (REQ,{INDEX,INDCATH

€5: (ALT,{C1,C4))

c6: (op,{c2,c3,C5))

C€7: (REQ,{RDIR,FNT,RT,TDS,C6})

This specification indicates, among other

things, that

1. components RDIR, FNT, RT, TDS, and C6
must be In every alternative design for
level 3,

2. any subset of {€2,C3,C5} may be present
4n a design for level 3 (because C6 1is
of type "OP"), . .

3. 4f C5 is chosen to be in an alternative
design then exactly one of C1 or C4 is
to be in the design, and

4. 4f C1 is chosen to be in the design then
: both IMAGE and IMCAT must be in the
design.

Each component of type "OP" or type “ALT"
represents a decision for the designer regarding
the structure of the alternative design. Different
alternative designs may thus be formed by following

. different decision pathways. - _

Sgecificaiion of ﬂietarchicai*Relé;ionships -

The. next important aspect of the SDL is that
of specifying capability relationships between
modules of adjacent levels. These capability
relationships define the hierarchy which exists
between the different modules of the system.
Three types of relationships are of interest.

~ The has access relationship indicates the
ways in which a module m can obtain access to
instances of a module m'. We distinguish between
three different types of allowable access:

1. Creation access (C) - m obtains access
to instances of m' by virtue of its
ability to invoke operations to create
such instances. -

2. Indirect access (I) - m obtains access
to instances of m' indirectly by using
another module m''.

.3. Clobal access (G) - m is "aware" of every
instance of m' or is provided with infor-
mation from a higher level module which

- enables it to access instances of m' '
*without the nced to usc other modules.

The uscs relationship indicates the means by
which a module m may use instances of a module m'
to which it has access. We also distinguish’

betwcen three different types of usage:

.
‘.

4/0// -

1. Read (R) - ® can invoke the SV operations
of m', ‘

2. Write (W) - m can invoke the ST operations
of n' to modify instances in some vay. :

3. Create (C) - » can use ST operations to
create instances of m'.

The provides relationship indicates what types
of module instances & module m may obtain by
sccessing another module w',

Formally, a capability set for levels { and
4-1 1s decfined as a triple {A,U,P) where A, U, and
P are sets of triples defined as follows:

A: (alaeM, X {C,G,1} XM)}
Ut (vluen, X (R,W,C} XM}
P: {plpey, x M, XN,]

Fig. 3 illustrates the capability relation~
ships which exist between some modules of levels 3,
4 and 5 of the system design of Table 1.

Fig. 3a. The has access relationship between
several modules of Table 1. The
types of access are Global (G),
Indirect (I), and Creation (C) .

e

Fig. 3b. The uses relationship between several
modules of Table 1. The types of
usage are Read (R), Write (W), and
Create (C).

.

‘modules of the level. -

N
é’!

gl e ~
- Fig., 3c. The provides relationship between
tome modules of Table 1.

A specification of capability relationships
can be useful in enforcing restrictions on com-
munication between modules. It can also aid the
designer in assessing the impact of modifications
to system design.

Specification of Level Structure

The final aspect of the SDL which we wish te
mention is that of specifying machine structure.
It may be useful to allow a limited hierarchy
within a particular level and hence the SDL
enables the designer to specify the global proper-
ties_of such a hierarchy.. The level structure
specification of the SDL indicates, for any level
design, the modules which form the level interface
(those visible to users of the level), those
modules which are hidden (from users of the level),
and those modules which must use the interface of
the next level (i.e., those modules which are not
completely implemented within the level). The
level structure specification also defines the
hierarchical relationships which exist between

Assessment

The development of SDL presented here is
motivated by the need of providing a tool to
designers to specify global or macro properties
of various system designs. It should be emphasized
however, that SDL is meant to be an integral part
of the design process, and not merely a specifi-
cation tool to be used "after the fact™. While
much of our motivation for developing the SDL is
the same as that behind the Module Interconnection
Language (MIL) of DeRemer and Kron [1976], there
are some fundamental differences:

1. The MIL is concerned with documenting
system designs but not the whole design
_structure (or process). Thus, it does
not support the notions of alternative
designs, backtracking, etc.

2L f’; {",_

2.. In MIL, a module 48 a small program. In
§DL, we conslder a module to be the
functional specification of a resource
type or ahstract data type.

3. Our module interconnections are based
strictly upon the "uses" concept of
Parnas [1974] while this is not the case
in MIL.

Much, of course, needs to be done in order
for SDL to be a truly usecful tool. Extension to
include various concepts, such as concurrency,
locking, backtracking, ete., is necessary. Auto-
matic aids will be needed for this tool to be
practical. '

HIERARCHICAL PERFORMANCE EVALUATION

The success or failure of any DBMS, of course,
depends greatly upon the level of performance which
the system achieves during actual operation. Based
upon the results of current resesr:h efforts,
bowever, it would seem that our approaches to
performance evaluation are somewhat less than
satisfactory. This section contains a very general
description of a performance evaluation technique
which can be used with the hierarchical design
approach and which seems to have several advantages
over current performance evaluation procedures.
This technique involves the construction of a
hierarchical performance evaluation model. The
purpose of this model is two-fold:

1. to provide the designer with feedback
at each step of the design process as
to the performance characteristics of

- bis design, and -

B 2. to provide a b§s1§ for choosing between-

" alternative designs at each level.

In this approach the designer develops. the
PBMS design and evaludtion model in parallel - the
evaluation model being constructed so that it
represepts the relevant performance aspects of
the current DBMS design. The evaluation model
provides constant feedback to the designer at all
levels of design as to the performance character-
jstics of the system. Through constant imteraction
between designer, the DBMS design, and the evalu-
ation model, it is hoped that a reasonably efficient
system can be developed with a minimum of back~
tracking and redesign.

Evaluation Model Structure

The structure of a hierarchical evaluation
model reflects that of the DBMS design itself.
Corresponding to the ith level is a set of
performance paramecters, Pi' which represents the

relevant performance aspects of the machine at that

Jevel. Data structure parameters represent {anfor-
mation about the abstract data objects of the
level (ec.g., number of relations, average number
of records per block, ete.). While function para-
meters characterize the operations of Hi in terms

of expected execution speed and expected fréquency
or probabllity of access. Paramcters may also be
classifiecd as desipgn parameters or scenario

paramcters. Desipn parameters orc variables whose
values may be changed by the designer to determine
the effects of varlous databuse desipns and fmple~
sentations upon the performance of the system.
Scenario paramcters, however, represent an expected
uange of the system in terms of the operations and
data objects of level 4. Their values are deter-
mincd by the values of parameters of Pt+1 according

Each

wapping in this sct defines a performance parameter

of P1 as a function of the parameters of P£+1. A

set of values for the scenario parameters of level
1 15 called a scenario for level i.
The values of scenario parameters of Pn are

to a performance parameter mapping set T£+1'

determined by an application scenario supplied as
part of the high level requirements specifications.
The application scenarioc is a statement of the
expected use of the DBMS in terms of the operations
and structures of machine Mn' The requirements

specification also contains a performance assertion
which specifies the level of performance expected
from the system for the given scenaric. This
performance assertion, by its structure, will in~
dicate the measure to be used in analyzing system
performance. Various performance measures might
ineclude:

1. ‘mean response time for a given 103&,

2. expected total execution time for a
specified wix of operations,

3. total storage requirements, or
4. a suitably weighted mixture of the above.

The specification of this performance assertion)
epables the designer to consttuct a cost- functiom,-
Gn.”for Hn“using the parameters of Pﬁt This cost

fynction may be used by the designer to éstimate —
the performance characteristics of M .- -

Construction of the Evalqation Model

The construction of the evaluation model pro-
cceds top-down with the design of the DBMS. After
the design of a machine at level n-1 and the cor-
responding evaluation wodel parameter set Pn~1'

{t is necessary to construct the mapping set Tn'
Those mappings of Tn which correspond to paramcters

defining abstract data structure characteristics
can be easily constructed from the mapping function
of the iwplementation In. However, Tn wust also

. contain mappings which define the probability {or

frequency) of access of the operations of Mn«l

as a function of the probability (or frequency) of

.access of operations of M“.

These mappings can be constructed using a -
technique for the formal verification of perfor-
mance properties of programs which is based on
the method of inductive assertions (Yegbreit [1976].
In this approach an input assertion defines the
probability distribution of the input data to a
program. From this input assertion various
{nductive assertions describing the distribution

‘1#52'-/&'

of data at various points in the progron are
detlved, Verification conditions are then con-
structed vhich enable the proof of the inductive
sssertions. It is then pousible to derive
branching probabilitles of varlous program state-
sments and the expected mecan and maximum number of
loop iterations for all loops in the progrom. This,
in turn, yields the expected mean and maximum
number of executjons of each operation in the pro-
gram text glven that the Input data is correctly
deseribed by the input assertlon.

Applying this techniquée to the abstract
programs of In enables the derivation of the

necessary parameter mappings of Tn. The input

assertions for these programs can be derived from
the application scenario of the requirements speci-
fication. It is then possible to compute the
expected mean or maximum number of calls to each
operation of Hn~1 for each call to a given operation

of Hn. A set of equations can then be derived,

each of which expresses the expected probability (or Fig. 4, A hierarchical DBMS design and the
frequency) of access of each operation of M, correspondingly structured performance
as 2 function of the expected probability (or fre- evaluation model. Unlabeled nodes re-
quency) of access to the operations of M) present unused alternative designs.
The application scenario, which is defined in '
terms of level n structures and operations, can - _over many levels. Hence the designer may
thus be "mapped down” to level n-1 via the mapping _‘ -deal with these issues as they occur in
set T to provide a scenario for the system in _ the natural hierarchy of design. The
n . . hierarchical structure of the model
terms of level n-1 structures and operations. The o should thus facilitate its use and under~
designer may then construct a cost function, cn-l' . standing.
for this level to obtain a more accurate estimate 2. Flexibility
of system performance. By varying the design para-— -
= meters of P the designer may derive a system The designer can model each level design
- R 12 U _ in as much detail as desired. —-Moreover,. -
_counfiguration which ylelds a reasonable cost func- - the approach does not limit the desigtier
~tion value and thus determine if the design 1is to models of specific 'architectures -~
capable of- satisfying the performance assertion. - models for any alternative design may be
Alternative designs at level n-1 may be - - developed. -
treated the same way. That is, cost functions may -
be constructed and evaluated for each alternative. 3. Iomediate Feedback
This information may then be used by the designer " At each level the designer receives feed-
as a basis for deciding which design path(s) to back from the evaluation model. This,
follow.) hopefully, can limit the amount of
- The process of evaluaticn {5 repeated at each redesign and backtracking which is
level of the design with the uncertainty of the necessary. T
evaluation model results diminishing at lower levels.
The designer may use the information from the . 4. Data Base Design -
evaluation model at any level as a basis for back-~ The evaluation model used for DBMS design
tracking to a previous level and following a new may be used to facilitate the data base
design path. Likewise, the information may allow desig“, The process would be top-down.
the designer to choose one (or more) design paths At each level the cost function would be
to follow from a set of alternatives. The end - used to dotermine a performance-effcctive
result of this design/evaluation process is a tree— data base structure for that level.
1ike structure of wmachine designs and a correspond- ’
ingly structured hierarchical evaluation model CONCLUDING REMARKS :
(Fig. 4). i
o - The methodology presented in the previous
Assessment - . sections is, of course, a first attempt toward a
comprehensive approach to design problems. We
The proposed method of performance evaluation have assesscd the three models in the methodology
scems to have several advantages over current at the end of appropriate sections. However, one
approaches: ¢ point that should be stressed is that the method-
1. Understandability olopy provides for the development of a family of
desipns rather than a single design. Such a
Performance related issucs are distributed documentation will certainly be of immense help

.

: : 4{:/- /"
) £

to sn evolving system. 12. Madnlck, S. £. and Alsop, 3. V., (1969], "A

The methodology still lacks engincering Modular Approach te Flle System Besiga,” Proe.
flavor. To make it complete, additional tools AFLIPS, vol. 3&, pp. 1~12.

will be necessary. In thls aspect, ve would 1ike
te mention that the notion of a “mock-up” model
ghould be part of this design methodology. Ve
think that in this context we should develop

13. Parnas, D. L.y 11972‘. ”A teck“igue for 80’&- .
ware Module Specification with Examples,®
CACM, vol. 15, no. S5, pp. 330-336.

computer processable specification so that 14. Parnas D. L., [1976a], “On the Criteria to
performance evaluation not only can be done by Be Used in Deomposing Systems Into Modules,”
pathematical modeling as we have discussed here, CACM, vol. 15, no. 12, pp. 10531058,

but also by actual or symbolic execution of the 15. Parnas, D. L., [1976b], "On A Buzzword:

specification {of the mock-up model). Such a tool

; "
woul allow a designer to tinker with his design Hierarchical Structures,” IFIP Proc.

(e.g., to make sure that formal specification is 16. Robinson, L. and Levitt, K. N..[1977}, "Proof
consistent with the more informal requirements) Techniques for Hierarchically Structured
until he is satisfied. Furtherwore, this would Programs,” te appear - Current Trends in
‘provide users with earlier warnings if any Programming lethodology, Vol. 2, (Ych, ed.),
inadequacies were discovered in the requirements. Prentice-Hall.

At the University of Texas at Austin, wve are in

the process of developing such tools. 17. Scnko, M. W., [19761. "DIAM I and Levels of

Abstraction,” Proc. Conf. on DATA:
Abstraction, Definition and Structure,

REFERENCES 2 - , - pp. 121-140.
, 18. Smith, J. M. and Smith, D. C. P., [1977],

1. Astrahan, M. M., et al, [1976], "System R: CACM. - . . :

Relational roach to Database Management,"”

ACM TODS vﬁg? 1, no. 2, pp. 97_137‘8 o 19. Weber, H., [1976], "The D-graph Model of

s r " Large Shared Data Bases: A Representation
2. Aurdal, E. and Solberg, A., [1975], "A Multiple of Integrity Constraints and Views of

. Process for Desgin cof File Otrganization,” Abstract Data Types, IBM TC (San Jose).

CASCSDE Working Paper Wo. 39, Royal Norweglan
Council for Scientific and Industrial Research. 20. Wegbreit, B‘; [1976], "Verifylug Program
Performance,” JACH, vol. 23, uno. &,

3. Baker, J. and Yeh, R. T., [1977], "A Hierarchical pp. 691-699.

Design Methodology for Data Base Systenm,", : :
TR-70, Dept. of Computer Sciences, University 21. Yeh,R. T, (3d‘) {1977], Current Trends in
of Texas at Austin, Austin, Texas. Programming Methodology: Vol. 1. Software
- . -) . . Specificatien and Design, Preatice-H#all, Inc, -
4, Bayer, R. and McCreight, E.,-[1972], "Organi- To- Englewood Cliffs, N.J. ‘ N
zation and Maintenance of Ordered Indexes," = - e ' - :
~Acta Informatica, vol. 1, no. 3, pp. 173-189. B - -

S. Chen, Peter P.S., [1975], "The Entity- - - -
Relationship Model ~ Toward a Unified View of .
pata,” Rech. Report, Center for Information :

System Research, Sloan School of Management,
M.I.T. i .

6. Codd, E. G., {1970], “A Relational Model of
Pata for Large Shared Data Banks," CACH,
val. 13, no. 6, pp. 377-1387.

7. DeRemér, F. and Kron, H. H., [1976], "Program-
wing-in-the-Large Versus Programming-in~-the-
Swall,” 1EEE Trans. Soft. Eng., vol. SE-2,
no. 2, pp. 87-96.

8. Goodenough, John B., [1975], "Exception Handling:
Issues and a Proposed Notatfon,” CACM, vol. 18,
no. 12, pp. 683-696.

9. Hoare, C.A.R., [1970], "An Axiomatic Approach
to Computer Programming,” CACM, vol.1lZ, no. S,
Pp. 76-80,83. .

10. Kracgeloh, Klaus-Diecter and Lockemann: Peter C..
[1975]), "Hicrarchics of Data Basc Languages:
An Example," Information Systems, vol. 1.

11. McKeeman, W., {1975), "On Preventing Programming
Languages for Interfering with Programs, IEEE
Yrans. on Soft. Eng., vel. 1, no. 1, pp. 19-25. . .

APPENDIX 3
Dan Chester
The specifications in this appendix are for a relational data base system
that stores explicit relation on sequential files such as tapes. The time to
retrieve the n~tuples in an implicit relation is expected to gfow at a rate
that is much less than NZ, where N is the number of n~tuples that can be formed
from the individuals named in the data base.
The first specifiéation is a function module modelling the whole data
base system. It exhibits the basic behavior of the system without making
commitments to performance aspects. Each function is defined ﬁy an expression |
in the following format:
function: <fuﬁction name> <argument pattern> = <value pattern>
effects:

<gtatement>-) - -

<statement> _ - T N N -

- The effect statements are optional. Qhén presént the function is computed
by making the statements true and returning the value indicated by the <value

pattern>. -

ﬂ§y§a- po s T
unction: aqatailal) = X

unction: aefine(R(X(1),eeersX(N)),X) = nit
tiect:

detinition(h(l(l)....;X(N));k) = Ltrye,

getineud(r) = true,
unctions detined(Xx) = X
-unctions wcwefinition(Xx,Y) = 12

tunctions: insert(R(X(1),...,X{8§))) = nil
2frects

dataln(a(l),eeerX(N))) = true,

tor all i such tnat 1 <= 1 <= N: universe(X(1)) = true,

tunctions 11St(R) = (X(1),ceerX(M))
eftect: - ' B -

for all L,y such that 1 <= I,J <= i . R
it not 1 =.J tnen not X{(1) = x(Jd). i
tor all 1 such that 1 <= i <= M3
for some Y(l)!otc:X(N)=
X(L) = R(¥(1),eess,¥(i)) ana tempdatal(x(l)) = true,
107 dil ¥ (1)seeersY{N) sucnh that te&pdata(k(!(l).....Y(N))) Qltrue:
iOf SOme l; X(i) = k(x(l)’.‘.'Y(h)).

for ail R,A(1)sees ,X(N) sucn that *detined’(R) = nil:
tempadta(R(X(l)....,X(N)J) = 'data'(R(X(l)'o..,ﬁi-*})-

for aiil KrX(l)t..olxtl)lS;Y(l)'.-.'Y(J) such that
el inition’ (K(X(1),esesX(I)),500(1),00ee,¥(J))) = LruES
for all Z{l)seeerlilz tenpdata(R(Z{1),eaardil))) = true iti
10r soime Ull),eesetild) such that '
tor aill K,0L: it ¥{(x) = y(L) tnen ULK) = U(L), ana
if Y(K) = X(L) tnen U{k) = YARYS I
- teupdata(S(U(l),eee,litdl)) = Lrue,.

tor all R,x(l)....,X(l).S,Y(l)....oi(d) such that

© rdetinition’ (R(X(1),.e.,4(1)), D00 S(Y(1)seeerflUld) = LTUES
ior @il Z(l)seeesltl):

tempdata(RZ(1),e0e,Z2(1))) = Lrue itt

for aii K such tnhat 1 <= R <= 13 ‘yniverse’(z(xr)) = true;

£or alil U(l)to-olu(d) such Lnat

tor ail k,L: 1f Y{(rh) = ¥Y(L) then U(K) s U(L) &ang
if Y(K) = Xx(L) then UWR) = Z(LJ:z

LER?ﬂatd&ukv&i}!oo*ld\u))} S dkie

for ali K, XLIJOot-OX\l) th(l}povac!(d) T &tl)pooo"(h) SUch tnet
rdetinition’ (RIX(1),se0erXll))y 5(X(1),....Y(J)) and
i(&(l)pooo;Z(K))) = trues
tor ailil U(l):o-"u(l)n
ti‘ﬂspUdtd(K(U(l)'.o.oU(l))) = true iff.
L0r some V(l):;oooV(Jti*(l)ltoofﬂ(h) such thdt
tor all m,N3

1t Y(M) = Y(N) then V(M) = VIiN) ana
it Z(#) = Z(i) then wi(M) = w(N) and
it Y{(¥) = X(i) then VI(K) = U(N) and
1f Z(M) = A(N) then w(M) = UIN) and
it Y(M) = Z{(N) then V(M) = U(N

ﬁ\fﬂpdata(b‘(v{l)p...,')l(d))) = frue and
tempdata(l(n(l),...,%w(k))) = true,

tunction: remove(R(X{1),.,e,X(N))) = Dnil
eftfect:

data(R(R(l);...,X(N))) = nil.,

for all 1 sucpn that 1 <= 1 <= N3
it tor all 5,¥(1),.e.,¥(M) such lhat
aatalS(Y(1),eeae,Yti))) = Lrues
tor all J such that 1 <= J <= 47 not x{i) = YiJ)
then universe(a(l)) = nii.

-e
-y

vfunctlobi tempaata(X) = Y- o R -

tunction: undefine(R) = nil - - B -
ettect: ‘

)= nil-

AU T i oA A(l)"coaX(N)'Y: OeiinitiOnCh(XLI)o-.-,X{ﬁ)).f} é%nil'

function: universe(Xx) = ¥

module: DBS

procedure: imsert (R(X(1),...,X(N)))
definition:
include (R, (X{1),...X(N)))
for I = 1 to N step 1 do
increment ("universe", X(I))

procedure: remove (R(X(1),...,X(N)))
definition:
exclude (R, (X(1),...,X(N)))

procedure: define (R(X(1),...X(N}),Y)

definition: v
include ("definitions:, (R, (X(1),...X(N)),Y))
include ("defined",R)

procedure: undefine (R)

- definition:

let X = find ("definition",1,R)
exclude ("definition",X)
exclude ("defined",R)

procedure: list (R)
definition:
let X = relations (R)
_ while X # nil do
- begin - , - -
- makefile (head(X)) - ' -
let X = tail (X) - - } - -
end - ’ -
print (R) - .

procedure: relations (R)
definition:
“4if find (“defined",0,R) then
begin
let Z = find (“"definition",1,R) .
let (R,X,Y)=Z
if let S(W(l),...W(N)) = Y then
return append (relatioms (S),(R))
else
if let not S(W(1),...,W(N)) = Y then
return appenc (relations (S),(R))
else
if let S(W(1),...,W(N)) and T(V(l),...,V(M)) = Y
then

return append (relations(S), append (relatzons(R) (Y))
end :

~ definition:

D LUt Taup

procedure: makefile (R)
definition: :
if find ("defined",0R) then
begin
let Z = find ("definition",1,R)
let (R,X,Y) = 2
if let S(W(L),...,W{M)) = Y then
begin
erase (R)
project (R,X,S,(W(1),...WQD))
end
else if let not (S(W(1),...,W(M)) = Y then
begin ’
erase (R)
complement (R,X,S,(W(1l),...,WM)))
end
else if let S(W(Q),...,W™)) and T(V(1),...,V(N)) = Y
then o
begin
erase (R)
join (R,X,S, (W(1), ..« ,WQN)),T,(V(1),...,V(N)))
end

procedure: find (X,I,Y)

definition:
rewind (X))
repeat - - B ')
~ let Z = next (X)) -) - -
until - .

- Z = nil-or -
(I'= O AND Z = Y)(or
return 2

procedure: increment (X,Y)

let 2 = find (X,1,Y)
if Z = nil then begin include (X,(Y,1))
else
begin
let (Y,M) = 2
let N=M+ 1
replace (X, (Y,N))
end

procedure: decrement (X,Y)
definition:
let Z = find (X,1,Y)
if Z # nil then
begin :
let (Y,M) = Z
let N=M~-1
if N = O then begin exclude (X, (Y,M))
else replace (X, (Y,N))
end

5 FoRenir e W)

procedure: include (X,Y)
definition:.

rewind (X)

repeat

let Z = next (X)

until

Z = nil or

Z =Y

if Z = nil then extend (X,Y)

procedure: exclude (X,Y)
definition:
let Z = "time"
erase (Z)
rewind (Z)
rewind (X)
repeat
include (Z,next (X))
until pointer (X) = nil
erase (X)
rename (X,Z)

procedure: project (R,X,S,W)
definition:

rewind (S)

repeat -

let Z=-next (S) - -
if Z # nil then _ = -
include (R,bind (Z,W,X)) - - -
until Z = nil -
sort (R,X,X)

procedure: complement (R,X,S,W)
definition:- - -

let V = "time" T-

erase (V)

project (V,X,S,W)

rewind (V) :

startgen (X)

repeat

let Z = next (V)

repeat

let U = nextgen (X)

if U# nil and (Z =nil or U =2)

then include (R,U)

until U= nil or U = 2 ' -

until Z = nil

Saps 6‘(€Qh§*a1

procedure: Jjoin (R,X,S,W,T,V)
definition:

let Z = common (W,V)

sort (X,W,Z)

sort (T,V,Z)

rewind (S)

rewind (T)

erase (R)

let S1 = next (S)

let T1 = next (T)

repea\.

if less (bind (S1,W,Z),bind (T1,V, 2))

then let S1 = next (8) .

else if blnd (S1,W,Z2) = bind (Tl v,Z)

then
begin
erase(52)
let S3 = 81
erase (T2)
let T3 = Tl
repeat
include (82,S3)
let $3 = next (S)
until S3 = nil or (blnd (S1,W,Z) bind (83 W,Z)) -
repeat -)
include (T2,T3) -
let T3 = next (T) -
_until T3 = nil or bind (Tl v, Z) blnd (T3 V Z)

- let S1 = S3 -)

let T1 = T3 i
rewind (82)
repeat
let S3 = mext (S2)
rewind (T3)
repeat
let T3 = next (T2)
include (R, bind (append (83,T3), append (W vy, X))
until T3 = nil
until 83 = nil

end

until S1 = nil or T1 = nil

sort (R,X,X) ‘

Fage o 6 (Lont Gey

procedure: sort (R,X,Y)
definition:
let § = "temp"
let T = "temp2"
let N = 1
repeat
rewind (r) -
erase (S)
repeat
let J = 1
erase T
repeat
include (T,next (R))
J=J+ 1
until J > N or pointer (R) - nil
if J >N then begin’

rewind (T)
let I =1
repeat

let W = next (T)
let V = next (R)
repeat
if W =V then let W = next (T)
else if bind (W,X,Y) < bind (V,X ,Y)
then begin
_include (S,W,) -
W = next (T). ‘
end -
else begln - -
include (S,V,) - - -
V = next (R)
end
I =1+1
until V-= nil ox W = nil
if W # then
repeat
include (S,W)
W = next (T)
I=1+1
until W = nil
if T < 2N and V ¢.nil then
repeat
include (8,V)
v = next (R)
I1=1+1
until I > 2N or V = nil
“until V = nil
rename - (R,S)
let N = 2N
end’
until J<'N

A agy L AN Wy

module: files '
function: file (X) =Y

function: pointer (X) =Y
function: rewint (X) = nil
effect: pointer (X) = 'file' (X).

function: next (X) =y

effect:
for some Z(1),...,Z(N) such that
‘pointer’' (X) = (Y,Z(1),...Z2(N)): i
pointer (X) = (2(1),...,2(N)).

function: erase (R) = nil
effect:
file (R) = nil.
pointer (R) = nil.

function: replace (X,Y,) = nil
effect: ' ’
for some Z(1),...,2(M),I such that
"file'(X) = (Z(1),...,Z2(M)) and
‘pointer' (X) = (z(1),...2(M)):
file {X) = (Z(l);...;Z(IjL),Y5Z(I+l),...Z(M)) and
poimter (X)=(Y,Z(I+l),...Z(M)). = - - '

function: extend (X,Y,)= nil

effect:) -
if 'pointer'(X) = nil then
for some Z(1),...,Z(M) such that
TFile'(Y) = (2(1),...,Z2(M)):
file (X) = (Z(1),.ee,2(M),Y). _

function: rename (X,Y) = nil

effect:
file(X) = 'file'(Y). o
file (Y) = nil. NodvW: Recordy

function: current (X) =Y

function: append ((X(l),...,X(M)),Y(l),...,Y(N)))=
(K€1) 5o+« X() Y (D) 5000, (1IN))

function: head ((X(1),...,X(N))) = X(1)

function: tail ((X(1),...,X(N)) = (X(2),...X(N))

&gyt D (WU s

function: bind ((X(1),..., X)),

Y(@),...Y(™),

(Z(L)yeeerZ(N))) = (UCL), 0., U(N))
effect: ;

for all I,J such that I < I, J < N:
if Y(I) = 2 (T) then X(I) = U(J) and
if Y(I) = Y(J) then X(I) = X J).

function: startgen ((X(1),...,X(N))) = nil
effect:

for some Y(1),...,Y(N) such that

for all I such that 1 < T <N:

Y(I) = Y(I + 1);:

for some Z(1),...,Z(¥) such that

'oblist' = (Z(1),...,Z2(M)):

for all I such that 1 < I <M:

Y (1) 22 (Ds;s

current (X(1),...,X0) = Y@D),...,Y(N))

function: nextgen ((X(1),...,X(N))) = (Y(1),..0,Y(N))
effect: :
for some Z(1),...,Z(N) such that
teurrent' (X(1),...,X(M)) = (Z(1),...,2(N)):
current (X(1),eee, (Y(1),...,Y(N)) and
for some I such that 1 < I-< N:
for all J such that 1 < J <Is .
LAY = Y(AJ)s - = - _ T
-~ for some W(1),...,W() such that = -
oblist = (W(1),...,W(M)): . T S -
for all J such that I <J < N: - -
for all 1 such 1 <1 <M: V
Y ()W (K);
for some 1 such that 1 < 1< < M:
Y{(J) = W(K); ~ .
for all J such that 1 < J < M: -
Y(1) < W(D;
Z(I) <Y(D).

function: common ((X(1),...,X(M)),
(T(1),...YAW)= (2(1),...,2(1<))

effect:

for all I such that i < T < M:

if for some J such that 1 < J < M;

%(1) = Y{(J); then

for some J such that 1 <'j <<1 :

X(1) = z(J); ‘

for all I such that 1 < T < 1<:

for some J,H such that 1 < J <M and

1 < H < N: 2(I)=X(J) and Z(I)=Y(H);

for all J such that 1 < J < L% and I # J:

2(I)#2(J3). ‘

function: oblist =X

function: tooblist (X) = nil

effect:
for some Y(1),...,Y(N) such that
toblist' = (Y(1),...,Y{N)):
oblist = (X,Y(l),...,Y(N}).

function: fromoblist (X) = nil

effect:
for some Y(1),...,Y(N),I such that
'oblist' = (Y(l),...,Y(I),X,Y,(I+l),...,Y(N)):
oblist = (Y(1),eee,Y(N)).

APPENDIX &

A METHOD FOR CONTROL OF THE
INTERACTION OF CONCURRENT PROCESSES
by

M. H. Conner

It is the objective of this research to explore a method for controlling
the interaction of concurrently executing processes. The nature of my approach
is to observe that processes exhibit an external behavior in the form of calls
to operations to shared data objects. My basic premise is that by placing
various external controls on this behavior one can usefully control the inter-
action of concurrent processes. I examine this premise by giving a model of
computation in which the external behavior of processeé is well defined.

I then introduce the notion of behavior controllers to constrain the external

behavior of processes. i - i i .

In the following, I present a model of computation which I call the

structured environment. I chose this name since it reflects my desire to

define a model which is both sufficiently and appropriately structured for
rigoroué identification of the interaction between control and data. As
the name "'structured environment" connotes, it is my intention to incorporate
several of the notions associated with "structured" programming. Namely, the
model incorporates the notions of one entry/one exit control structures and
abstract data objects. |
In order to motivate some of the concepts usgd in the structured environ-
ment model, I present the following informal analysis of a Turing machine.
Even the most casual analysis of a Turing machine must note its decom-
position into two primary parts. Namely, a Turing machine consists of a
finite state control (or control part) and a tape (or data part). As soon as
this decomposition is notgd, it is reasonable to consider how‘these<ba:ps

ihteraét; At first glance one might*say<£hat the parts interact via the —

ﬁgsitioniﬁg and writ{hg operations which the finite state control causes to -
be performed on the tape. In fact, this is sufficient to describe the
mechanism by which the tape is modified. However, these operations do not _
describe the mechanism by which the finite state control receives information
from the tape. Typically, this interaction is described by specifying that

the domain of the finite state control's state transition function includes the
value of the symbol currently under that tape head. Let me propose a slightly
different view. Suppose one associates two Ylocal" data objects with the finite
state control: a current state data object and a current symbol data object.
Further, suppose that one adds to the operational repertoir of the Turing
machine an operation which transfers the value of the finite state control's

current symbol data object to the position on the tape which is currently under

the tape head. Also, add an operation that does the inverse. It is now
possible to restrict the domain of the state transition function entirely to
the values of the finite state control's two local data objects if one assumes
that each step of the computation proceeds as follows:

1) Transfer symbol under tape head to current symbol data object.

2) Compute new value for current state data object and for current

symbol data object based on the present values of these two object.
3) Write value of current symbol data object to the tape.
4) Perform desired operation to reposition to the tape head (e.g.,
Move left, No move, or Move right).

Clearly, these modifications to the traditional notion of a Turing machine
have no effect on its computational power. In fact, in most formal definitions
of a Turing machine it would not be necessary to make any change in the tuple
which describes a pa{ticular Turing méchéne. One would only have tq'chaqge
-’the definiéion of‘§he configuration of the Tufing ﬁhzhine to incorporate the
value of the current symbol data object and then;hakgﬂéhe obvious cbangé'to
the relation between two configurations (i.e., redefine a computational step
as specified above). However, these changes do have one very important effect. -
They demonstrate that one can view a Turing machiﬂé as composed of two separate
parts, a controlipart and a data part, and that interaction between these parts
can be defined to occur only through an identifiable set of operations. Thus,
these operations precisely define the interface between the control part and
the data part of the Turing machine.

This precisely known interface is very important for at least the

following two reasons:

1) ‘Since the only means of information flow between the process and

data parts is some known set of operations, each part is effectively
insulated from the representation (or implementation) details of the
other. This property is of course quite unimportant in the normal
context of Turing machines, but is very important in the normal con-
text of programming. In fact, this property forms the basis of the
information hiding that is so important in the work on modules and -
abstract data types.

2) It is frequently valuable to constrain the access a process may have
to data objects. If the only access a process has to some data object
is through some set of operations, then there are many constraints
that may be converted into simple restrictions on the set of sequence
of operations the process may perform on the data object. This is
certainly the underlying notion in the work concerning capabilities,

mqnitors, path expressions, etc. =

I have presented this example to ilihstrate the relation between control -

‘and data that underlies the stfuctured:énvironment model.- Naﬁély, I maintain
that there must be some small amount of data which is actually a part of the
control. in some intuitive semse. I wiilﬁfefer to such data as local data.)
However, it seems that there exists a natural decomposition between the control
and a large portion of the data. I will refer to such data as external data.
In fact, this example and our intuition suggest that one can reduce the local
data to an almost arbitrarily small amount. This then is an intuitive justi~-
fication for only constraining the interaction between control and external
data.

I am now prepared to introduce the structured environment model. My

presentation will be heirarchical and I will only present a very abstract view

to begin with.

The first three components that I wish to discuss are:

1) Processes

2) Operations

3) Data Objects.

Abstractly, a data object is an entity with an associated preperty usually
referred to as a value. But a value is just a property, it is derived by the
interpretation of a representation. Thus, a data object is really an incap-
sulation of a representation which if interpreted properly yields meaningful
information. It is the representation incapsulated in the data object that must
be manipulated to extract or change the information contained in the data object.
Since a data object is just the incapsulation of a representation of information.
it is necessarily a static object. That is, a data object does not change in
any way unless its representation is manipulated by some other object. 1In

this model there are two classes of objects that may manipulate the representation

of aedata cbject. These are the operations and processes mentioned above. -

However,-T wiii consider that data objects are divided'lnto two classes: local ;
data objects and external data objects. Processes may directly manipulate local
data objects only, while operations may directly manlpulate data objects of

both clasees. The reason for this distinction will be brought out when pro-
cesses are discussed below.

At this point, I wish to be somewhat vague concerning operations. I will
simply say that operations are performed on data objects. The effect of per-
forming an operation on a data object is to manipulate directly the represen-
tation of the data object's associated value, possible causing some change in

the information contained in the data object. For any given data object only

one operation may be performed on it at a time. That is, as far as data objects

are concerned, the performance of an operation is an indivisible operation.
An operation may only manipulate the representations of the data objects on
which it is performed. Since operations are the only class of objects allowed
to manipulate the representation of external data objects and since the only
way to extract or change the information in an external data object is to
manipulate its representation, it follows that the only way to extract or
change the information is an external data object is to perform an operation
on it. (The above discussion makes more sense if the reader considers that
the data objects on which an operation is performed may be a subset of the
data objects which one would normally refer to as the paraméters of the
operations. I will discuss this much more fully later.)

So far I have described data objects for storage of information and
operations for the transformation of information stored in data objects.

_All that remains in order to have a-complete computational model is some way

" to meaningfully sequence the performance of operations on data objects.

- This is precisely the role of processes. iThat.is, processes are the control

units of the model; they each cause a sequéntial sequence of actions to take
place in order to effect some computation. There are precisely two types of
actions a process may cause: V
1) A process may directly manipulate the representation contained in
a local data object.
2) A process may sequentially perform operations on both local and
external data objects.
In particular, no process may directly affect another process. Thus, two
processes can only communicate through data objects. I will say that data
acted on by more than one process are shared by all ﬁhose processes that act

on them. (By "act", I am referring to the two types of actions allowed to

processes as described above.) I will also make the restriction that no

local data object may be shared. This has a very important implication: two
processes may communicate only by sequentially performing ogerations on shared
external data objects. This is the result that I believe justifies the structured
environment model as presented so far.

In sum@ary, I have started to present a model of computation that allows
multiple interacting processes but restricts their interaction to the perfor-
mance of operations on shared data objects. I have given an intuitive argument
for the feasibility of such a restriction by examining a Turing machine and
showing that one can take the view that the finite state control only interacts
with the tape by the performance of éertain operations. In Figure 1, I present
a decomposition of a Turing machine along the lines of the structured environment
as presented so far.

I wouid like to use this figure to review several important points:
© . The process component, which I called FI&ITE_STATE_cpﬁTROL in

th?'ﬁ;gqre;'is strictlyfsequ;n;ial in>its interaction with the
e;Eernal dé;a objects-(in this case there is only one, TAPE).
I.E., It may perform exactly one operation at a time.

. No restrictions are placed on the interaction between the FINITE
STATE_CONTROL and its local data objects, CURRENT SYMBOL and
CURRENT_STATE. Nor is anything said about how FINITE_STATE
CONTROL is implemented, except that it is sequential in its
interaction with data objects.

. No restrictions are placed on the operations except to say on
which objects they are "performed", i.e, which objects they may
manipulate directly. 1In fact, I have not prohibited operations

from performiﬁg other operatioﬂs (this topic will be dealt with

later).

Process: FINITE STATE_CONTROL

Data Objects:
Local: CURRENT SYMBOL, CURRENT STATE
External: TAPE

Operations:

WRITE (CURRENT SYMBOL,TAPE): Copies the symbol contained in CURRENT _
SYMBOL to position on the TAPE which is currently under the
tape head.

READ (CURRENT SYMBOL,TAPE): Copies the symbol currently under the tape
head on the TAPE into CURRENT_SYMBOL.

MOVE LEFT (TAPE): Moves the TAPE's tape head left.

MOVE_RIGHT (TAPE): Moves the TAPE's tape head right.

FIGURE 1. Structured environment model of a Turing

-) 7 - machine.) - B

In Figure 2, I graphically depi-t the communication allowed in the structured
enviromment model. Inrgider to illustrate some of the cshmunication problems o
that arise in such an environment, I would like to consider an example.

Suppose one had a system consisting of several processes ;nd a shared
output device which I shall model as a data object. Now suppose that one
wished to insure that the following two properties held in this system:

-1) Proper use: Before actually sending data to be output to the

device it must be readied for use. (Consider a printer where

certain forms controi and heading information might need to

precede the actual text to be printed.)

(:) Processes <:> . Data Objects

Key: , .
<—3 Joins processses with data objects

on which they perform operations,
Data objects drawn inside of processes are

local date objects belonging to the process,

FIGURE 2. Communication in the structured
environment model.

2) Proper synchronization: Only one process should be using the
device at a time. I.E., after setting up the device for use,
the same process should retain control of the device until it
has completed its output task.
How can these properties be insured? First of all, one might note that these
are properties concerning the interaction betwéen the processes and the output
device (én external data object).

In the structured environment model there is only one way a process may
interact with an external data object. This requires that such actions as
setting up the output device, writing to it, etc., must be incapsulated in
operations to be performed on the device. But then it should be possible
to translate the above properties into properties concerning the sequence in
which operations are performed. First, I will propose a set of operations

that may be performed on‘the‘butput device. The following three operations =

seem to sufficient. . - o

1) OPEN - Prepares the output deviée fofkthe néxt ou;put"iask
2) WRITE - Causes one unit of data to be outéut
3) CLOSE = Signals the completion of an output task.
The above properties can now be restated';n terms of the operations as follows: A
1) Proper use: Each process will always perform operations on the
output device in the order: OPEN, any number of WRITEs, CLOSE.
This sequence may be repeated any number of times. No process
will perform any other operations on the output device;
2) Proper Synchronization: Once one process has performed an OPEN

no other process will perform any opération on the output device

until the first process performs a CLOSE.

Consider Figure 3, depicting the communication paths in the structured environ-
ment model for a two process version of this example.

Now consider how one might insure that the restated properties hold.

The proper use property could be insured by examining each process in
the system and verifying that each process would only perform the allowed set
of operations and then only in the allowed sequence. This method has two
outstanding drawbacks.

First of all it can be very difficult. In fact, it is clear that the
rigorous verification of this property coula be as hard as the rigdrous veri-
fication of any other property of a process. A very difficult task indeed!

Secondly, this method requires that the definition of all processes
(current and future) be available for examination. However, it is frequently
desirable in a multiprocess environment to be creating new processes some of

which may have been unavailable for examination. (Consider an operating

system running user processes.).

“The only general solution to both these drawbacks seems to require some ~
sort of external constraint on the operations a process may perform on shared

data objects.

‘In fact;Athe notion of capabilities can be vievéd as a very limited form
of such a constraint. A capability for a data object defines the set of
operations a process may perform on a data object. This, of course, still
leaves the very difficult problem of insuring that processes perform the proper
sequence of operations. I suggest that one needs a general mechanism to con-
strain the sequence of operations performed by a process on a data object. I
therefore add to the structured environment model a component which I call a

rights controller.

FIGURE 3. Structured environment model of a two
process version of the output device
exanple.

A rights controller is simply a finite state acceptor over the sequences
of operations that may be performed by a particular process on a data object.
That is, each rights controller defines a set of sequences of operations that
may be performed on a particular data object.

In order to make the rights controllers effective, there must be some way
in the structured environment model to require the process to observe the con-
straints of the appropriate rights controllers. 1 achieve this through the
notion of an environment, where an environment is defined to be a seqﬁence of
rights controllers with the constraint that there cannot be two rights con~-
trollers in the same environment controlling the performance of operations on
the same data object. I then specify that there bg associated with each
process a single unique environment and that a process may only perform an
operation on an external data object if it is allowed by the appropriate

rights controller in the process's environment. -

“Sinée a rights contfb}ler is a finite state accéptofiof thégsequencés'oi
operatioﬁs that ;;précess'ﬁay perform on a data object, one obvious way of
describing a rights controller is a state graph with arcs labeled by operations.
Figure 4hdescribes an appropriate rights controller for the processes in the
output deviéé example. Figure 4 also shows how this rights controller might
be described by a regular expression over operations. The specification of
the structured environment model says nothing about how rights controllers are
to be inplemented, but it does say that a process may only perform the operations
allowed by its rights controllers. Therefore, it would seem that a véry reason-
able way to achieve this effect would be through a runtime monitor (i.e., an

active finite state acceptor). Thus, I prefer the state graph description for

its dynamic connotation.

OPEN

CLOSE

WRITE

(open, wRITEY, (LOSE)T

 FIGURE 4.

controller.

Two descriptions of a rights

Returning to the output device example, consider the situation of each

process that shares the output device having a copy of the rights controller

- described in Figure 4 as an element of its environment. Figure 5 depicts a
two process version of such a situation. (Note that any other elements in
the process's environment cannot directly affect its interaction with the
output device because of the requirement that only one rights controller con-
strains access to the same data object in any one enviromment.) In Figure 5,
I have interrupted the lines connecting the proéesses with the output device
to indicate that the only‘interéction each process may have with the output
device is the performance Qf the operations allowed by the rights controllers.
This will be the normal way I indicate a process's enviromment in subsequent
figures. Thus, Figure 5 indicates ﬁhat each procesé can only interact with
the output device in precisely the manner required by the proper use property
given above. However, it s@oﬁld be clear thét qveﬂ though gach process is

- “trying to make proper use of the output device, there is nb guarantee _that -

 _the pr‘ocesées will synchronize their perforn;ance; of opérétions properly to-

achieve the proper synchronization property given above. For example.

‘— Process 1 might perform an OPEN followed by several WRITE§ and then Process 2
might perform an OPEN which clearly violates -the proper synchronization
property. Clearly, the notions of environments andlrights controllers are
not enough to directly handle the problem of process synchronization.

Consider, for a moment, the structured environment model as it stands so
far. I have constrained the interactions of processes to a single mechanism,
naﬁely the performance of operations on shared data objects.

Suppose I refer to the performance of operations on external déta objects

as the behavior of a process. Then one can think of a rights controller as

defining allowable behavior. It follows then that a process's environment

OPEAN
Y)

CI05E ORATE CLOSE WRITE

e ek i T T

FIGURE 5. Two process version of output device

example including rights contollers.

defines the totality of a process's allowable behavior. However, there are
two possible ways to control behavior:

'1) At 1its source, the process

2) At its destination, the data object.
Thus, I suggest that the problem of synchronization be dealt with as the behavior
arrives at a data object. To this end, I add to the structured environment
model a class of components I call synchronizing controllers. A synchronizing
controller will synchronize the operations that may be performed on a data
object in order to achieve a particular sequence of operations. Thus, the
description of a synchronizing controller is very similar to that of a rights
controller. Namely, it consists of a specification of the sequence of operatioms
that it allows to be performed on its associated data object. Note, hﬁwever,
that there is a considerable difference of interpretation. A rights controller

"defines the allbwable behavior for a process. If the_pfocessfviglates‘itS'

- allowable behavior then it is outside of the structured éaviroémgpt‘modgl, i.e., -

it is in error and must be aborted or something: However, a é&nchfonizing
controller will actively attempt to achieve its required sequence of operations

by delaying processes.) ’ _ e

I have referred to the synchronizing and delaying of processes above wiﬁh-
out describing how this is done. Let me do so now.

Recall that the primary‘defining characteristic of a procéés is thatlit
performs a sequential sequence of actioms. Thus, once a process begins to
perform an operation the process is essentially inactive.(it cannot interact
with any data object) until the operation is completed. With this in mind I
will decompose the performance of an operation into three phases:

1) scheduling

2) execution

3) completion.

These phases must occur in the order shown above. The scheduling phase con~-
sists of the operation being scheduled by the synchronizing controller associ-
ated with each of the data objects on which it is to be performed. The execution
phase occurs after the scheduling phase has completed and consists of the

actual transformation on the data objects. The completion phase occurs after

the execution phase has completed. This phase marks the completion of the
operation. That is, the process that performed the operation becomes active
again at the completion of the completion phase and is only then able to cause

more actions.

This decomposition allows me to fully explain the action of a synchronizing

controller as follows.
The synchronizing controller has one active function: it schedules
operations to be performed on its associated data object. The synchronizing

controller is an event driven component, with the following two significant -

_events:) -

}'1) An opefationrto be performed on the syﬁfhrqniziné controller - -

associated data object entering its scheduling phase,

2) An operation that is being performed on the synchronizing

controllers associated data object entering its completion

phase.

In the first event the operation will be immediately scheduled if and only
if no other operation is currently scheduled or executing on the synchromizing
con;rollers associated data object and the performance of the operation would
not violate the‘sequence of operations the synchronizing controller is trying
to achieve.

In the second event the synchronizing controller will schedule one of the
operations pending on its associated data object that is currently allowed in

the synchronizing controllers prescribed sequence of operations, if there are

any such operations.

Note thét only one operation will be scheduled or executing at a time
under the above rules.

Row let me return to the output device example and show how a synchronizing
controller can be used to insure the specified synchronization property.

Figure 6a shows the two process version of this exémple which retains the
rights controllers (drawn in rectangles) developed earlier plus a synchronizing
controller (drawn in a triangle).

Consider how this system would work. 1Initially I assume there are no
operations pending (waiting to be scheduled), scheduled or executing on the
output device (as indicated in Figure 6a). Now suppose Process 1 attempts to
perform an OPEN operation. Since there are no other operations scheduled or
executing on the output device and since OPEN is currently allowed by the
§chﬁronizing controller, the OPEN operation would be immediately SChedq}éd,
thus alloﬁi&g it to exécg;e!aﬁd!complete."Ihisv;egults in théAsiFuag{on shown -
_}n Figure 6b. In thié}situatiéﬁ Process ircan‘perform_éitherla WRITE operation
or a CLOSE operation, either of which would be immediately scheduled aﬁd alloyed
to execute and*cgyple:e. However, Process-2 can only perforn an OPEN operation
which would not be scheduled since OPEN is not currently allowed in the
synchronizing controller's prescribed sequence of operations. Thus, if Process 2
performs an OPEN operation, it (the process) will be suspended until a CLOSE -

. operation is performed by Process 1. Figure 6c shows the semetric situation
where Process 2 has gained control of the output device, In fact, Figures 6a,
6b and 6¢c show thevouly three situations that are possible in this simple example.
Thus, it is quite clear that no matter how many prdcesses shared the output
device, the proper synchronization property would hold as long as each ptocess

had a rights controller equivalent to the ones described in these figures.

-

\
v, s Foless
3[‘0.’:&‘3) ‘V P 7 \

-y i
\./

z

z

1 .

¥ NC LO3E WRITE

s e e s
\ A
N
< oA
NN

[
vEVILe

FIGURE 6a

@; ‘ T Precess
‘ [
; %7

N T
%, 75)

USSR ——
-

i b b
o b O -

A i o i g s S

‘{: \\ ! L
H
1 \ ‘\
N urr enﬁ S5tate
.
¥

FIGURE 6b

e w3 PR e S e N

/

/

L2)
-’-—"-?U—I

UEvies

FIGURE 6¢

Thus, by the combination of rights controllers and synchronizing controllers,
I am able to insure both of the properties concerning the sharing of the output
device. Note that the synchronizing controller by itself would not have insured
the proper synchronization property. For example, if the process yere able to
perform the operations in any sequence, then Process 1 might have performed an
OPEN operation, after which any process in the system could perform WRITE or
CLOSE operations becéuse the synchronizing controller is not concerned with
which process is performing the operationms.

I would now like to consider some extensions to the output example which
I believe will help to show how truely flexible these behavior controllers are.

Let us suppose that our output device is used for messages to the machine
operator as well as user output. Now, suppose some operator messages need to
be output immediately, i.e., before the end of some user output task. Figure 7

shows how the synchronizing controller for the'ogfbut device ﬁightfbe~modifiedv

to allow processes that have the éfoper "rights" to "preempt" the output device

from another process. In Figuré 7, I also describe the two reasonable rights
controllers to go along with the amended synchronizing controller. Figure 8

shows how these rights controllers might be distributed in a three process

system. In a system with such controllers, no matter what state the synchrOv‘
nizing controller is in due to a process with "regular rights“, a process with
"priority rights" can periorm a PREEMPT operation. This will put the synchro-
nizing controller in a state where only PWRITE and RELEASE operations may be
scheduled, thus effectively preempting the output &evice. However, among
processes having the "priority rights" preemption cannot occur.

Note that the change to the synchronizing controller and the addition of
the new rights controller would not require any changes to the processes that
continued to use the '"regular" rights controller.

Let me continue to add complexity to this example by suggesting that

- L - . N)
PNQMP% able cunshronizipg condre

r 4

\.&v
“t Q j
]
b
]

?rwr‘z?(j' {:\.‘Clh

FIGURE 7

!
R

Condinilr

Megun

3.
Pf’Qé‘i;\xO a g
] ..
guncl«romzmﬁ

o {ontretigs” -

FIGURE 8

after our hypothetical system has been in use for some time, one of the system
users might come in with the complaint that his output has operator messages
in it. Now suppose that this user's output involves the use of expensive
registered forms (e.g., payroll checks) and the system manager decides to
protect the user from preemption.

Figure 9 shows the set of controllers that could be used to effect this
change. Note that the "regular" and "priority" rights controllers are unchanged,
thus no changes would be required in the processes which continued to use them.
The chahge is simply to add a nonpreemptable state to the synchronizing
controller along with operations to effect the transition into and out of this
state. Note that the "nonpreemptable'" rights controller still requires the OPEN
operation first. Thus, the processes with this rights controller must still
wait their turn for initial access to the output device. That is, it was not

necessary to give these processes any special rights except thg’ébility to

preveni;preeﬁptiogrduging critical”pargéjof their ouépu%. B -

I thinkiihat this solution éompdres’Veryifavoribly to a more traditional
solution involving conventions over semaphores or such. I find especially
" impressive the way one is able to-modify the constraints concerning the sharing
of a data object without affecting those processes which do not wish to take
advantage of the new features.

In summary, I have presented a model which I called the structured environf
ment. In this model processes may only interact via the performance of operations
of shared data objects. I refer to this interaction as the behavior of the
processes and have shown that two types of behavioral constraints, rights
controllers and synchronizing controllers, can be used to usefully control the
interaction of the processes in a system. Some of the benefits that I feé}

arise from this approach to concurrent process control are listed below:

r....\» [IT— s

F)CB:M‘Q mq

-
4
!
?

ORIVE t

| |

L

’ N -y ISR . . -+

Pmor;‘n{. Righis /Uem/zf(:: emp Pable Fiukts

J v

Simpler context for verification: Certainly the restrictions on
process interaction along with the external behavior controllers
makes the verification of certain properties much simpler than it
would be in a model that required one to examine the definition of
each process.

Localized scheduling of process: All scheduling in this model occurs
in the event driven synchronizing controllers, This seems to be a
much simpler concept to implement than say a system involving con-
ditional critical regions or predicate locks.

Creater reliability through external constraints: Since the constraint
placed on a process by its rights controllers is independent of the
definition of the process, it should be straightforward to implement
a run-time check to enforce the rights controllers. Thus, this

insures that even in a system with incorrect processes, errors would

not propagate.) . = -

APPENDIX 5

SOME THOUGHTS
ON

AUTOMATIC THEOREM PROVING
IN

DATA BASE DESIGN AND USE
by

W. W. Bledsoe

The paper sketches some of the ways in which research in Automatic Theorem
Proving (ATP) can support the interdisciplinary project on Data Base

Methodology being conducted at The University of Texas. N

DATA BASES
Here we treat a data base as a list of facts and information (which
might be distributed over several geographic locations), along with a set

of rules of inference for using these facts. (Figure 1)

LIST OF FACTS
(DISTRIBUTED)
INFERENCE RULES

Figure 1

A Data Base

Quéirieg‘tq this data base are processed By«i
a) Direct lookup ~ . 7 - - -
b) By Inference

Also the data base must be tested somehow for internal consistency.

For e%;mple, if we have the statements
1) John is older than Mafy
2) Mary is 15 years old
in the base, we want to answer querries such as
a) 1Is Mary 15 years old?
b) 1Is Mary older than 257
¢) Is John older than 127
The last two, of course, would require simple inference. Much more compli-

cated cases are desirable and, to some extent, possible.

e

