If we add the entry
3) Mary is younger than 4 years,

wﬁat does the whole thing mean? What, if anything, can it be use for?

EXAMPLES

For example we might have a mathematical Data base (Figure 2)

MATHEMATICAL DATA BASE

LIST OF “ALL" MATHEMATICAL
THEOREMS

DEFINITIONS & AXIOMS RULES
" OF INFERENCE

A, PROVE A THEOREM BY FINDING IT ALREADY IN
"THE DATA BASE.
B, PROVE A THEOREM BY INFERRING IT FROM
THEOREMS- IN THE DATA BASE,

Figure 2



We can extend this to an engineering data base (Figure 3).

PHYSICS, CHEMISTRY, ETC.

MATHEMATICAL DATA BASE

LIST OF "ALL" MATHEMATICAL
THEOREMS
REMOVE SOME EXOTIC THEOREMS

- DEFINITIONS & AXIOMS RULES
OF INFERENCE

ADD ENGINEERING INFORMATION

STRENGTHS OF MATERIALS, ETC. ENERGY CON- |
TENT OF VARIOUS FUELS, ETC. LAKS OF i

PROVE A’ THEOREM BY FINDING IT ALREADY IN
THE DATA Base.

PROVE A THEOREM BY INFERRING IT FROM
THEOREMS IN THE DATA BASE.

ANSWER QUESTION ABOUT THE DESIGN OF A

BRIDGE OR THE FEASIBILITY OF A SPACE PROBE.

Figure 3



Or extend it to a military data base (Figure 4).

- MATHEMATICAL DATA BASE
LIST OF "ALL" MATHEMATICAL
THEOREMS

DEFINITIONS & AXIOMS
RULES OF INFERENCE

, ADD MILITARY INFORMATION
DISPOSITION OF OUR FORCES AND EQUIPMENT
STATE OF READINESS, ETC.

DISPOSITION OF ENEMY FORCES

CONTINGENCY OF INFERENCING

A. PROVE A THEOREM BY FINDING IT ALREADY IN THE
DATA BAsE.

B. PROVE A THEOREM BY INFERRING IT FROM THEOREMS ..
IN THE DATA BAsE.

C. ANSWER A QUESTION ON OUR ABILITY TO REPULSE A
CONJECTURED ATTACK.

Figure 4



Many other examples easily come to mind.

SOME OBSERVATIONS

Several points can be made

+ AUTOMATIC INFERENCING IS CLEARLY DESIRABLE IN
ALL SUCH EXAMPLES,

* IF WE HAD TRULY POWERFUL AUTOMATIC THEOREM PROVERS,
IT WOULD CHANGE OUR CURRENT PROPOSAL FOR DATA BASE
DESIGN.

* FOR THE NEXT 10-30 YEARS WE MUST SETTLE FOR A
“MODERATE" ABILITY OF ATPS, BUT EVENTUALLY ATP WILL

DOMINATE

* THE PRESENT PROJECT SHOULD USE THIS MODERATE "CAPAC-
ITY, USING AUTOMATIC INFERENCING BUT NOT EXPECTING
TOO MUCH.

i



ATP AT THE UNIVERSITY OF TEXAS

The University of Texas has been one of the leading centers for ATP
since 1968, and is the most successful in actually carrying out proofs of
moderately difficult theorems on the computer. Our provers have been LISP
programs for the CDC 6600 computer an& the DEC 10. 1In addition to a number
‘of theorems proved in set theory[l], calculustZ], analysis{3,7,9], and top-
ology{3,9j, we have seen our program and ideas successfully used in program
verification systems [5,6], and in incremental design of programs with docu-
mentation and verification [10]. Also we have been early proponents of new
directions [9] now finding their way in ATP research.

Others at UT (Skilossy, Simmons, Chester, and other students) have been

or are now engaged in some form of ATP research. The research on inference

in-semantic net [11] seems especially pertinent here. -

ROLE IN DATA BASE DESIGN

We would expect to use the concepts from ATP, not the actual programs in
data base design. Anéeam effort would insure that ATffideas would be inte- -
grated into the project in an effective way.

The research would blénd nicely with a larger effort here, funded by
NSF, on general ATP.

At this time we feel that inferencing (in Data bases) can best be done
at two levels ‘

1) At the hardware level (simple inferences)

2) At the software level.



In 2) certain "pertinent" information is retrieved from the data base
("semantic paguig'") to be used in core memory for deeper inferencing.

We believe that only a moderate capability in ATP can be depended
upon during the néxt 10-30 years. However in the long run ATP will be the
dominant factor in Data Base design. It is crucial that ATP research,

geared to that application, (here and elsewhere) be supported in the interim.

Two important factors in data base design are
a) conflicting data
b) changing data

These seem to point more toward
1) automatic inferencing, and

2) man-machine cooperation.

LONé-TERM RESEARCHVINTEREqu ) 7 - T

Our group here has a long-term interest in deep inference in data bases,

where a sizable ATP capacity is required. We will be pursuing this interest

independent of this project. -
Included in our concerns are

. uncertain and conflicting knowledge

. prediéting with probabilities

. (limited) natural language input and output

. man-machine interaction



EXAMPLE
DATA BASE

ALL THE NEWS PAPER STORIES ON
THE MIDDLE EAST FILED BY THE
MAJOR NEWS AGENCIES DURING THE
LAST 10 YEARS. (WITH OLDER
STORIES CAREFULLY CULLED)

+ RULES FOR INFERENCING

QUERRY:

WHAT IS THE LIKELIHOOD OF SYRIA ATTACKING ISRAEL WITHIN
THE NEXT TWO DAYS?

CTASK: -

DETERMINE THE SOURCE OF THE MAJOR INCONSISTENCIES IN THE
DATA BASE,

We could add to this

INTELLIGENCE INFORMATION ON
+ TROOP STRENGTHS AND DEPLOYMENT
» RECENT MOVEMENT
ETC. '



MAN-MACHINE INTERACTION

1. THE USER WOULD ADD, SUBTRACT, OR CHANGE,
DATA AND INFERENCING RULES.

2. THE USER COULD HELP WITH THE INFERENCING ON
DIFFICULT PROBLEMS (E.G., SUGGESTING RELE-
VANT FACTS).



MAN-MACHINE INTERACTION

1.

2I

THE USER WOULD ADD, SUBTRACT, OR CHANGE,
DATA AND INFERENCING RULES.

THE USER COULD HELP WITH THE INFERENCING ON
DIFFICULT PROBLEMS (E.G., SUGGESTING RELE-
VANT FACTS).



REFERENCES

10.

11.

W. W. Bledsoe, Splitting and reduction heuristics in automatic theorem
proving. A. I. Jour. 2(1971), 55-71.

W. W. Bledsoe, Robert S. Boyer and William H. Henneman, Computer Proofs
of Limits Theorems. A. I. Jour. 3(1972), 27-60.

W. W. Bledsoe and P. Bruell, A man-machine theorem-proving system.
A. I. Jour. 5(1974), 51-72.

W. W. Bledsoe and Mabry Tyson, The UT Interactive Theorem Prover. The
University of Texas at Austin, Math, Department Memo ATP-17, May 1975.

D. I. Good, R. L. London and W. W. Bledsoe, A Complete Method for Higher
Order Logic. Ph.D. thesis, Case Western Reserve Univ. Jennings
Computer Center Report 1117.

W. W. Bledsoe and Mabry Tyson, Typing and Proof by Cases in Program
Verification. Machine Intelligence 8, Donald Michie and E. W. Elcock
(Eds.), Ellis Horwood Limited, Chichester, pp. 30-51.

A. MichaelABallantyne and W. W{_ﬁledsoe;»Autométic Proofs of Theorems in _
Analysis Using non-standard Techniques. J. ACM; Vol. 24(1977) pp. 353-374.

W. W. Bledsoe, Non-resolution Theorem Proving. :Univéféity of Texaé Math.
Department Memo ATP-29, Sept. 1975. To appear in the A. I. Jour.

W. W. Bledsoe, A Maximal Method for Set Variables in Automatic Theorem
Proving. University of Texas Math. Department Memo ATP-33A, July 1977.
To be presented at IJCAI-77, MIT, Aug. 1977. _ -

Mark Moriconi, ~An Interactive System for Incremental Program Design and
Vgrification

D. Chester and ‘R. F. Simmons, Influences in Quantified Semantic Networks.




Appendix 6

A COMPUTER ARCHITECTURE FOR A FDSS
Jack Lipovski

Computer architecture aims to make recent advances in hardware technology
(especially LSI) useful to the new and demanding software envisioned for a
very large distributed and intelligent data base management system. Some
preliminary architectural features of a planned system are herein sketched
and some problems for research and development are delineated.

Three major computing systems are to be accomodated. Firstly, users
interface with the data base system through a network of intelligent terminals.
Secondly, intelligent discs are located at various nodes in this network and
are powerful enough to search the data where it is stored to avoid shipping
large quantities of data through the network. Thirdly, an array computer will
use parallelism to extend the analytical capacity of artificially intelligent

software. We submit that these three major systems have to be accomodated

because none of them alone, nor any pair of‘them; are adequate to support the

envisioned software. However, each system can be effectively and economi-
cally built with LSI modules, so the total system will take advantage of LSI

economics. We aim to design each system so that it will interface well with

the other systems and, conversely, we are relieved of the need to perform each
function in any one system alone. The object of studying the three systems
together is to develop each one of them to fit together later on in an integral
system. While we do not propose to build all of them in this project, but

only the intelligent disc, we will design the disc to support distributed queries
in the network and to support deep theorem proving in the array computer.

Other proposals have been or will be submitted to study the other systems.

If the other proposals are funded, they will be used in research conducted in

this proposal. Otherwise, they will be simulated in this proposed research effort.



Moreover, each system will be designed to work as I/0 devices with existing
computers to provide considerable improvement in their performance, even
though the greatest improvement in performance can only be expected from using
all three computing systems together in a total system.

In the following paragraphé, we outline the three systems. The intelligent
disc, which we plan to build, will be discussed in more detail. The other two
will be sketched for completeness.

1. Other Systems Architectures

1.1 The Network
The network will consist of small microcomputers in intelligent
terminals and intelligent secondary memories and communication will
be accomplished by packet switching in the network. Although the
terminals deserve some study, we need not specify them at this stage
except to say that they have to be able to maintain the user's schemg,

a gompiiei for the data Base‘iéhguage,wand ﬁgans éqvairect;péckefs,

, émbodyiﬁg ;he query; thr;ugh,ghe netyork>to tﬁe ingelligent:discs.
Upon senéing out a querf from an intelligent terminal; the object of
a packet will generally be a file on an intelligent disc. The file
will‘bé explained in the next section. A gréﬁp of files will bé at
one physical node of the network of different cylinders of the disc,
or even in tertiary memory in that node. There may be several physical
nodes distributed through the network. In processing a complex query,
references from one file to another will require that packets be sent
from files to files as well. In retrieving the answer to a Query,
packets will be sent out from files to intelligent terminals.

This architecture requires that the intelligent disc node be able

to examine an incoming packet to determine which file is to be operated

on. A queue of incoming packets will be buffered and scheduled by a



1.2

conventional microcomputer associated with the disc at the node.
Records will be checked for locking to prevent interference among
queues. Once a file is in position to be searched by the logic in
the intelligent disc, and all required records have been locked to
the user, the file will be entirely searched in each disc revolution,:
as discussed in the next section.

Of significance, this network architecture combines the problem
of accessing file data from intelligent terminals with the problem
of solving complex queries where one file has to be linked up with
other files. It offers hope in simplifying problemé of protection,
lockout and deadlock by locking records within the intelligent disc.

The Array Processor

The array processor will be used to support artificially intel-

igent software by means of parallelism. Two forms of parallelism

~are useful. In vector parallelism, a ver& wide word width processor - -

is>cre5ted by work on vector operands. 7Thié is cémmonlyurefeffed to

as single instruction stream multiple daéa stream (SIMD} processing.

In concurrent parallelism, small independent processors simulpaneously

but independeﬁtly operate on separate‘ﬁieces of data. This is referred

to as multiple instruction stream multiple data stream (MIMD) processing.
In artificial intelligence programs using LISP, lists can be

"yectorized" by writing them as paranthesized strings. Operatioms

like EQUAL can be executed on two strings as though they were vectors.

Operations like CDR or CAR can be done in a parallel machine as

simply as in a conventional machine, but no better. However COND and

MAP do not take much advantage from vector parallelism.

In a concurrent machine, each independent processor can evaluate

different lists using standard LISP techniques. Potentially, all






LISP primitives can be executed faster through parallelism. In order
not to have to store the entire LISP interpreter in each memory, a
set of common memories store fragments of the interpreter. Each
processor can fetch instructions from one of the common memories, but
all processors accessing any one common memory must be accessing
exactly the same word in it. With a fixed program like a LISP
interpreter, we believe it will be possible to carefully schedule
fragments into common memories to use this technique. Then very small,
cheap processors with a small amount of local memory should be able
to efficiently execute concurrent LISP programs.

The key to both vector and concurrent parallelism is the design
of a powerful but inexpensive computer switching array. We have
submitted a proposal to NSF to build a prototype computer using such

a switch. This computer can be used to experiment with concurrent

and vector parallelism in executing artiﬁigiai,intelligencé programs.

Intelligent Disc Architecture B - : -

From our earlier work on the CASSM system at the University of Florida

and from related work on the RAP system at the University of Toronto, we

have established techniques which will efficiently store relational data
bases and semantic networks on a disc. The logic associated with the disc
makes it sufficiently intelligent to resolve almost all typical relational
queries and sufficiently intelligent to greatly assist extracting useful
data from a semantic network for artificial intelligence programs.

2.1 Physical Description of Disc Hardware

The disc architecture will consist of multiple moving head discs,
in which all heads are on a common frame, and there is one head on

each disc surface. (We are looking at IBM 3330 or equivalent discs



2.

2

that store about 109 bits per removable disc pack). By moving the
frame, the heads are located over a given "cylinder". One or more
such discs will be operated together so that their "cylinders" form
a lérger cylinder. The data on this larger cylinder is called here
a file. For instance, if three IBM 3330 discs are operated together,
a larger cylinder would have 60 heads on 60 surfaces. Two hundred
such files are stored on the 200 cylinders of an IBM 3330 disc.
More files may be stored in tertiary memory, and paged into cylinders
of the disc. Exactly one file will be under the moving disc heads
at any time,

In one revolution of the discs, an "instruction" is executed on
the entire file. A typical query consists of in the order of ten
instructions which will be executed on the same file. Upon receipt

of a query at an intelligent disc by the microprocessor that controls

the disc, the file requested by the query is positioned under the

/heads, éﬁtﬁer by moving the‘heads or. by moving~the/file in from

tertiary memory. The heads remain positioned over the file as the
disc revolves, to execute the query, for about ten revglutionsf

ng heads are then positioned over the file needed by the next query.
Each head will have a "microprocessor" similar in complexity to the
popular microprocessors but having quite different organization and
instruction set. It will be attractive to put each "microprocessor"
in an LSI chip. A disc track and "microprocessor' are called here a
cell. The logic looks like a chain of identical cells. See figure 1.

Storage of Data

The file consists of records of a variable number of words,

and the words are fixed length and are divided into fields. Each



word has a mark bit on the disc for content search operations.
Records correspond to tuples in the relational data base system and
to nodes in semantic networks. The first word of each record stores
a bit stack for context search operations. Other words appear to
store domain names and items in the tuple, or arcs incident from
the node in the network. See figure 2 for storage of relational
tables and figure 3 for storage of (semantic)networks. Figure 2a
shows two relations while figure 2b shows their storage on the disc.
Figure 3a shows a network like a semantic network, while figure 3b
shows storage of the network on the disc.

Note, in figure 2b that a file can contain many relations
(tables) andAthat each tuple (row) i; stored as a record. In this

figure, two relations (officer and parts) happen to be stored on

the same file. ©Note that the tuples from différen§ relations can

be iﬁtgrmixed,~but that a field in the first word in each tqpie
fér record identifies the relation that the tuple 1s in bj}akgpdé
word. For each domain (column), a word containing a pair of code words
*in fields, domain name and domain‘value, are stored. )
Note, in figure 3b that each node is stored as a recbfﬂ and

records are numbered according to their position from top to bottom
in the file. TFor instance, node "Tom" is stored in the 21st record
from the top of the file. For each node, its corresponding record
contains in its first word a field containing the code word of the
node name and in succeeding words a pair of fields associated with
each are in the network that is incident out of the node., The fields

are best explained by example. For instance, in record 20 corresponding

to the node "John'", the arc (John, father, Tom) is represented by



2.4

the word (father, 21) where "father" is a code word and 21 is a
number, since 21 is the record number for the node '"Tom".

Though not fully shown in the above examples, the key problem
is efficient storage of data. That is why code words are used rather
than character strings. A mechanism to convert between code words
and character strings by means of hardware has been worked out.
Moreover, the left field of each word can be generated by means of
a counter in the "microprocessor' associated with the disc track
rather than stored on it if the code words are consecutively numbered.
These fields that are generated in the "microprocessor" are called
imaginary fields. The user need not concern himself about whether
data is stored in real or imaginary fields, for instructions will
treat the files as shown in figures 2b or 3b, whether or not some

left fields are actually generated by hardware.

Content Searching - - -

- Each word is provided with a bi£ (mark bip)rwhiéh can'b; o
modified by a content search instruction. The bifris set if the |
content of the Wword matches the argument of tgg instruction, and is
cleared otherwiée. Fof instance, in figure 2b, if the operand of a
content search were P#, 30, then the mark bit of the eighth word
would be set and all other mark bits would be cleared. Content
searching is normally used to single out individual words to be

rewritten, output, or deleted.

Set Oriented Context Searching for Relational Data Bases

Each record is provided with a bit stack located in the first
word of the record. If the argument of a context search 'push",

instruction is in a record, a 1 bit is pushed on the bit stack for



that record, else a 0 bit is pushed on the bit stack. A context
search instruction could "AND" the result of the search with the top
bit on each bit stack, or "OR"™ or "AND the COMPLEMENT", etc.

Consider a query to locate Captain Smith in figure 2. The

query is translated into the following program:

1) PUSH "IS~-AN" "OFFICER"
2) AND ""RANK"' "CAPTAIN"
3) AND ""NAME"' "SMITH"
4) MARK(OUTPUT) "LOCATION",

Instruction 1 pushes a 1 onto the bit stacks for the first and third
records, and a 0 onto that of the second record. Instruction 2
AND's a 1 bit onto the bit stack of the first record, but AND's a

0 onto the other bit stacks. Instruction 3 does the same (in this

simple example). Instruction 4 marks, by content searching within

records ;haF have a1 bit on top ofjtheifﬂﬁit stack§; ghe words
whose ieft fields ére““LOCATIdﬁ". The‘mérked words are éﬁtpdi-agaA
the response to thié query. This qﬁery is effectively answered in
four disc revolgtions. Typical queries should be answered in ten
disc revolutions, independent of the size or ccmplexityisf the file.
In hardware, the results of the search are stored temporarily
in a one bit wide random access memory, which has 1 bit per record,
and are processed by pipelining to appear to move the results to the
bit stack so that one context search can be executed each disc
revolution. Complex Boolean queries can be analyzed over all tuples
in a file in a number of revolutions proportional to the number of

terms in the query expression and independent of the size of the

file. (No conventional data base management system can approach



2.5

this ideal.) Moreover, there is no need for directories to locate
relations within a file and tuples from a relation can be scattered
throughout the file because the entire file is searched each disc
revolution.

Other Set-Oriented Functions

It is possible to find the intersection of two sets in two disc
revolutions. The one bit widé, RAM (mentioned in section 2.4) is
initially cleared. In the first revolution, elements (code words)
of the first set provide addresses to set bits of the RAM. 1In the
second revolution, elements (code words) of the second set provide
addresses to read bits from the RAM, If a 1 is read, the word of
the second set is marked. Only if an element is in the intersection

will that bit be both set and read, and the word marked. (Other

researchers have also shown that duplicates can be deleted by a

similar precedure.) = - - -

It is possible to execute ;n inner p;o&ucfi"thﬁesﬁoid search"
as shown in figure 4, Each word on the disc has an associated
weight, as word A in record 23 has weight 3. The argument of the
instruction also has a weight. The argument,/fts weight, and a
storage buffer are in registers in each head. If the word matches
the argument, the two weights are multiplied and saved in the buffer.
The bottom word of each record contains an accumulator, the number
in the buffer is added to it. Thus, an inner product '"threshold"
search can be conducted simultaneously over all records in a file.

The buffer can also be used for simpler functions. The maximum,
minimum, sum or count of marked words can be conducted in each

record or the entire file. In particular, after an inner product



2.6

threshold search, the set with the maximum accumulator value can be
marked. Equally important, the number of marked words can be counted
before they are output, to determine whether there are tooc many to

be of interest.

Network Oriented Context Search Instructions

Pointers from one record to another are‘stored by putting the
record number of the second record in the right field of a word in
the first record. See figure 3 again, where the "father" pointer
from record 20 (for "John") points to record 21 (for "Tom"). The
RAM discussed earlier is used to transfer tokens. The RAM is
initially cleared. If the argument of a token transfer search is
found in the left field of a word in a record having a 1 bit on the
top of its stack, the right field is used as an address to set a

bit in the RAM. 1In the following revolution, a counter that counts

records as they pass over the head is used to address the -RAM to -

push the values storedﬂthé;e onto the bit stacks of the records.

Pipelining allows the second revolution to be '"hidden" so that
tokens can be effectively transferred in one disc revolution.
Consider a query to find the grandsons of "John" in figure 3.

The instructions are:

1) PUSH "IS-A", "John"
2) PUSH "FATHER", TOKEN
3) PUSH "FATHER", TOKEN

4) MARK(OUTPUT) "IS-A",
After the first revolution, a 1 is effectively pushed onto the bit
stack of record 20, and a 0 is pushed onto all other stacks as

discussed in section 2.4. After the second revolution, a 1 bit is



2.7

pushed onto the bit stacks of records 21 and 23 simultaneously, and
after the third, a 1 bit is pushed onto that of record 25. After
the next revolution, the work "IS-A", "BILL" is output. Such a
query is effectively executed in four revolutionms.

One of the most useful applications of pointers and token
transfers across pointers is semantic paging for deep theorem
proving programs. See figure 5. Context addressing, threshold
searching and so on can be used to select one or more nodes of a
network. Then tokens can be transferred without regard to pointer
names from these nodes in n layers, one layer per revolution, to
mark a subgraph containing the selected nodes and all nodes up to
n arcs distant from the node. The records so marked can then be
paged into a parallel computer for analysis by a deep theorem proving

program. Semantic paging should effectively filter the data to_

-a-small sizeféﬁbgraph Ehat is manqgeéble in a parallel computéf,

so that it qhnﬂthbrouéhly analyze the subgraph at high épeeé.

Other Hardware Functions

The disc "microprocessor’ will also collect garbage words by

a hardware mechanism that operates concurrently with instructions
that are evaluating a query. Also, data can be input and marked
words can be output while instructions are processing a query.
(Interlocks will be provided so that inputs or outputs from one
query are not mixed with those from another.) Character string to
code word translation is carried out automatically upon input and
code word to character string translation is automatically carried
out on output. Finally, disc processor instructions are to be

stored on and fetched from the disc itself to manage "demons".



The disc is capable of storing a large number of "demons" by

storing data words and instruction words in records. Data words

are searched by context or by token transfer to activate instruction

words in the records satisfying a query. The activated instructions

are executed on the disc one at a time as they are deactivated.

These concurrent hardware functions increase the performance of the

intelligent disc, and make possible some new and possibly revolu-

tionary software techniques.

3. Parallel Computation in Automatic Theorem Proving

There are several ways in which parallel computation might speed up an

automatic prover.

A.

Evaluating an And-node.

Whenever the prover is asked to prove a subgoal like

Vx(P(x),Q(x))

_one processor can-be asked to prove P(x) (ie., to find a value

or values, for x that will satisfy this formula), and apothef'
processor can be asked to prove Q(x). The answers from these two

would then be reconciled (if possible) to obtain a common value

(or values) or x satisfﬁing by AA(x) and B(x).
Evaluating an Or-node.

Whenever the prover is proving an or-node of the form A, B,
or is trying a list of possible strategies to obtain the proof of
a given subgoal, a separate processor can be assigned to work each
of A and B , or each of the strategies. The subgoal would be

satisfied when one of these processors succeeded.



C. Simplification and Reduction.

Much of modern theorem proving involves rewriting a formula
into a canonical form. For example, the formula (1 +y - 5 + x)
might be rewritten as (x + y - 4), or the formula (xe AnB) might
be rewritten as ((xeA)’\(xeA)). Parallel processors could
greatly speed up this kind of process.

Many of these examples of parallel computation can be handled
by an extension of LISP which would allow a parallel COND. That

is for the command

(COND
(P A)
(Q B)
(R C) ),

it would simultaneously calculate - P, Q, and R, determine

- which was true, and return accordingly A, B, _or C (or some

function of thém if more than one of P, Q, ;and R was true). L



FIGURES

The figures are selected from the enclosed view graphs. Numbers are

shown on the bottom left of each view graph.

Figure . Number of View Graph
1 7
2a 13b
2b 13a
3a 21a
- 3b - - " ) - 21b ) -
A 4 - SBY -



INTELLIGENT DISC
(LOGICAL)

(VARIABLE \_LENGTH)

LA E SEGHENTS:
{i7A) (FIXED LENGTH) .




OFFICER

NAME | LOCATION | RANK
[ ] “smitH__|ELGIN AFB| cAPT.
1 JoNES | PENTAGON | COL.
-~ PARTS '
‘ P# |  QUANTITY
E
[lao|__35 |

TUPLES ARE STORED AS RECORDS




IS_AN OFFICER
NAME SMITH
LOCATION ELGIN AFB
RANK CAPT
1S_A PARTS
P# 301
QUANTITY 35
IS_AN OFFICER
NAME ~ JONES
LOCATION | PENTAGON
RANK | coL.




FATHER i LIVES_IN

LIVES_IN




20

21

2 ;

23

24

25

IS_A JOHN

FATHER 21
FATHER 23
LIVES_IN 22
IS_LA TOM
LIVES_IN 22
IS_A DALLAS
IS_A SAM 4
FATHER ~ 25 -
LIVES_IN 24
IS_A AUSTIN
IS_A BILL

NODES ARE STORED AT RECORDS.

ARCS ARE STORED AS RECORD
NUMBERS .,



THRESHOLD FUNCTION

SEARCH
RECORD PAIR J ATTRIBUTE
23 WE IGHT
A
3
ACCUMULATOR
: A -ATTRIBUTE
1-2 —WEIGHT -
{::::] BUFFER
- A HEAD .
RECORD PAIR {gggggm - _
25
ACCUMULATOR 34




SEMANTIC PAGING

\~-—a— —

1) SseLECT NODE(S) BY CONTENT OR CONTEXT.
?) TRANSFER TOKENS OUT THROUGH ARCS N TIMES.
3) OUTPUT ALL NODES WHICH RECEIVED TOKENS.




