TX |ROSNO[CS |TR-Y")

&0
dECH)

A SURVEY OF PROGRAMMING METHODOLOGIES

by
JULIA FU LEE, B.A.

May, 1975 TR-47

This paper comnstituted in part the author's thesis for the M.A.
degree at The University of Texas at Austin, May 1975.

Technical Report 47
THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES

ABSTRACT

This paper examines how the process of software
development may be improved through the use of the follow-
ing three program methodologies.

Modular Programming is a technique which breaks down the

entire workload of a project into small units of work and

makes the project more manageable.

The Chief Programmer Team is an organizational concept cen-

tered around a team leader who designs the system, writes
the critical code, and supervises the project with the
support of specialists.

Top Down Structured Programming is a disciplined approach

to developing software. It applies the concepts of top
down design and structured programming to produce better

guality programs.

iii

CHAPTER 1
1.1

1.1.1

1.2

1.3

CHAPTER 2

2.1

TABLE OF CONTENTS

INTRODUCTION

The Problem of Software Cost . .

The Factors that Influence

Cost e e e e o« e
A. Personnel . . .
B. Management . .
C. Hardware o e

Software Quality .

A. Clarity
B. Cost o e e e
C. Maintainability
D. Modifiability .
E. Performance . .
F. Portability . .
G. Robustness .
Objectives « e s
References « e a .

MODULAR PROGRAMMING

Introduction e e .

iv

Software

10
10
10
11
11
11
12
12
12

16

19

2.7

2.8

CHAPTER 3
3.1

3.2

Definition . ¢ ¢ ¢ ¢ &« ¢ o « o o o
Characteristics e e e e e s e e e e
The Problems that Modular Programming
Attempts to Solve e e 4 s e 2 e e s
A. Estimating and Scheduling . e e
B. Project Control e s e e e s e e
C. Program Design . « « « + « o+ o =
D. Reliability e e e 6 4 s e e e s
E. Maintenance and Modification . .
Personnel Requirements . . . « . .« .
Installation Considerations . e e e
A. Size of Installation
B. Type of Installation
Summary e o o & s s s e s s & o o

References .« o« o o o o o o o s o o

THE CHIEF PROGRAMMER TEAM

Introduction .+ o« « o o o o o s+ o e
Organization . .« « « ¢ s o « o « & =
A. Chief Programmer . « « « « o« o o
B. Backup Programmer e e s e e e
C. Programming Librarian e« s e e
D. Supporting Members . . . < . .« &

Characteristics e v e s e e o s s e

22
24

26
28
30
31
34
38
42
45
45
47
49

52

55
57
57
60
62
63

64

CHAPTER 5

BIBLIOGRAPHY

A. Code Reading s e e e
B. Programming Production
C. Documentation
D. Installation Size . .
Benefits e e e s e e e

A. Productivity o e e .

Library

- - (3 L]

. . . .

B. Reliability - Maintenability

C. Project Control . . .
D. Career Orientation .
Summary . .« . . 4 o+ e e

References e v e e e e W

TOP DOWN STRUCTURED PROGRAMMING

Definition e e e s s e e
Structure
Characteristics
A. Design s s e e s s e
B. Coding e e e e e e e
C. Testing
Standards+ 4 . .
Benefits s e e e e e e
Summary .« .« « 4 . 4 o o .

References e e e e e e .

CONCLUSIONS © e e e e

vi

64
66
69
71
72
73
74
76
77
78

80

82
83
88
89
92
95
99
100
103
106

110

114

LIST OF FIGURES

FIGURE
1. Implementaion Sequences - Modular Program
Versus Nonmodular Program e e e e e e s
2. Programming Production Library

3. Structured Programming Basic Figures . .

4, Top down Development . .« ¢ o« o &+ o « o &

vii

CHAPTER 1

INTRODUCTION

1.1 THE PROBLEM OF SOFTWARE COST

Over the last decade, the major trend observed
in data processing centers has been the steady increase
in software costs while hardware costs have decreased
dramatically.

Due to technological advances, hardware has been
capable of providing higher speed and lower cost per trans-
action on a continuing basis. This has come about through
tangible improvements in all parts of the system hardware.
CPU speed is up through the use of faster circuit techno-
logies and denser packaging. Semiconductor memories with
their higher densities offer faster access and more storage
per unit of space at lower cost than the older ferrite core
memories. Peripheral devices have higher data transfer
rates, are packing more data per unit of space on the rec-
ording media and as a consequence, provide extended mass
storage capabilities at lower and lower cost per bit. All
these factors have resulted in higher performance and more

reliability in systems with significantly larger memory and

greater mass storage capacity at costs substantially lower
than that of equivalent equipment from the previous
generation.

On the other hand, although software technology
has taken giant strides in the last ten years, it has been
unable to keep pace with the advances in hardware. The
problem seems to be that software cannot take advantage of
the reduced computing costs of new hardware without boost-
ing its own costs. What accounts for this phenomenon?
First, the new computing systems are complex and sophisti-
cated and provide highly sophisticated capabilities.
Programming them effectively requires a thorough under-
standing of these capabilities. Often, this level of
understanding must include an awareness of why these new
capabilities are being provided and also how they overcome
the inadequacies of previous systems. Moreover, as new
systems are introduced, each provides new and more powerful
options that the programmer must discern and master. This
is especially true if he or she 1is working at the assembly
language level. It takes considerable knowledge and expe-
rience, for instance, to make an intelligent decision
regarding which of the many available data access methods
will be the most efficient in handling a particular I/0
problem. While it is true that the new systems have

removed the burden of coding such onerous and tedious tasks

as data access methods, or with the advent of virtual
memory systems, the construction of overlay schemes, they
have spawned a profusion of confusing options that the
programmer must learn and comprehend. These options have
freed the programmer from concentrating so much of his
effort on dealing with the mechanics and limitations of the
system, and when used properly, give him the opportunity
to make intelligent and creative choices regarding the
solutions to his systems or applications programming
problems. They reduce the tedium associated with program-
ming and open up new vistas for the creation of more
complex and sophisticated programs. Inherent in this
reasoning, however, is the assumption or rather the
expectation that the programmer possesses sufficient depth
in his understanding of system capabilities to come up with
an efficient and refined piece of software to do the job
at hand. Thus, the basis for effective use of the new
systems assumes reliance on the higher level of skills and
knowledge which are the mark of the good experienced
programmer.

Second, the increased capabilities of the new
machines mean that it becomes both feasible and cost
effective to greatly expand the range of applications that

can be performed by these systems. This means that, as

time progresses, more and more complex applications will be
tackled, and this in turn will result in more and varied
forms fo software to write, to test, and to maintain. The
trend in this direction is already very apparent from the
published statistics. Ten years ago, software accounted
for 40% of the total cost of a data processing operation.
Today, it has reached 70% and by the early to mid-1980's,
it could be close to 90% as hardware costs continue to

go down and software and people costs continue to go up.
In addition, two other factors are contributing strongly
to the software cost spiral. One is the expansion in the
use of large systems. Software is a critical part of
these systems, and its high costs are incurred not only
during development, but often throughout the entire life
cycle of the machine. Some installations have reported
that 40% or more of their software effort has gone into
maintenance. The other factor that compounds the cost

of the software life cycle is the incompatiblility between
computers. Migration expenses are a major consideration
when a change in hardware 1s planned or contemplated, and
the performance loss suffered while running in a degraded
mode during emulation of an old machine on & new system
adds another software cost that warrants attention. This
means that when migration costs are being estimated, both

the one time start up costs of switching over from one

system to another as well as the continuing costs of
emulation should be included.

What can be done about the incessant rise in
software costs? To find an answer, let us take a closer

look at the factors that influence these costs.

1.1.1 THE FACTORS THAT INFLUENCE SOFTWARE COST

A. Personnel

People costs are rising every year. The strong
demand for programmers in the past has greatly boosted
their salaries and strained data processing budgets.
The goal of any data processing center should be the
effective utilization of their programming personnel.
The key measure of the effective use of programming
talent has been progfammer productivity, and the key
issue has been how programmer productivity can be
improved. Numerous studies have concentrated on
ways to increase the productivity of the people involved
in the process of creating or maintaining software.
The main areas that these studies single out as needing
improvement are programming languages, documentation
standards, programming methodology, and project

management.

B. Management

Management is one of the biggest factors in the
success or failure of software projects. It is management's
role to make trade-offs, to evaluate new methodologies and
tools, and to make vital decisions on schedule changes and
modifications to specifications during development. The
approaches taken and the decisions made on these items will
directly affect the cost and outcome of the project.

The most common problems facing management today
deal with controlling the quality of programs. Most
programs produced have not been tested throughout the full
range of possible inputs and, because of this, contain more
errors than they should. How has management allowed this
to happen? There are several contributing factors. First
some data processing managers have had no or only a smat-
tering of experience in the data processing field. Then
there are the previously experienced managers who have
failed to keep themselves up-to-date. Managers in these
categories could hardly be expected to have the level of
understanding needed to maintain a tight grip on program
development and testing procedures. A second factor is the
intuitive feeling many managers have that not using quality
control procedures appears to be less expensive than using

them. Those holding this viewpoint, however, ignore the

secondary costs of time lost correcting inadequately
tested programs as well as the great expense of attempting
to maintain an interrelated collection of hastily written
and poorly documented programs. A third factor can be
attributed to the widespread practice of the dispersal

of responsibility in data processing projects. Often, when
this happens, there is no way of assigning final responsi-
bility for the project, and the failure to meet project
goals results in an exercise of "buck passing"”. A fourth
element is that at present, there are no good ways for
estimating the costs of producing software. Frequently,
it is impossible to ascertain how much a piece of software
costs after it has been produced. With no reliable way to
estimate how much a piece of software will cost, it is
just not possible to accurately determine how different
management policies or techniques might have altered the
cost.

This is a sad commentary on the status of dada
processing management. There is no denying that serious
problems exist. Nevertheless, there are ways to improve
the situation. As far as management is concerned, the type
of structure taken on by the programming organization is
very important. It has a definite effect on the final

product quality and the productivity of the programming

team. This will be one of the main topics covered in

this paper.

C. Hardware

Software development has been hampered by the
meager level of communication between the hardware and
software communities. The lack of a really open dialog
has prevented both sides from understanding what the
other's major problems are and from working out design
strategies that would be of mutual benefit. Evidence of
such limited communication is the virtual absence of
computer architecture research in the universities and the
existence in the marketplace of hardware with such poorly
designed primitive functions that they require the
repetitious application of costly and error-inducing
programs to provide the basic computational functions.

Another major problem area fostered by poor
communications and the lack of hardware - software inter-
face guidelines or standards is the incompatibility between
computers. Programs written for one computer must often
be rewritten in order to work on another machine. This
factor must be given major consideration when making the
decision to migrate from one machine to another, for once

migration is underway, the only alternatives are to accept

the recourse of costly reprogramming or to forego the
ability to take full advantage of the reduced computing
costs of the new hardware. Neither of these choices is in
any way appealing or attractive to the user.

All of these hardware induced problems are
deficiencies that we have tolerated up to the present time
for the lack of anything better. It seems that in today's
world we should have progressed sufficiently in the
evolution of hardware and its supporting microprograms to
be able to formulate a more central architectural statement
of system capability. Properly modularized designs of
logic circuitry and microprogramming could produce a good
and flexible set of primitives. These in turn could
permit the design of system architectures more tailored to
specific user applications from the same basic hardware
system. This is certainly one of the ways hardware
architecture can help alleviate the growing software
complexity problem.

To bring this goal within reach, work has to be
done to identify and define functionally complete sets
of primitives for such application areas as:

* Data bases

* Communications applications

* Direct support of major programming languages

(CoBOL, PL/l1, FORTRAN, APL, etc.)

10

These results should be backed up by the imple-
mentation in hardware/firmware of generalized data struc-
tures such as stacks, linked lists, and rings. The benefits
to be derived from all these activities will be more general
and possibly greatly simplified programming for the oper-

ations in the major areas of computer applications.

1.1.2 SOFTWARE QUALITY

So far the discussion has centered on the areas
that affect software cost. One other characteristic of
software goes hand in hand with any discussion of cost, and
that is software quality. What makes up this quality and
what does its absence or presence mean to the user? What
are the factors that influence program quality? The follow-
ing definitions should help to answer these questions.

A. Clarity

Clarity in the program code and its documentation
is measured by the effort that a person, other than the
author, has to make in order to understand it. The clearer
the code and documentation, the smaller the effort required
for comprehension.

B. Cost
The total cost involved in using the program

during the life cycle of the product. This includes the

11

initial cost of producing the program plus the follow on
costs of maintaining or modifying it to meet new or chang-
ing needs.

C. Maintainability

Maintainability is measured by the level of effort
needed to support the program after it has gone into pro-
duction mode. Hopefully, the program has been written with
sufficient clarity and modularity and been tested thoroughly
enough to require a low level of effort to keep it running
well.

D. Modifiability

Modifiability is the characteristic that describes
the effort required to alter a program in order to adapt
it to the user's changing needs. A well thought out and
carefully written program will usually leave open a number
of options for change and have the flexibility to allow the
implementation of most changes without requiring costly
modifications throughout the whole program.

E. Performance

Performance refers to any factor in the program
that influences the consumption of resources. Ideally, the
program should be designed to minimize the consumption of
resources and still perform at high speed. Normally, some
compromise is reached between these two conflicting goals

due to either a physical limitation in the system or the

12

unacceptability of running very long jobs. Performance
generally suffers when there is a lack of optimization
between the allocation and use of computer resources and
the goal of a short run time.

F. Portability

Portability is measured by the amount of effort
expended in moving a program over to a different installa-
tion, a different machine, or a machine with a different
operating system. Portability is achieved by making the
program as machine independent as possible, and this
usually means coding the program in a widely used high
level language. The advantage in doing this must be
balanced against a loss in computing efficiency.

G. Robustness

Robustness describes the ability of a program to
continue to perform its functions in spite of some
violation of the assumptions in its specifications. A
> rogram demonstrates this quality if, for instance, it can
ignore a limited number of bad data records interspersed
with good data records and upon encountering the bad data,
can recover and continue with its processing of the good

data.

1.2 OBJECTIVES

The increased capabilities of the new generation

13

of data processing systems have brought a wide range of

new applicationsrwithin their reach. As more and more
complex applications fall within the realm of these systems,
the programs required to implement these applications have
also become correspondingly complex. This phenomenon has
stimulated intense interest in examining the processes
involQed in program development and the techniques used

in project management.

The remainder of this report will focus on these
two areas. It will deal with the techniques and disciplines
that can be brought to bear against the problems of high
software cost and poor softwaxe guality. The objective
will be to show how

* design philosophies

*; the breakdown of the programming task

* the structuring of programs

* the organization of the programming team
can affect and, if properly integrated, can reduce software
costs and improve both productivity and software quality.

Chapter 2 discusses the concept of modular
programming. It explains how a program design can be
modularized into small functional units and examines the
potential advantages to be gained from using this program-

ming methodology.

14

It describes the possible gains
(1) to management in the areas of estimation
and project control,
(2) to program development in the areas of
design, testing, and integration, and
(3) to program quality in the areas of program
reliability and maintainability.
It also covers the factors that determine whether modular
programming is suitable for a particular installation.
Topics discussed are the installation's size, its normal
kind of workload, and the skill levels of its personnel.
Chapter 3 describes the programming organization
known as the Chief Programmer Team. This organization is
led by and operates under the close supervision of the
chief programmer and his assistant, the backup programmer.
Both of these individuals are highly qualified programming
specialists. They are responsible for the design of the
system and for reviewing the implementation work done by
the other team members. Often, they will code the critical
routines themselves.
This organization emphasizes strong technical
leadership over a small and experienced group of profes-
sionals. The structure has well defined positions and

individuals are treated as specialists. Chapter 3

15

describes how the Chief Programmer Team is organized, its
mode of operation, and the benefits to be derived from this
organization in terms of program productivity, reliability,
and maintainability. Installation related factors are

also discussed.

Chapter 4 discusses the concept of top down
structured programming. This concept combines the
discipline of top down design with the discipline of
structured programming. The result is a well integrated,
well organized system design based on a tree-like structure
(the influence of top down design) and an implementation
that is in terms of small, easy to follow routines coded
from a restricted set of program figures and options (the
influence of structured programming). The benefits of this
disciplined approach are discussed from the management
standpoint of project control and from the technical stand-
points of program design, testing and integration, reli-
ability, and maintainability. In addition, a fairly
complete description of top down design and structured
programming is provided.

Chapter 5 summarizes the material from Chapters
2, 3, and 4. It compares the concepts of modular program-
miﬁg, the Chief Programmer Team, and top down structured

programming in terms of their advantages and disadvantages.

16
It concludes with the factors that programming installa-
tion should consider before making a decision on adopting

any particular programming methodology.

1.3 REFERENCES

1. Boehm, B. Software and Its Impact: A Quantitative

Assessment. Datamation. May 1973, Vol. 19, No. 5.

Boehm assesses the effect of software problems
on an Information Processing Center at a U.S. Air
Force command and control site. He charts the trends
in hardware expenditure for the last decade. He gives
a very complete and quantitative appraisal of the soft-
ware costs encountered during the same period.

2. Dijkstra, E. The Humble ProgrammerQ Comm. ACM.
October 1972, Vol. 15, No. 10.

This is an extract of the 1972 ACM Turing Award
presentation to Dr. E. W. Dijkstra at the ACM Annual
Conference in Boston. In this paper Dijkstra
discusses the evolution of software and the
impending crisis in software because progress there
has not kept pace with improvements in hardware.

Anmong other things, he covers the birth and impact
of high level languages and emphasizes that guality,
reliability, and cost will be the primary software

considerations of the future.

Goldberg, J. (ed) Proceedings of a Symposium on the

High Cost of Software. Proceedings of a Symposium

Sponsored by the Air Force QOffice of Scientific

Research. Stanford Research Institute, Menlo Park,
California. SRI Project 3272. 1973.

This paper makes recommendations regarding the
kinds of research that are needed in order to solve
the software crisis.

Naur, P. and B. Randell (eds) Software Engineering.

Report on a Conference Sponsored by NATO Science
Committee. 1968. Garmisch, Germany. Scientific
Affairs Division, NATO, Brussels 39, Belgium.

This report summarizes the results from a
conference concerned with software development,
production, utilization, and services. The purpose
of this meeting was to build a practical discipline
for software based on theoretical foundations. This
document is a good reference and one of the earliest
to address many of the prominent problems in
software.

Parnas, D. Some Conclusions from an Experiment in

Software Engineering Techniques. Proceedings AFIPS

1972. Vol. 41.

17

18

This report describes how software experiments
should be designed and evaluated. It is a good
reference work.

Weinberg, G. The Psychology of Computer Programming.

Van Nostrand Reinhold Company, New York, N.Y. 1972.
This book is easy to read, informative, and
contains numerous insights into the world of coﬁputer

programmers. It addresses the human dimensions of

programming performance.

CHAPTER 2

MODULAR PROGRAMMING

2.1 INTRODUCTION

Within the data processing organization, one
department or group that usually rates very poorly is the
programming group. It has gotten its notoriety from three
traits that seem to plague programming groups. One is the
failure to adhere to or meet specifications, the second is
the consistent failure to meet deadlines, and the third is
the release for use of programs that are not thoroughly
debugged. These problems occur because of the lack of a
really effective way for making estimates in terms of time
or resources, specifications that often turn out to be
ambiguous, the lack of trained personnel, mis-management
of the programming area, and poor control over and poor
evaluaﬁion of the design and coding of product programs.

In any programming group, the management team has
to rely on precise and timely progress reporting as it
relates to the schedules and estimates for the work

involved. This has not been the norm in the data process-

19

20

ing field even during the development of complex software
systems, especially when the conventional or monolithic
programming approach is used. In this kind of environment,
the development phases of a program are strictly serial.
Progress in terms of actual program goals met or functional
completeness is difficult to measure until the whole program
is well into its testing phase. If major design problems
are revealed by the test cases at this time, management will
be in for a highly unpleasant surprise since none of the
feedback reaching them during development would have touched
on these problems (because at that time no one else was
aware of them either). Management would be unprepared to
meet such a major setback so late in the game. 1In all
probability, their reaction to this situation would be to
toss out all their old schedules, put the newly discovered
problems under study, and begin anew on drafting a new set
of schedules. Such unexpected setbacks are a shock to
management and the programming team as well.

In the conventional programming environment, the
first step of any project is the design phase which is
undertaken by the system analysts. It is their respon-
sibility to interface with the user, to initially come up

with the specifications of the program, and later to design

21

the program according to these specifications. Once the
design is completed, the programming team takes over. They
read the design document, interpret the specifications
contained in it, and translate these into code. After all
the coding is finished, there is a unit test phase. This
is followed by a system test during which the programming
team's product is subjected to as thorough a set of tests
in an environment as close to real life as possible. It
is at this stage of the development cycle that all kinds
of problems, both major and minor, are discovered and have
to be resolved. This is also the time when the appearance
of a design problem can make a major impact on the schedule.
If, during the design phase, the entire workload
of the project had been divided into small units of work,
management would have been able to get a more accurate
reading on the status of the program. Tracking the pro-
ject's progress would have been easier and more precise
because tracking would have been done on each of the work
units rather than on the program as a whole. A comparison
of the status of the various work units against a set of
checkpoints would give a good indication as to¢ whether the
project was on or off schedule. Also, more than likely,
the magnitude of the problems found during testing would

correspond in size with the smaller pieces. Moreover,

22

there should be fewer surprises encountered at system
test time because the large amount of effort spent in
modularizing the program should produce a well thought
out design.
This technique of dividing the workload into small

work units is called modularization. Modularization is a

very useful management tool. It breaks down the overall
program into smaller, simpler units which are easier to
track and control, and when the statuses of the individual
units are combined together, they help management to secure
the precise status of the entire project. 1In actual use,
the program modules are short routines which are connected
to each other via entry and exit points and communicate
with one another through common data areas and passed data

arguments.

2.2 DEFINITION

Modular programming is a way of developing
programs as a set of interrelated individual units called
modules that are constrained to follow a set of rules
which control their characteristics. The program is
segmented in such a way that each unit performs a clearly
defined task. This permits each unit to be coded,

compiled, tested, and executed as an individual entity.

The objective behind modularization is to make

23

large systems more manageable by dividing them into smaller

and more controllable pieces. This makes it easier to
track the progress of the program during development and
pinpoint problem areas quickly so that more resources can
be channelled into these areas. Modularization also
permits more efficient use of personnel in an even more
basic way. Since the program is broken down into individ-
uval units that can stand on their own, all the modules can
be implemented and tested in parallel. This has the
effect of smoothing out the workload and allows the member
of the team to schedule themselves with greater precision.
Another advantage of modularization is that it prevents
the duplication of effort. When this concept is applied,
a single function, regardless of how many times or places
it is used, needs to be written only once.

Modularization is a good way of organizing the
programming of complex software systems. The success of
this technique depends directly on how carefully the
modules are chosen. Since the definition of each unit or
module is so important, it is often assigned to a senior
member of the programming team. Working from the system
specifications, he will segment the system into modules

such that each one will represent either a single logical

S

24

function or a number of small but related logical functions.
In order to achieve high modularization, he will also try
to minimize the connections and dependencies among the

various modules.

2.3 CHARACTERISTICS

Modular programming is identified by a number of
characteristics that are highly desirable from the view-
point of software development. These consist of the
following items:

A. Modules are independent from one another. Each module
is considered to be an independent unit, and each one
can be developed separately by different programmers.
During the design phase, individual sets of specifi-
cations are produced for the implementation of each
module.

B. Modules perform a single function or a small number
of related functions. This limits the size of the
module and insures that it will be a fairly independent
entity. Each module can call other modules or can be
the target of a call from another module.

C. Modules have standard interfaces. Such an interface
provides a standard method for communicating among

modules and can be well documented. The standard sets

well defined rules regarding the passage of information
from one module to another and in the usage of save
areas. Its purpose is to avoid the creation of modules
with mismatched interfaces. Examples of standard
interfaces are:

* Upon entry into a module, it will always
store the contents of registers and then
restore the same registers just prior to
exiting.

* All modules will return control to the calling
module in the same way.

* Parameters are always passed between modules
in the same way.

* All modules will adhere to a single classifi-
cation for entry and exit points and will
abide by a common set of procedures in case of
failure.

These standards are important, for without them,
there would be many linkage errors. Most of the high
level languages available today provide standard
interfaces or provisions for these interfaces in the
linkages between routines.

Modules generally have only one entry point and one
exit point. This rule is followed even though some

programming languages provide multiple entry and exit

25

2.4

26

points. The reason for this is to maintain clarity in
the code and to reduce the risk of inducing an error
when changes must be made.

Modules may be tested independently of one another.
This is possible because of the semi-autonomous nature
of the modules. As a consequence, it becomes feasible
to test a whole program thoroughly by the separate
testing of each module, and testing can begin at an
earlier stage in the project.

Modules are small in size. They derive this attribute
from the intentional effort to limit the scope of their
functional capability. This has the advantage of

keeping modules down to a manageable size.

THE PROBLEMS THAT MODULAR PROGRAMMING ATTEMPTS TO

SOLVE

During the era of the first and second generation

machines, large computer programs had to be segmented

because they exceeded the memory capacity of these

machines. Most large programs were run as overlays so

that only certain portions of them would reside in core

and be active at any one time. It was left to the

ingenuity of the programmer to design his overlays in

such a way that he could move them into and out of memory

without causing a substantial degradation in processing.
With the introduction of third generation computers, the
capacity problem disappeared as did the need for overlays
(or so people thought). Programmers began to tackle new
and more challenging applications while managers looked for
new programming tools that could improve productivity and
provide a disciplined approach to the planning and imple-
mentation phases of programming projects. This forced
them to look again at the techniques of segmentation and
forming overlays. These techniques appeared to possess
the basic structure for applying the discipline being
sought, and they were revived to become the precursor of
what we know as modular programming today. From these
beginnings, the ideas and techniques behind modular pro-
gramming have grown and been refined to the point where
they now serve a useful role in the management of projects.
They can help managers in six important areas of their
work. These are:

(1) Estimating and Scheduling

(2) Project Control

(3) Program Design

(4) Program Testing

(5) Program Reliability

(6) Program Maintenance

The following sections will describe how each of

27

these areas is affected by modular programming.

A. Estimating and Scheduling

Estimating the size of a job in terms of the
resources needed to develop and support it through a
period of time has been one of the most difficult tasks
facing the managers of data processing centers. This is
where many managers have failed time after time because
they have lacked the techniques to make accurate estimates.
When modular programming is used, however, the job of
making estimates becomes significantly easier to handle.
The whole programming effort is divided into many modules
or work units. Since these modules are small in size, the
module production rate for the installation or for each
programmer can be calculated based on past performance.

At this point, a rough estimate of the resources needed to
perform the job can be computed by multiplying the total
number of modules by the average time required to produce
a module. Refinements to this estimate may be made by
modifying the production)rates associated with each module
to account for variations in complexity and in programmer
skill. This requires more detailed analysis, but vields
more accurate figures.

Throughout the entire project, the module

production or productivity rate for the installation is

28

29

updated and refined continuously based on the progressive
improvement in programmer skills and, more importantly, on
the actual data coming in from the completion of tasks.
(If more detail is required, this procedure may also be
followed for updating each programmer's individual
productivity rate). Herein lies one of the most impressive
aspects of modular programming - namely that each estimate
is under continuous examination and refinement. The
validity of each estimate can be measured as the project
proceeds since the completion of each module occurs in a
relatively short time. Progress for each module can be
determined by comparing actual rates against estimated
rates in the development cycle. In this way, attention is
drawn to problem areas early enough so that if adjustments
or corrections are required, they can be made without
imposing a great impact on the overall project. This
contrasts sharply with the non-modular programming envi-
ronment where productivity is usually based on the total
lines of code produced during the entire project, and, in
which case, progress is not easy to measure until the
whole program nears its conclusion. Disclosure of any
problems at this late and advanced stage will as a rule
cause a significant impact on the schedule for the whole

project.

30

Productivity rates based on the work done at one
installation are generally applicable to that individual
installation only. They cannot be applied to another
installation with any degree of accuracy because of a
number of factors. These include differences in the
skills and size of the programming teams, differences in
approaches used for implementation, and differences caused
by using different hardware configurations or systems - for
example, batch processing versus on-line or remote pro-
cessing. The best way to arrive at productivity rates for
any particular installation is to derive them from figures
based on general or modular programming experience gained
over a period of time at that site.

B. Project Control

Project control is concerned with utilizing
estimates as the basis for tracking progress, measuring
performance, and controlling resources. In modular
programming, the entire project is broken down into modules
so that progress tracking is carried out by watching over
the status of each unit. When these individual
statuses are combined together, they essentially describe
the condition of the whole project.

The modular programming environment provides a
great deal of flexibility during the program implementation

phase. Using the information collected for each module,

31

managers can chart performance and progress. The results
found in these two areas are valuable aids in helping them
to exercise their prerogatives in switching job duties
around and in evaluating and updating their priorities.
Managers can react quickly to any problems that may occur
in any of the modules. The can focus attention and assign
resources to these units before the problem gets out of
hand. Usually, the problems are discovered early enough
and are dealt with soon enough so that harm to the total
project is minimized. Modular programming also helps
managers to react to personnel problems, especially in the
area of job assignment. If, for example, a programmer
leaves, is ill, or is away from his job for any other
reason, the manager can bring in a new person to f£ill the
opening. The substitute can begin working almost immedi-
ately since the amount of re-learning is small even if he
has to start from the beginning and rewrite the entire
module. In addition, if the new person were to write only
a single module, he would still be contributing to the
project. It is factors like these which demonstrate that
in a modular programming environment, managers can exercise
positive control over project development instead of
finding themselves limited to just progress recording.

C. Program Design

The technique of modular programming embraces a

32

very important approach to the development process: Modular
Design. Modular design means that each module is designed,
flowcharted, coded, tested, and documented separately.

For modular design to be effective, it is
essential that the design phase be completed before
programming begins. During this phase, important work is
done to determine the logical structure of the total
program. This includes defining the logical structures of
each of the component modules as well as specifying the
interrelationships among the modules. The design phase is
clearly a strong asset of modular programming. It forces
time to be spent during the planning stages to work out
the design of a total system, to break it down into its
components, and to come up with the detailed logical
design for each of these components. The effort expended
here ensures that major design problems will not be over-
locked only to surface later on in the coding or testing
stages of the project.

The design phase is usually the responsibility of
the senior level people in the programming team. This is
the most important part of the whole effort and requires
experienced and talented people to handle the wide~ranging
and varied tasks involved. First, the designers must go
over the specifications carefully with the user to deter-

mine if their understanding of what is required is really

33

what the user is requesting. Second, they must determine
how realistic the specifications are and how closely they
can be met. They should point out wherever possible,
modifications to the specification which will affect points
that are relatively unimportant to the user, but can mean
a substantial reduction in the programming effort. Third,
they must determine what features form the core of the
user's requirements and what are in a sense 'optional' so
that development can concentrate initially on the essential
elements and then shift to the non-essentials. If this is
done, the program product will become available to the user
at an earlier time. He will have a basic program running
and will be able to pick up additional functions and
features in later releases. It is obvious that the use
of modular programming will be very helpful in making this
kind of planning decision. This list of responsibilities
is not meant to be complete, but does bring out the basic
duties of the designers. If they decide to take the
modular programming approach, they must find out about all
the items listed above during the planning for the design
of the logical structure of the whole program, but prior
to actually modularizing it.

Many installations using modular programming have

guidelines on the size of a module. These restrict the

%

34

size of a module by placing an upper limit on the total
number of statements it can contain or the total number of
possible paths through it. By keeping down the size of
modules, the documentation for each is short, simple, and
relatively easy to maintain. If a module should need
modification in the future, it will be easy to identify
where the changes should go and determine how they should
be incorporated.

As with all programming methodologies, modular
design is not a panacea for every problem area associated
with programming. What it does do is to force a better
understanding of the problem during the design phase and
provide the tools for making more accurate and better
estimates. It provides the structural framework for
maintaining accurate and understandable documentation.
These factors permit management to exercise positive
control over the project and get a good overall view of
what is happening.

D. Reliability

One of the greatest advantages of modular program-
ming is the reliability of the product that ié turned out.
This is achieved through testing. The more completely a
program is tested, the more reliable it will be since each
additional test that is performed reduces the number of

untested paths where possible errors could be hidden.

35

Modular programming helps a great deal in this

respect because thorough testing of each module is an
achievable goal even though thorough testing of the whole
system with all modules integrated together usually is not.
Since the modules are largely independent of one another,
parallel implementation is possible, and since modules are
tested as they are completed, testing is not held off until
the end. A programmer's typical work sequence would be to
code a module and test it, code another module and test it,
etc. This means that as the development cycle nears its
end, most testing has been completed except for integration.
Integration testing should flush out most of the remaining
problems and after this process is finished, the total
system should be well debugged and run reliably.

The problem with testing is that there usually is
not enough machine time or manpower to test a program
exhaustively before the program is needed. The number of
paths that a program can take may go up exponentially with
each additional branch in the program. A program with 12
branches may have up to 212 or 4096 possible paths within
it. An exhaustive test of such a program would consume a
large amount of resources, in terms of both manpower and
and computer time. If, however, the program were broken
into three modules so that each one had four branches, then

the number of paths would be reduced to a maximum of

36

24 + 24 + 24 or a total of 48 if each module is considered
to be independent of the others. This makes the notion of
thoroughly testing each module realistic, but does not
alter the fact that after integration, there will still be
24 * 24 % 24 or 4096 paths to test in the system as a
whole. What this does mean, nevertheless, is that testing
can be done at the module level to remove almost all bugs
and problems from the individual modules. Then the only
problems that should arise during integration are those
caused by interfaces, linkages, or the passage of data
between modules.

Because modules are small in size and can be coded
up relatively quickly, testing starts much earlier in the
development cycle than in a non-modular programming envi-
ronment. This takes the pressure off the programmer for
a last minute compression of the test phase to meet
schedules and results in better and more thoroughly tested
programs. In the conventional environment, all the coding
for the entire program is usually done before testing starts.
Then, as the schedule slips while the end date remains fixed,
the testing period ends up absorbing the loss and shrinking
in length. The shorter the testing phase becomes
the more hasty and superficial will be the testing which
the program receives. (See Figure 1l). In the modular

programming environment, coding and testing are alternated

37

from start to finish so that most testing is finished
before final integration begins. This insures that the
finished product will be in good shape when it enters the

user's production environment.

Non-modular program:

Coding Testing

Modular program:

C T C T C T
e} e o) e o) e
d s d s d s i{Inte-
i t i Tt i t lgration
n i n i n i [Pesting
g n g n g n
g g g
[Y 7 . ~— i\ ~) ~ .
Unit 1 Unit 2 oo Unit n

IMPLEMENTATION SEQUENCES

Figure 1

A reliable system saves money and time. The more
reliable a program is, the less has to be spent in order to

maintain it. Usually the amount of money spent on mainte-

38

nance is a large percentage of the total cost of supporting
a program over its lifetime. Any lowering of costs here
would represent a significant saving in the total cost, but
the actual amount saved is very difficult to determine
because the savings are mostly in the form of cost
avoidance. Reducing maintenance cost is not the only
advantageous fallout from a reliable program, however.
There are other benefits such as greater machine avail-
ability and a high level of user satisfaction with the
program. The user will certainly not be happy with a
program that is repeatedly inoperative because of bugs if
his people are waiting to use it in order to get their
work done. These periods of downtime mean wasted manhours
and money lost. Moreover, from the data processing
center's point of view, a reliable system is good because
it boosts the attitude and morale of the operators and
programmers since nobody likes a program that constantly
needs fixing and nobody likes to debug under the time
pressure of a production environment.

E. Maintenance and Modification

Maintenance is concerned with the continued upkeep
of programs. Its main function is to ensure that the
programs operate properly and accomplish the functions

they were designed to do.

39

In every data processing environment around 30%
to 40% of the total resources are allocated to maintenance.
Next to the initial development phase, this activity is
the prime contributor to the high cost of software. In
most installations, maintenance seems to be an open ended
task. Managers in data processing centers must always
set aside a large percentage of their total resources to
do maintenance. Included in this activity are all the
modifications that customers or users of the programs
need, whether caused by changes in the specifications,
changes in user needs, or because some misinterpretation
of the specifications by the system analyst was incor-
porated into the program.

In order to implement a change, the programmer
must understand what the change involves, familiarize him-
self with the program or programs to be changed, determine
how and where fo make the alterations, and check carefully
to see that the alteration will not have unwanted side
effects. Once the change is made, the programmer must run
comprehensive tests to check that the modifications
occurred as planned and that no unwanted repercussions
were induced. The programmer then updates the documenta-
tion to add in the changes that he has made.

Modular programming makes the job of maintenance

easier. When the program is modularized, the programmer

40

needs to understand the workings of only the specific
module to be altered. He can trace through the modular
design plan and locate the module where the change should
be made. At this time, he has the option of adding code
or rewriting the module in order to incorporate the change.
It may be easier to rewrite the whole module rather than
add to the existing code because of built-in limitations.
However, since modules are small, this can usually be done
gquickly. He can use the modular design flowchart to
determine the linkage from this module to other modules
and what, if any effect, the change will have on the other
modules.

Once the modifications have been completed, the
module needs to be tested. Modular programming permits
the use of a phased test plan. Retesting is first per-
formed against the altered module in a standalone
situation. Then the module is tested together with those
modules that have dependencies on it. Once this has been
completed, the module is brought in and tested in the
context of the total program. Such a phased test plan
insures that the module will not enter the production
environment prior to the completion of the first two test
phases. As a consequence, most bugs and problems are
isolated and corrected outside the main operating

environment. It is not until the final test phase, when

41

the modified module is integrated into the whole program,
that the user is exposed to possible failures due to unde-
tected bugs. This protects the user against program
failures while allowing the maintenance team to test
altered modules without resorting to extreme measures such
as restricting testing to third shift machine time.

It is a strong point in favor of modular program-
ming that it allows this phased approach to testing. The
use of this approach can at the very least reduce and at
the best prevent troublesome system disruptions. Another
advantage of modular programming is the relative ease with
which documentation can be kept current. Updates to the
documentation can be easily tracked and handled because
they are needed only for the modules that undergo modifi-
cations.

In a modular programming environment, the turn-
over of personnel is not as critical as in the traditional
environment, where one or two 'key' persons carried the
knowledge of the entire system in their heads, because
documentation was absent or too poorly written to use.

The loss of these people could turn the installation
upside down. When modular programming is used, however,
there should be documentation available for each module

in the program. This documentation should be clear and

42

easy to understand because the modules themselves are
small and restricted in scope. 1In this kind of environ-
ment knowledge about the system is retained in the docu-
mentation, and not in the heads of a few key people. Aalso,
because it is considerably less complex to gain an under-
standing of a few modules rather than a whole system,
managers can assign regular maintenance functions to
junior programmers and be fairly well assured that the
job will be done properly. In addition, the maintenance
of the program can be done by programmers who were not
involved in the original development. This type of
staffing is usually necessary since program maintenance

is rarely done by the original implementors anyway.

2.5 PERSONNEL REQUIREMENTS

In the majority of installations using modular
programming, the staffing level is similar to those not
using this technique. Most of the modular teams have a
few experienced or senior level people and a large group
of lower level or junior people. The senior staff are
usually responsible for the overall design of the program
and its division into modules. They also oversee the
implementation of the modules by the junior level people

during the coding, compiling, testing, integration, and

43

documentation phases.

Programmers opposing this methodology often see
themselves reduced to the level of mechanical coders
because they feel that the constraints of modular program-
ming rob them of the opportunity to display their creative
and technical skills. This complaint is aired most vigor-
ously by programmers who work closely with and know many of
the idiosyncrasies and peculiaritites of the machine. These
people feel that modular programming takes the fun and
technical challenge out of programming. What they fail to
see 1s that well written, reliable, and easy to maintain
programs are not built on clever and deft combinations of
code. They also fail to see that the career path offered
by modular programming is to advance beyond the level of
astute coding and into that of program design, an area
which takes just as much or more creativity and skill to
master.

Training and educating programmers to perform
within the framework of modular programming varies in
difficulty with the amount of experience the individual
has had. Those programmers with less than a year of
experience adapt to modular programming with relative
ease, while those with longer times in the field, espe-

cially with experience on the past generations of com-

44

puters, have greater difficulty in accepting the use of
modular techniques. Their early lack of acceptance stems
from reservations that modular programming will limit their
creativeness and their usefulness as programmers. These
fears are valid in the sense that modular programming
places rigid constraints on what a module can contain,
what functions it will perform, and how it is to be built
and coded. These restrictions are the outcome of a
controlled and disciplined approach to program implemen-
tation. The really creative processes occur during the
design and modularization phase, and this is the area that
the programmer should aim for as he gains more experience.
Modular programming techniques have been well
received by the managers of relatively young programming
teams. They find that within a modular programming envi-
ronment they can make use of trainees and get productive
work from them. The trainees are first taught the basic
rules and then are given relatively simple, well defined,
non-critical programs to work on. This situation pleases
managers because their trainees are producing useful
output and are assets to the group. It also pleases the
trainees because they have been given a small amount of
responsibility and can contribute to the project immedi-

ately. If the trainees do well on their initial assign-

ments, they will gradually move upward into more complex
and sophisticated jobs. Ultimately, they will grow to the
point where they are lead programmers and can handle the
design of a whole program and supervise the actions of a
team of people.

Installations that have switched to modular
programming have found that this technique has boosted
their productivity. This increase has permitted groups to
handle larger workloads with the same staffing or to reduce
the total number of programmers while maintaining the same
level of work. These installations have also had positive
feedback indicating that their final product was of higher
quality than what was previously produced, particularly in

the areas of reliability and maintainability.

2.6 INSTALLATION CONSIDERATIONS

A. Size of Installation

There-is a widely held belief that modular
programming techniques benefit only large programming
organizations - e.g., those with over 40 programmers.
This belief is based on the premise that larger organi-
zations benefit most from what modular programming has to
offer, namely the techniques to:

* Estimate with precision

45

46

* Track progress closely

* Handle resource allocation

* Increase program productivity

* Improve program quality

* Implement in parallel

* Spread out machine utilization and program

testing

These benefits satisfy many of the needs of large
installations and are applicable to the requirements of
small installations also. 1In fact, a single programmer
working on a one man project can find it profitable to use
modular programming techniques. By applying these tech-
niques while organizing and structuring his program, he can
gain certain advantages. These include such things as
being able to work on more than one module at a time, being
able to make modifications easily, being able to verify
that each of his modules works as he progresses, and being
able to simplify his documentation effort now and his
maintenance efforts later on. Of course, he will not be
overly concerned with the close tracking capability, the
resource allocation capability, or the tight management
control offered by modular programming. Also, in small
programming groups, communication among people is

simplified so that often there is no overriding need to

impose rigid standards on the formats of programs or on
the interfaces between them. Such standards do, however,
make it easier to understand and modify the work done by
others and, as a consequence, do make sense even for the
smaller installations.

On the whole, the personnel in the smaller
installations may feel that modular programming imposes
unnecessary restrictions and standards on the operation of
the group. Such restrictions and standards do, never-
theless, work to the benefit of the group in terms of
better documentation, better reliability, and better
maintainability of the programs produced. Therefore,
smaller installations should not ignore the techniques
of modular programming even though they provide some
benefits that the small installations do not find
useful. The benefits that remain should still be of
considerable interest to these installations.

B. Type of Installation

The use of modular programming technigques benefits
those installations that have high maintenance loads and
large amounts of development work in progress. During
development and implementation, these installations can
take advantage of the modular techniques that result in

more straightforward and more effective program mainte-

47

48

nance. The improvement in maintainability that modularity
provides could result in considerable savings to the
installation over the useful life of the program. If,
however, the installation is in a non-modular programming
environment, what should be done? Those installations
which do a large amount of development work in addition to
maintenance should adopt a policy of modularizing all their
new work. Those which do very little development work and
whose function is primarily maintenance will have no
impetus to convert to modular programming since the cost of
modularizing existing programs could not be justified.

The only exception would be a case in which fhe anticipated
life of the program is long and its present condition is

so bad that a new version of the program appears to be a
reasonable solution to current maintenance problems.

Today, there are more scientific than commercial

organizations using modular programming. Undoubtedly,
this has occurred for several reasons:

(1) Scientific problems are much more complex
than commercial problems and are more easily
handled when broken up into smaller units.

(2) Scientific problems lend themselves more
readily to modularization because they are

more functional in nature.

(3) Scientific problems contain functions that
are likely to repeat so that partitioning
them into reusable modules is logical and
practical.

Ffequently, the modules written to solve scientific
problems are grouped together into a library which can be
referenced, for example, during a mathematical calculation,
a statistics table lookup, or any process oriented
function. The scientific community has had a lot of
experience with modular programming and a great deal of
influence over its development. With the ongoing increase
in the complexity of the applications handled by commercial
programming, this area will certainly move more and more in
the direction of modular programming to take advantage of

the disciplines that it offers.

2.7 SUMMARY
Installations that have used modular programming
have experienced the benefits that this programming
technique provides. These benefits can be grouped into
five broad categories.
(1) Better project control through more accurate esti-
mates and more even distribution of workload.

Because the overall program is divided into small

49

(2)

50

modules or work units, more precise estimates can be
made for the coding, testing, integration, and docu-
mentation phases of development. During implementa-
tion, management can track the progress of the project
by monitoring the progress of each module and mea-
suring it against its own individual schedule.
Differences between the actual progress and the
estimated progress in any one area can signal adjust-
ments to the workload immediately. The size of the
difference will determine the severity of the adjust-
ment.

Project control is also enhanced by the indepen-
dence of the modules with respect to one another.
This characteristic allows programmers to work on
different modules in parallel. This promotes a more
even distribution of workload on the people and on
the machine as well.

Better program design and better utilization of the
code. The design of the program is usually in the
hands of one or more of the senior level programmers.
They design the modules only after careful evaluation
and study of the user's requirements and specifica-
tions. Their design includes the data interface and

the dataflow between the modules and also identifies

(3)

(4)

(5)

51

any common or reusable modules.

More reliable programs through more complete testing.
Modularity facilitates testing because small modules
are easier to test and test comprehensively than
large groups of code. If testing was done thoroughly
at the module level, the only errors that should
occur during the integration phase are those that are
related to the data flow or data synchronization
between modules.

Easier maintenance through modularity and clear
documentation. Since each module in the program
performs a well defined function, any single modifi-
cation will be limited to one or only a few modules.
This localizes the scope of the change in terms of
what the programmer who is performing‘the maintenance
has to learn and understand and also in terms of its
effects on the rest of the program.

Better resource allocation. With the program divided
into modules, management can assign tasks to the
programmers based on their abilities. Trainees and
inexperienced programmers can be given simple and well
defined modules, and the experienced programmers can
be given the more complex modules. This arrangement

allows for the training of new programmers while they

52

are contibuting to the job.

Accrual of these benefits will come to the instal-
lation only if it is strongly committed to modular program-
ming. This programming technique must have management
support to put it into operation. It cannot reach full
effectiveness unless the proper environment is created for
it. This generally means providing the programming staff
with a substantial amount of education and training in
modular programming concepts and methods. It also means
working out and establishing a reasonable set of program-
ming standards and restrictions for the installation. The
transition period will involve a lot of work, and manage-
ment will probably pass through some trying times before
it can begin to obtain the benefits of modular programming.
Once the conversion has been completed, however, the
benefits derived from modular programming should convince

management that it was well worth the effort to switch over.

2.8 REFERENCES

1. Canning, R. (ed) The Search for Software Reliability.

EDP Analyzer, May 1974.

This paper gives the basics of modular programming
and describes how different installations have moved

into using this technique. It is a good source for

references.,

Hoskyns Systems Research, Inc. Implications of Using
Modular Programming. Central Computer Agency, Guide
No. 1. New York, N.Y. 1973.

This document has one of the best bibliographies
on modular programming. It contains a great deal of
material and covers this programming technique in
depth. Items included are modular programming charac-
teristics, disadvantages, pitfalls, installation
requirements, and more.

Myers, G. Composite Design: The Design of Modular
Programs. IBM Corporation, Poughkeepsie, N.Y. 12601.
TR00.2406. 1973.

This report provides a complete set of modular
programming specifications. It includes descriptive
samples and illustrations to help orient a potential
user of modular programming.

Parnas, D. A Technique for Software Module Speci-
fication With Example. Comm. ACM, May 1972, Vol. 15,
No. 5.

This document is a complete and precise guide to
modular programming.

Parnas, D. On the Criteria to be Used in Decomposing

Systems Into Modules. Comm. ACM, December 1972, Vol.

53

54

15, No. 12.
This article describes ways to use modularity in
programming. It is a good reference document for the

principles of modular programming.

CHAPTER 3

THE CHIEF PROGRAMMER TEAM

3.1 INTRODUCTION

A new concept in programming methodology was
introduced by IBM in the early 1970's to deal with the
technical as well as the managerial problems associated
with the development and construction of large systems.
This concept was based on restructuring the programming
group into a closely knit team organization called the
Chief Programmer Team. This organization was structured
so that its members would have specialized and well defined
duties. Heading the group was the chief programmer who
functioned as the operational manager and also provided
the technical leadership for the rest of the team members.
He was assisted in his duties by the backup programmer, the
programming librarian, and a small staff of high level
and experienced programmers.

Up to this time, most programming groups had been
staffed by relatively inexperienced or junior level people.

Because of their inexperience, much of the work done by

55

56

these people in the design, coding, testing, and documen-
tation of programs had been unacceptably low in quality.
The reliability and maintainability of their programs was
well below par and was the cause for many complaints. The
Chief Programmer Team concept was developed in an endeavor
to meet these problems head on. Included in its funda-
mental tenets was the notion of reintroducing senior level
people back into the detailed programming environment.
This would put them back onto the front lines, so to
speak, to participate in all the action of development and
in a position to use their experience and skill to guide
and influence program design and to help overcome any
troublesome stumbling blocks. The Chief Programmer Team
concept has attempted to attack the technical problems of
program development from a position of strength. This
position of making the best people available for handling
such problems is reinforced in many cases by the use of
structured programming and top down programming, two
concepts which will be discussed in the next chapter. The
merging together of these three factors results in a
formidable combination for dealing with the general kinds
of problems encountered in the development and implemen-

tation of programs.

57

3.2 TEAM ORGANIZATION

The Chief Programmer Team is a highly structured
group made up of skilled and experienced professionals,
each with one or more specific functional roles to fill.
The nucleus of a Chief Programmer Team consists of the
chief programmer, the backup programmer, and the program-
ming librarian. This small central group is supplemented
by a staff of specialists including system analysts,
programmers, programming technicians, and technical
writers. The take their direction from the chief pro-
grammer and help wherever they are needed. Any adminis-
trative problems and all personnel related duties are
handled by a project manager, thus freeing the chief
programmer to concentrate on the technical aspects of the
project.

A. Chief Programmer

The chief programmer is the key figure in the
Chief Programmer Team. In most cases, he is a senior
programmer or analyst who has shown that he is capable of
designing and building a major programming system.
Overall, he can be characterized as an individual with
proven organizational and leadership abilities, a strong
technical background, and a substantial amount of program-

ming experience. He possesses a good working knowledge of

58

many programming techniques and is highly competent in
system analysis and design. He is well known for the
depth of his technical expertise and more than likely has
acquired the reputation of being a programming problem-
solver.

For his role as chief programmer, he is the team
leader and functional manager of the group. As technical
leader, he establishes and provides the technical direction
for all the other members of the team. He maintains a
close working relationship with the backup programmer and
confers or consults with him over most important technical
matters. As chief programmer, he assumes full responsi-
bility for the entire system. This makes him the prime
architect for the system, and he plans the design, imple-
mentation, and testing phases with the help of the backup
programmer. After the planning phase is finished, the two
of them generally work on the design of the high level
portions of the system and let the system analysts and
programmers work out the lower level portions under their
supervision. Later, during the implementation stage, they
assign and direct the generation of code for numerous
programs and routines that make up the new system. When
the coding phase is completed, the chief programmer and

the backup programmer review and oversee the testing and

