59

integration of that code. Now, as at all times during
development, they are available to provide expert help or
advice whenever troublesome problems are encountered.

Since the chief programmer is usually the key
coder of the group, he frequently handles the detailed
design and coding of the critical programs and program
segments. This undertaking gives him the technical
challenge he desires and ensures that the most difficult
programs will be written by an expert programmer.

In his other major role as functional manager,
the chief programmer deals with those management problems
that directly influence his ability to get his job done.
These have to do mainly with project planning and the
allocation and control of material and people resources.

He does not have to worry about administrative or personnel
matters, however, because these are handled by a project
manager.

His primary concern in carrying out his management
role is to interface with the System Project Manager and to
translate his directives into program designs, implemen-
tation plans, and work schedules that stay within the
budget, time, and capability constraints of the instal-
lation. To do this, he often works with the backup

programmer in sizing the jobs that they have before them

and assessing the tools and resources that are available
to them. Together, they plan their workload to maximize
their resource utilization and obtain the greatest return
for their effort.

B. Backup Programmer

The second ranking member of the Chief Programmer
Team is the backup programmer. Like the chief programmer,
the backup programmer is also a senior programmer Or
analyst. He is a technically oriented individual with
roughly the same qualifications as the chief programmer.
In many cases, he is a potential candidate for chief
programmer and sees this as the next step in his career
path. Often, he is as capable as the chief programmer,
but lacks the broad base of technical expertise that only
time and experience can bring.

The backup programmer's main function is to assist
and support the chief programmer in any of his work. He
is as familiar as the chief programmer with the design
and implementation processes and is in a position to
assume the role of the chief programmer at any time, either
temporarily or permanently. This is essential to ensure
that development can continue in the absence of the chief
programmer.

The backup programmer serves as the chief program-

60

mer's personal assistant. He is in a position to help the
chief programmer in designing, coding, testing, and inte-
grating any of the programs or routines that make up the
new system. His store of knowledge can compensate for
deficiencies in the chief programmer's technical reper-
toire, and he can serve as a valuable sounding board for
testing any new ideas or techniques that the chief program-
mer may have. He can explore alternative design
approaches, independent test planning, or any other
development related task at the chief programmer's request.
In addition, he can serve as a research assistant in the
areas of programming strategy and tactics, and free the
chief programmer to concentrate on the main problems of
system development.

In any case, the backup programmer plays an
extremely valuable role in the Chief Programmer Team. He
is valuable to the chief programmer as a knowledgeable and
capable assistant, and he is valuable to the project
because of his backup role. His presence is reassuring to
management because he represents the second person who is
totally familiar with the developing project. He is a
viable substitute for the chief programmer, and his
standby position guarantees that the chief programmer's

absence or departure will not put the whole project in

61

62

jeopardy.

C. Programming Librarian

The job of programming librarian may be handled
by a programmer technician or a secretary with special
training. The librarian's role is to relieve the chief
programmer and the other team members of their normal
operational and clerical duties. He gives this kind of
assistance by submitting their programs for test runs and
documenting the results. This may include anything from
performing compilations, assemblies, and link edits to the
actual execution of their code against test data. 1In
addition, he is responsible for maintaining the Program

Production Library. This library contains a chronological

history of the development work done over the course of the
project. Every computer output, regardless of whether it
is good or bad, is filed into this library and an entry of
it is made in the records. These records are helpful for
maintaining a chronicle of development progress and
providing a tally of the errors and problems discovered.
Another section of the Programming Production
Library contains only usable, operational programs. This
portion is a repository for all programs and data needed for
development as well as for all programs and routines

developed for the new system. The copies that are kept

63

here are for reference purposes and are maintained in both
source code and machine readable form.

D. Supporting Members

The chief programmer, backup programmer, and pro-
gramming librarian form the nucleus of the Chief Programmer
Team. The rest of the team consists of programmers, system
analysts, programmer technicians, and technical writers.
Their job is to implement the system designed by the chief
programmer and the backup programmer. These people design
the non-critical parts of the system and do most of the
coding, testing, and documentation associated with the
project. They work under the close supervision of the
chief programmer and backup programmer. The number of
supporting members that make up the team depends on the
size of the project. Members are added as the workload
increases or may be dropped as it decreases.

Almost all members of the supporting team are
experienced people. There is no room on the Chief Program-
mer Team for inexperienced people or trainees. Installa-
tions that use the Chief Programmer Team concept ordinarily
assign these people to work on program maintenance rather
than program development. It is not until they have
acquired a reasonable amount of experience before they

are allowed to join the team and work on developing and

writing new code.

3.3 CHARACTERISTICS

The Chief Programmer Team concept is character-
ized by a number of novel features. These features affect
the procedures for implementing, retaining, and documenting
new programs. They also impose limits on the size of the
programming groups that work within the installation.

Each of these distinguishing characteristics is described
in the sections that follow.

A. Code Reading

In a conventional programming environment,
whenever a program or sub-program is assigned to a person,
he generally has the sole responsibility for that program.
He designs it, codes it, debugs it, and documents it
himself. He feels a sense of ownership toward it.

In a team operation, the feeling that a program
can become a programmer's own personal product is played
down. In this environment, emphasis is placed on making
programs part of the public domain. Programs are
considered to be public assets or team property. The team
practices what is described by Gerry Weinberg as "egoless
programming®. (Reference 6).

The Chief Programmer Team produces this kind of

65

environment through the use of a number of program

techniques. One of these is the walk-through in which a

programmer presents his program design and his implemen-
tation plans for review and comment by his fellow program-
mers on the team. They go oﬁer his logic and read through
his code. By doing this, good communication is maintained
within the group. Each programmer knows what the other is
doing and how he is doing it. The review sessions create
a learning environment where programmers can pick out each
other's program errors and pick up each other's good
programming techniques.

The effect of the walk-throughs is reinforced by
the critical review of all programmers' code by the chief
programmer and backup programmer. It is their job to
carefully read all the code produced to see that the
standards of the installation are being met and to under-
stand and validate all the programs developed so that no
major flaws will go undetected.

Another factor that promotes "egoless programming"
is the existence of the Programming Production Library.
This library contains the output from all runs, both good
and bad. It is a common repository for all developed
programs, support programs, utilities, and test data. The

librarian works diligently to keep all this information

66

current in order to enhance its value as reference
material. The availability of this material gives program-
mers easy access to one another's programs and, as a con-
sequence, facilitates communication among them. It is
factors like these that allow ideas and programming tech-
niques to pass freely among the whole group. Such factors
tend to promote the idea that each piece of code is the
product of the team as a whole rather than the sole
product of an individual member. This increases the
identification of the programs as public assets and is an
important characteristic of the Chief Programmer Team.

B. The Programming Production Library

All programs under development and all programs
and data required for support of the project are
maintained in the Programming Production Library. The
programs that are being developed are kept in two separate

libraries called the internal library and the external

library, while the programs and data that are being used

to support the effort are designated as computer proce-

dures or office procedures depending on their purpose.

All of these programs are handled in one way or another by
the programming librarian.
Of the two libraries, the internal library holds

the code and the external library holds the listings.

The internal library contains copies of all the current
project programs and data in machine readable form. This
means that each of these programs or collections of data
is represented by a copy in source code form, a copy in
object (relocatable machine language) module form, and
another in load module form. These copies may be stored
on punched cards, or as data sets on tape or disk. The
external library maintains copies of the programs and data
in human readable form. It consists of all the program
listings and includes the listings generated by the
compiler, assembler, and linkage editor. These listings
are kept in binders or folders for safekeeping and for
easy filing.

Because each and every program listing produced
is stored into the external library, its contents are
always up to date, and, when these contents are taken as a
whole, they reflect the history of the entire project.
Consequently, this library is an extremely useful reference
tool for the members of the Chief Programmer Team. Good
intragroup communications can be maintained because the
listings of each programmer are readily available to the
others on the team. They can determine the status and
progress of each other's work and can also determine the

interface requirements between their own programs and

67

someone else's. Also, any intermodule testing that is
required can be done simply by referencing the internal
library for the other team member's program modules and
linking these together with their own. The purpose of
the Programming Production Library is to facilitate this
kind of interchange among the team members.

The Programming Production Library provides
additional functions in the form of computer procedures
and office procedures. Computer procedures consist of the
support programs that are necessary for performing the
normal operations of a development group. These include
procedures for compiling, assembling, link editing, and
executing the development programs, as well as procedures
for executing test case data sets, library updating
routines, utility programs, and so forth. Since all these
programs are available in the Programming Production
Library, each team member does not have to put together
his own set. This reduces the expenditure of redundant
effort and allows time to be spent more productively. It
also dictates a standard set of procedures for the entire
team.

Office procedures are those support programs
and operational rules that permit programmers to unload

their clerical work onto the programming librarian.

69

Through the use of these procedures, programmers can
delegate some of their less critical, but time consuming
jobs to the librarian. These include such things as making
program modifications and updates, setting up programs for
test runs, job submission, and the maintenance of data
sets. Office procedures provide the programmer with
standard methods for telling the librarian what needs to

be done in each of these cases.

The librarian accepts the responsibility for these
jobs and performs a vital service to the team. He relieves
the chief programmer, backup programmer, and support
programmers of most clerical work and allows them to use
their time more effectively. By having one person in
charge of the clerical area, there is less confusion,
errors are reduced, job turnaround is moré consistent, and
programmer productivity is increased. (See Figure 2).

C. Documentation

In installations using the Chief Programmer Team
approach, documentation is usually carried on in parallel
with program development. Unlike the policy followed in
most programming groups, documentation is not the respon-
sibility of the programmers.

In the smaller Chief Programmer Teams, this task

is the responsibility of the programming librarian. His

70

Office
Procedures 4 N

/@

External

///)? Library
Librarian gﬁ\\\\\\\\\

{

Programmer

Printouts

Computer ’////)g

PROGRAMMING PRODUCTION LIBRARY

Figure 2

written descriptions of the programs augment the large
amount of information already in the Programming Production

Library. He has available to him the resources of the

external library which contains the complete set of all
program listings. Since these include the results of the
good as well as the bad runs, they represent the complete
history of the development work done for the project. The
retention of the bad runs for reference purposes helps
programmers to learn from the mistakes of others and
hopefully will help to prevent the re-occurrence of the
same mistake.

In larger Chief Programmer Teams, technical
writers may be added to assist in performing the documen-
tation work. It is up to the chief programmer to decide
if he needs them and to pick the number that he wants.

The technical writers are required to work along and keep
pace with the chief programmer, backup programmer, and
support programmers in producing their program documen-
tation. In this way, the documentation remains current
and, more importantly, gets done. Good and thorough
documentation will pay dividends later on when the programs
will have to be maintained.

D. Installation Size

The Chief Programmer Team approach is applicable
to installations with a total staff of 10 to 15 people.
These would include a chief programmer, a backup program-

mer, a programming librarian, and, depending on the size

71

72

of the job, four to seven programmers, a secretary, and
three to five other specialists. A project office might
also be part of the team to help the chief programmer with
financial, legal, and administrative matters, thus allowing
him to concentrate his attention more fully on technical
topics and management decisions.

In terms of program size, about 50,000 to 60,000
lines of source code seems to be the practical maximum that
a team can produce. Work on programs or systems larger
than this will necessitate subdividing the installation
into several teams. By restricting the team to be rela-
tively small in size, it retains its cohesiveness, a

factor which aids productivity and program quality.

3.4 BENEFITS

The organization of the Chief Programmer Team is
geared to efficiency. This efficiency derives from the
team's highly centralized structure, the high degree of
job specialization that is provided for its members, and
the high level of technical expertise that they bring to
their work. These factors lead to a group that is strong
in discipline and unity. In addition, these factors also
produce very beneficial results in the areas of program

productivity, reliability and maintainability, project

73

control, and career orientation. The following sections
will discuss the tangible benefits in each of these areas.

A. Program Productivity

The chief programmer and backup programmer are
both experts in the data processing environment. Their
close guidance at the program development and implementation
stages helps the project maintain its proper course and
prevents costly mistakes from occurring. They exert a
strong initial effort to produce a good mapping of the
design to the code and work hard at dividing the project
into the segments that make the most efficient use of the
skills in the team. Because of this, the Chief Programmer
Team can tackle larger projects than other types of
programming groups of the same size. The team can take on
more work with fewer people and do it successfully. With
fewer people (and with the services provided by the
programming librarian), there are fewer interface and
communication problems. This means fewer integration
nightmares later on especially in light of the careful
program design work done initially by the chief programmer
and the backup programmer.

Productivity is further enhanced by the composi-
tion of the team. Normally, its membership consists of

experienced people so minimal time is lost to education

and training. This means that from the project's very
start, most of the work done is useful from the produc-
tivity standpoint. Also, during the course of the project,
certain checks and balances are instituted to keep things
under control. The design and code walk-throughs and the
additional code reviews by the chief programmer and backup
programmer verify the design and coding solutions that
have been worked out. Such checking techniques act to
reduce debugging and rework on the final product and
consequently speed development. All these many factors
work in concert from the start of design to the release

of the finished product to yield programs of high quality
in the minimum time.

B. Reliability and Maintainability

One of the characteristics of the Chief Program-
mer Team is the use of senior programmers in the positions
of chief programmer and backup programmer. These people
are directly involved in the design and programming
processes. They expend a great deal of effort during the
design phase to insure that the design will work and is
well integrated and easily implementable. During the
implementation phase, they code the critical programs and
closely supervise and review the work of the other team

members. Their technical knowledge and experience allows

them to spot and eliiminate many potential problems

which would be more difficult, more time consuming, and
more expensive to fix in the future. This kind of effort
is made to ensure the production of a clean piece of work
from the highest level to the lowest level.

The programming librarian contributes to improve
program quality in several ways. First, he frees the
technical staff to concentrate on technical matters. He
does this by taking over most of their clerical work.
Second, he makes certain that the internal and external
libraries are synchronized and up to date. This eliminates
problems caused by the use of obsolete versions of data
or programs. Third, he and the technical writers work on
the documentation and keep it current. Good documentation
helps in promoting communication among the team members
and in making future maintenance work easier. When these
factors are coupled with the technical skill and high
degree of specialization of the supporting team, the end
result should be a product that is reliable and free of
errors. Moreover, because good and abundant documentation
is available, future rework and upkeep of the system should
be simple and inexpensive. The depth of detail in the
documentation and its historical perspective should permit

trainees to perform the maintenance required and permit

75

76

them to acquire the knowledge and experience necessary
to become future programmers or analysts on the Chief
Programmer Team.

C. Project Control

In project control and measﬁrement, the team
operation offers certain built-in advantages over the
conventional mode of operation. The functional responsi-
bilities for the chief programmer, backup programmer,
programming librarian, and the supporting team are separate
and well defined. These sharp distinctions in functional
responsibilities offer a ready-made structure on which to
build a progress tracking and reporting system. Lines of
communication between the various parts of the team
already exist and are well defined so that it is easy to
pinpoint the responsibility and the status of any member
of the team. Consequently, it is normal for the chief
programmer and the backup programmer to be constantly
aware of the current status of the project and where the
various responsibilities lie because of the nature of their
jobs. The organization of the team automatically makes
them the focal point for this kind of information. As a
consequence, the problem of project control is limited to
assimilating the information that is provided by each of

the separate functional entities and making corrections or

17

adjustments where necessary.

The Chief Programmer Team's separation of func-
tional responsibilities also has performance implications.
Each function, because of its specialization, is expected
to operate at a high level of performance. This provides
increases in productivity and simplifies the chief program-
mer's job of assigning tasks. Because of the way the team
is structured, he can assign tasks to each part of the team
merely on the basis of whether that area is optimized for
handling that type of functional responsibility or not.

D. Career Orientation

In the hierarchical structure of the Chief
Programmer Team, the chief programmer has reached the
pinnacle of his career for this kind of work. The backup
programmer is a potential candidate for chief programmer,
and the other programmers and system analysts are working
to bring themselves closer to these two positions.

Each team member has a role to serve and can
develop his talents and perfect himself in that position
before moving on. He is exposed to strong positive
influences from other team members including the chief
programmer and the backup programmer. They can help him
identify and correct his poor or inefficient coding

habits and techniques. 1In effect, he is given the unique

78

opportunity to practice precision programming under expert
guidance without becoming encumbered by clerical duties
since these are handled by the programming librarian. This
allows him to dedicate more of his time to develop and
improve his technical skills. 1In these ways, the team
operation promotes professional growth and provides a good

environment for building the team leaders of the future.

3.5 SUMMARY

The Chief Programmer Team is an organizational
approach to the programming development process with the
expressed purpose of improving the quality of programs
developed as well as increasing the productivity of the
development team. In the conventional environment, a
programming group consists of a large number of people
with widely varying amounts of experience in design,
coding, and testing. Unfortunately, the results of their
work very often exhibit as much variation in quality as
their variation in experience. The Chief Programmer
Team overcomes this problem by replacing the conventional
programming group with a team of small, functionally
specialized groups composed of experienced and highly
skilled programmers. These people form a highly qualified

and capable organization, but the key factors in their

79

success as ‘a group are the chief programmer and his
assistant, the backup programmer. These two positions

make up the core of the team and must be filled by experi-
enced and extremely competent individuals. They are the
technical leaders of the group and carry the responsibility
for designing the system, managing the implementation and
testing efforts, and personally programming the system's
most critical areas.

The organization of the Chief Programmer Team
defines the roles of the all specialists on the team and
their relationships to each other. It provides a new
documentation and communications aid in the Programming
Production Library. It provides for the efficient
production of programs which are both well designed and
error free because each stage of development was done
under the close scrutiny and supervision of the two team
leaders. 1Its relatively compact size makes it a more
unified group and makes it more immune to the difficulties
encountered at integration time because of poor communica-
tions. The end results produced show the influence of all
these factors. The finished product is a well documented
system of programs that have not only undergone review by
the original author, but also by all other team members

including the chief programmer and the backup programmer.

80

The product is released with a high degree of confidence

in its correctness as well as its overall quality.

3.6 REFERENCES

1. Baker, F. Chief Programmer Team Management of

Production Programming. IBM Systems Journal, 1972,

vol. 11, No. 1.

This article describes how the Chief Programmer
Team concept was put in place to develop the New York
Times Information Storage and Retrieval System.

It is a success story portraying the development
of an 83,000 line program with a phenomenally low
error rate of one per every 4,000 delivered instruc-
tions.

2. Baker, F. and H. Mills. Chief Programmer Teams.

Datamation, December 1973, Vol. 19, No. 12.

This article gives a good introduction and
description of the concepts behind the Chief Programmer
Team.

3. Canning, R. (ed) 1Issues in Programming Management.

EDP Analvzer, April 1974.

This article provides a comparison between the
Chief Programmer Team and other programming organiza-

tions. It discusses the benefits and drawbacks of

81

each type of organization as well as the role of the
individual programmer and his‘performance in each of
these environments. This article is valuable as a
general reference.

I.B.M. A Disciplined Approach to Application Develop-
ment. IBM Corporation, Productivity Techniques,
Bethesda, Md. 20034,

This report defines the organization of the Chief
Programmer Team and describes the roles of each of the
team members.

I.B.M. Improved Programming‘Techndlogies. IBM Corpo-

ration, Data Proceséing Division, Ihstallation Produc-
tivity Programs Department, White Plains, N.Y. 10604,

1973. |

This report contains essentially’the same material
that is in the previous document except it includes the
advantages that a team operation offers when it is
properly formed.

Weinberg, G. The PsyChology’of Computer Programming.

Van Nostrand Reinhold Company, New York, N.Y. 1972.

Weinberg addresses the human dimensions of

programming performance and introduces the concept

of "egoless programming".

CHAPTER 4

TOP DOWN STRUCTURED PROGRAMMING

4.1 DEFINITION

Structured programming is a programming technique
that goes a long way toward bringing discipline and order
to the whole program development and implementation process.
It advocates the use of a limited language subset and a
restrictive set of rules as a means of improving the
clarity, readability, and maintainability of programs. The
theorems that structured programming is based on were
introduced by C. Bohm and G. Jacopini in the mid 1960's.

In the early 1970's, they were mathematically proven to be
applicable to all programming situations and implemented as
a set of technical programming standards by Harlan Mills.
Since then, many of these standards have been adopted as
normal programming practices in many software groups.

The benefits provided by the use of structured
programming techniques is augmented by the top down program-
ming process. In essence, top down programming is the

downward expansion of functional specifications from very

82

83

high level functions to simpler and simpler functions.

The expansion process produces‘a tree-like structure where
the nodes at each level represent functions of a uniform
complexity. The lower down the levels are, the simpler
the functions are, and the lowest level contains the most
elementary functions to be implemented. Experience has
shown that the top down technique is an excellent design
tool when it is used in conjunction with structured

programming.

4.2 STRUCTURE

The basic principle behind structured programming
was introduced by C. Bohm and G. Jacopini in their paper
entitled "Flow Diagrams, Turing Machines, and Languages With
Only Two Formation Rules" (Reference 2). This principle
states that any proper program can be written by using
three basic program figures or structures, (See Figure 3),
namely:

1. a sequence

2. IF a THEN b ELSE c

3. DO b WHILE a
These terms are defined as follows:
Sequence - A sequence is a collection of code whose state-

ments are executed in the order written. It does not

84

contain any statements that alter the sequence of execu-

tion.

B B | > SEQUENCE

» thenpart

PIF THEN ELSE

"lelsepart

% DO WHILE
false

'

STRUCTURED PROGRAMMING BASIC FIGURES

Figure 3

85

IF a THEN b ELSE ¢ - In this expression, a represents a

logical relation and b and ¢ represent one of the three
basic structures listed above. The operation of this
expression is such that if condition a is true, then the
structure b is executed and an exit is performed, while, on
the other hand, if condition a is false, then the structure
¢ is executed and an exit is performed.

DO b WHILE a -~ This expression is a loop control mechanism.

The term a represents a logical relation and the term b
represents one of the three basic structures (b's execution
may have an effect on a). The operation of this expression
proceeds as follows. Control enters at the single entry
point where test a is performed. If this condition is true,
b is executed and control loops back to the testing point
where condition a is tested again. If this condition
remains true, control proceeds again to structure b, while
if it hasvbecome false, control bypasses b and leaves by
the only exit provided.

Proper Program - A proper program is a program which

exhibits the following two attributes:

l. It contains one and only one entry point and one and
only one exit point.

2. For any point within the program, there is a logical

path that goes from the entry point to that point and

another logical path that goes from there to the exit
point.

C. Bohm and G. Jacopini proved that these three
basic logic structures were necessary and sufficient for
implementing all proper programs. They went further to
demonstrate that all generai programs could be expanded
into or realized by a set of proper programs. These
results showed for the first time that all computer
programs, no matter how simple or complex, could be
implemented through the use of the three basic structures.
Their impact was extremely far reaching for they estab-
lished the foundation for the structured programming
standards and techniques that exist today.

The discovery of the principles of structured
programming made it possible to make full use of the top
down design concept. This is because a program written
according to structured programming concepts can have its
control flow move from top to bottom without passing
through any unconditional branches. Control flow of this
type is characteristic of the orderly tree-like structure
of top down programming designs. Code written in this
manner is easier to follow and easier to understand
because control does not jump from place to place in the

program.

86

87

The readability of such code can be further
enhanced by indenting all the statements that belong to the
same level of the tree structure by the same amount. This
makes the hierarchical structure of the program highly
visible and allows it to be discernible at a glance. Good
readability of this sort greatly simplifies the scanning
of the program whether it is being checked for correctness
or being analyzed for maintenance purposes.

Another positive factor for maintainability and
for testing as well, is the one entry, one exit organization
of the program segments that make up the program. A program
segment usually consists of one page of code or less.
Control enters at the top of the code sequence and exits
from the bottom. There are no other means of entry or exit
in the segment. This organization reduces the effort
required to follow the flow of program control. 1In
maintenance work, this is important because the programmer
making a modification to a program segment can be
reasonably certain that his change will not produce
unwanted side effects. From the testing standpoint, this
straightforward sequential organization simplifies the
task of finding the errors in the program. Top down
design lays out the program structure in such a way that

changes in one segment will not affect other segments, and

88

also such that errors are isolated and do not propagate
throughout the whole program.

Code in a structured programming environment that
employs top down design is generated in the same order that
it will be executed. The job control statements to compile,
assemble, link edit, and execute the source code are
generated first. Then, the source code is created in a
top down order. The highest level of the program hierarchy
is coded first, followed by the next lower level, and so
on until the lowest level is coded. This sequence of code
generation has strong implications on the implementation

and testing phases of program development.

4.3 CHARACTERISTICS

The characteristics of a top down structured
programming environment are found in every phase of program
development. Their influence extends to all phases from
design to coding to testing to maintenance. This was not
always the case, however. Years ago, the influence of top
down structuring concepts was not nearly so far reaching.
Even though top down design had been practiced for some
time, implementation was almost always done from bottom up.
Segments of the program were first coded and tested as

separate units and then brought together at integration

89

time to be tested as a whole. Top down programming
practices have reversed this routine by restricting the
coding process to follow the same sequence as that followed
in top down design. The code is created in the order that
it will be executed. This top down implementation
arrangement permits testing and integration to occur
simultaneously and results in continuous verification of
the program at each step of its development.

A. Design

An important factor that program developers must
keep in mind is that programs have long lives and must be
maintained for as long as they are used. One of their
foremost considerations should be to simplify the task of
program upkeep. Both management and development people
must realize that this is a significant and achievable
goal. They must be willing to invest the time and effort
required to produce a careful, well thought-out, well
integrated design. This will result in a more maintain-
able product and one that is free of costly errors.

In top down design, the system is laid out in a
top down fashion, starting from a broad overview at the
top level and progressing into more detail at each lower
level. The result is a tree-like structure where the nodes

at each level represent program functions at approximately

the same level of detail. This structure forms the basis
for the top down programming approach. It is created
early in the design phase. At this time, the skeleton or
general structure of the program is laid out. Next, the
basic functions of the program are determined and are
mapped onto the highest levels of the structure. Then
each basic function is broken into more detailed subfunc-
tions which define and form the nodes at lower levels of
the tree structure. Each subfunction in turn is broken
into more elementary subfunctions and so on until all
subfunctions have been resolved to a sufficient and consis-
tent level of detail. The most elementary subfunctions
form the nodes at the lowest level of the structure.

The branches that run between the nodes of the
structure point out the relationships between subfunctions.
They present a system of pathways that trace out the
dependencies of high level functions. If each node
represents a function or subfunction that can be realized
by a program segment, then the branches define the inter-
faces between program segments. This is a very clean and
graphical way of specifying interface relationships. Its
use should prevent inconsistent interface definitions and
the integration problems they cause.

The branches of the tree structure also perform

91

another important role. They help to define the dataflow
for the entire program. The branches form paths which
show the accessability of data to all the program segments
(nodes). They show the segments that have access to a
particular kind of data and those which do not. The
ability to determine the range or scope of the data
processed by a program is important especially during
program testing since it can help to pinpoint the location
of problems.

Program testing also receives a substantial amount
of attention during the top down program design phase. A
design is considered incomplete unless it has a thorough
set of testing specifications. These specifications
include interface, timing, priority, and performance
requirements, sets of’initial conditions, and data
specifications to prevent the creation of unnecessary or
redundant test cases.

The design phase in a top down structured program-
ming environment is usually more lengthy than in the normal
programming environment. This is natural in view of all
that must be done. The design must be carefully worked
out if the result is to be a well integrated system. It
must be plotted out from the highest level functions to

the most detailed low level subfunctions. Interfaces and

92

data flow between each of the program segments must be
defined. Testing specifications must also be defined and
written. If these stringent requirements are met, the

end result will be a design that minimizes the interaction
and data sharing among the program segments.

B. Coding

The hierarchical nature of a top down structured
programming design facilitates the code development process.
The carefully laid out structure produced from the earlier
design phase serves as a guide to coding development. It
functions like a road map and more or less forces code
implementation to follow a specific sequence.

This sequence begins with the coding of the high
level program segments which form the framework for the
entire system. These contain the logic of the high level
functions and these functions in turn refer to their
subfunctions which are represented by the program segments
at the next lower level. At this time, however, the lower
level segments do not exist. They are either being coded
separately or will be coded later. 1In the meantime, dummy
program segments or stubs are used in their place. 1In
this way, work can proceed on the high level program
segments. They can be coded, compiled, assembled, link

edited, and tested without the presence of any lower level

93

program segments. Once the upper level segments have
undergone complete testing, the program segments that
represent the next lower level can be created using the
same scheme of referring to dummy program segment names or
stubs for their subfunctions at the next lower level.
Consequently, as the system is coded, it goes through
repeated cycles of integration and system testing. The
level by level process of code implementation and testing
continues until the lowest level of the structure is
reached. At this point, there are no more dummy segments
- or stubs to insert. After this level is coded and com-
pletely tested, the system is in working condition and is
ready to enter production mode. (See Figure 4).

These are the factors that determine the philos-
ophy of coding in a top down structured programming
environment. There are also several factors which
influence the methodology of coding in this environment.
The first is the importance of maintaining unambiguous
interfaces between the calling program segments at the
higher level and the called program segments at the lower
level. This prevents interface problems from occurring
as the system undergoes its level by level integration
process. The second factor is the one entry, one exit

property of program segments. In every segment, control

Level

Level

Level

Level

Level

Level

Level

- —— - -

[iy | A -1
I stub ! 'stub ! istub !
. L-K-J Loy

AR P

I\\ 1

/ \ i

’ \ i

r"l"'l i"s""i E""L"‘J
i (I | t
bommmd bmmnd L d

TOP DOWN DEVELOPMENT

Figure 4

1 !
SR

/
F-4-a
i ¢
b d

Program Segments Implemented

N\
\

N\
r-3-q
i i
e e

Program Segments To Be Implemented

94

95

must enter at the top at a single point and exit from the
bottom, also at a single point. Every program segment’
either returns to its caller or moves in line to the next
segment. The last factor is the small set of programming
commands that the structured programming environment allows.
Because of this restricted set of building blocks, code
generation during implementation may be more difficult, but
this is more than offset by the virtues of better read-
ability, better testability, and better maintainability in
the code produced.
C. Testing

In a bottom up programming environment, the
testing process begins at the lowest level. It starts
with unit testing and is followed by integration testing
which can be carried out only after all the units are
completely coded. Unit testing is usually no cause for
alarm, but integration testing is another matter. When
all the code is brought together and the program stops,
the job of isolating and finding the error or errors may
be enormously difficult. Typically, the source code for
most units was written long before integration was started,
and both the codé and the program logic may have since been
forgotten. Also, the unit testing of certain units may be

incomplete, and this automatically makes them suspect.

96

These uncertainties make error determination a long and
tedious process, because large numbers of possibilities
must be checked out and eliminated.

In this kind of environment, regression testing
is a common practice. Every time new code is added, it is
verified against test cases that had run successfully
before. This is helpful in isolating errors since they
could be caused only by the new code or by the new code
uncovering paths in the lower level code that had been
untouched previously. Integration performed in this way
is piecemeal in coverage and very time consuming. Many
regression tests may be necessary and moreover, the basic
structure of the entire system cannot be verified until
all the individual ﬁnits are brought together and tested
as a whole.

When the programming environment is top down, the
program segments representing the high level functions are
coded first. These segments are then put through a testing
phase and checked for errors. Once the testing is
completed, program segments representing the subfunctions
at the next lower level are coded and added to the system.
They are combined with the previously coded and tested
segments and are run through a new series of tests. Since

the new program segments are at a lower level and do not

97

refer back to the higher level segments, any errors
discovered at this'stage must be in the new code. This
cyclic pattern of alternating between coding and testing
is carried out level by level until the lowest level
subfunctions have been coded and tested. Once the last
level has been completely tested, the entire system is
ready to be released for production work.

With top down development, integration and
testing are performed on a level by level basis. Functions
are” added to the system in a logical sequence and in the
order of dependency. They are added one at a time or in
small groups rather than all at once. Moreover, they are
added to a working system which means that errors discov-
ered after a new integration step are most likely caused
by the newly incorporated code. Also, because of the
hierarchical structuring of the system, such errors do not
impact the already tested functions.

The top down environment permits the continuous
verification of the basic system logic and the interfaces
between the different levels. It provides a good overview
of the whole implementation and testing process, and
consequently, gives better project control and predict-
ability. Progress tracking is simplified by the alternation

between coding and testing as development proceeds from

level to level, and confidence in the code produced is
bolstered by the fact that the most critical code is tested
the most thoroughly. Because integration is a continuous
process, top down structured programming avoids the problem
crunch that usually occurs at system integration time in
other programming environments. It eliminates the need for
each programmer to develop, write, and debug the drivers
necessary to test their individual units. Early integra-
tion also provides benefits. It unveils the work of poor
programmers early in the schedule so that corrective aztion
can be taken. More importantly, it motivates good program-
mers because it makes their progress and high level of
achievement very visible.

During the testing phases, the single entry point,
single exit point restriction on each program segment
makes error detection much simpler. It minimizes the
connections and lowers the dependencies between segments.
It produces simple interfaces which reduce the incidence
of interface errors. Also, when debugging activities are
being carried out, once it has been established that control
is within a program segment, its point of entry and its

point of exit are known precisely.

99

4.4 STANDARDS

Before beginning a project, every installation
using structured programming should establish a set of
programming standards. These standards set the guidelines
and rules for design, coding, testing, and documentation.
They specify what kinds of things are acceptable in each
of these areas, and, taken as a whole, they set the level
of program quality for the installation. As such, they
provide designers, programmers, and analysts with common
points of measurement for evaluating their work.

Items that should be included in the prcgramming
standards are the following:

* The use of only a predefined set of basic
programming figures or structures. These
structures may be nested; however, regardless
of the number of levels of nesting, there can
be only a single entry point and a single exit
point.

* Disallowing the use of unconditional branches
(GO TO statements or their equivalent).
Unconditional branches are not necessary and
should be used only in certain exceptional cases.

* The setting of a limit on the size of each

100

program segment or function. The length should
be restricted to the amount of code that the
human mind and eye can easily comprehend at any
one moment.

* The use of an indentation scheme whose orga-
nization corresponds to the nested hierarchy
of the functions. This makes the code easier
to read and more easily understandable.

Each installation should have its own specific
rules with regard to languages, file structure, data
management, and so forth. In any case, management has to
handle the enforcement of these rules. It must constantly
check to see that these standards are strictly adhered to
if the installation is to produce programs that are

consistently high in quality.

4.5 BENEFITS

The top down structured programming approach to
design and implementation provides many worthwhile
benefits. These include lowered software costs, higher
productivity, and better quality software. All these
benefits accrue from the positive influence that top down
structured programming exerts on each of the development
phases. Starting with the design phase, this approach

provides for a system design that is clear and well

101

defined. The top down ordering concept is utilized to
reduce complex functions into simpler functions and to
provide an orderly way to handle the implementation of
complex program applications. There is early definition

of the interfaces between program segments so that interface
errors are kept to a minimum. All through the design
process, clarity is maintained. This helps to eliminate
costly programming errors due to misinformation or the
misinterpretation of design specifications.

In the coding phase, the limited set of options
permitted by structured programming greatly restricts
coding flexibility. This reduction in programmer freedom
is matched by a corresponding reduction in the error rate
and an increase in programmer productivity. No uncondi-
tional branches are permitted, and all program segments
are restricted to have only one point of entry and one
point of exit. The resulting code can be scanned in a
straight-line fashion. This improved readability makes
the code easier to debug during testing and easier to
understand when maintenance becomes necessary. In most
cases, maintenance can be handled by trainees or inexperi-
enced programmers. The code is usually sufficiently
straightforward so that modifications can be made to one

program segment without causing any deleterious side

102

effects in other program segments.

During the testing phase, error checking and error
isolation are simplified by several factors. First of all,
new code is added at most a level at a time to previously
tested code. This limits the amount of code tested to a
reasonable aggregate. Second, the top down ordering of
functions stipulates that higher level functions can call
lower level functions, but not vice versa. This means any
error discovered during this round of testing are in all
probability rooted in the new code. Third and last of all,
limiting each program segment to one entry point and one
exit point makes it easy for the programmer to follow the
flow of control from segment to segment. This is espe-
cially useful if he is provided with the tools to perform
online testing.

The most outstanding benefit by far, however, is
the lack of a consolidated system integration phase. Prior
to the use of top down programming, system integration
was always considered a giant headache and placed at the
end of the development phase. Integration was the first
time that all the separate units of the system would be
brought together for system test. It demanded peak
manpower utilization, peak machine time requirements, and
peak management involvement. It was a chaotic situation

and the results often reflected this.

103

By contrast, top down programming allows for a
process of continuous integration. Machine utilization
remains relatively stable since coding and integration are
done almost in parallel. The workload does not reach a
peak but is spread out so that both management and staff
can proceed at an orderly pace. This disciplined approach
is more conducive to the production of high quality

programns.

4.6 SUMMARY

The timely production of well designed, well
written programs that are free of problems and easy to
maintain is a highly sought after goal at all programming
installations. Though this goal is exceedingly difficult
to achieve, certain programming methods have been developed
to make it more attainable. Top down structured program-
ming is such a method. This approach combines the
attributes of top down design with those of structured
programming to create an extremely comprehensive program-
ming methodology. It covers all areas of programming
from design to integration to maintenance and provides
techniques that improve the productivity in each of these
areas.

The top down structured programming approach

104

utilizes the top down ordering concept to make the
implementation of complex programming applications easier
to handle. Top down ordering permits a complex function
to be represented in terms of a multi-level functional
hierarchy. The function at the top of the hierarchical
structure is the complex function itself, while those at
each successively lower level represent the more and more
elementary subfunctions that are its components. These
subfunctions become the program segments of the top down
structured programming system. The program segments at
any one level can call the segments in the level immedi-
ately below or be called by the segments in the level
immediately above. Once the design has been established,
program development follows the top down pattern set by the
structure. This development sequence provides the high
visibility that is necessary for good progress tracking
and effective project control. Checkpoints are easy to
define and use as gauges of progress. Problems are
discovered early and can be dealt with immediately.

Aside from aiding management, top down structured
programming also increases programmer effectiveness. It
helps programmers to produce code that is uniform in
quality and easy to understand. Moreover, the code has

excellent maintainability. Modifications can be added

105

to one program segment without producing unexpected side
effects in other segments because of the small degree of
interaction between program segments and the clarity of
the code. 1In addition, the limited coding options
available under structured programming create such a
disciplined and restricted coding environment that coding
tasks can be assigned to inexperienced programmers.

As useful and as powerful as it is, the top down
structured programming approach, nevertheless, suffers from
a number of problems. The design phase is long and drawn
out because this is the most important of the develop-
mental phases. The limited instruction repertoire makes
programs more difficult to code. For a given application,
more code is usually generated, and a substantial amount of
this extra code is repetitious in nature. This results
in less efficient machine utilization since more storage
and longer run times are needed. Structured programming
also requires the establishment of restrictive standards
and strict enforcement of these standards to be effective.
All these disadvantages are a small price to pay, however,
for a system of programs that is well designed, easy to

debug, and easy to maintain.

4.7

106

REFERENCES

Baker, F. System Quality Through Structured Program-

ming. Proceedings AFIPS 1972, Vol. 41, Part 1.

This report describes how structured programming
is used in a Chief Programmer Team environment. Much
of the material it contains is similar to what is in
the author's article titled "Chief Programmer Team
Management of Production Programming”.

Bohm, C. and G. Jacopini. Flow Diagrams, Turing
Machines, and Languages with Only Two Formation
Rules. Comm. ACM, April 1966, Vol. 9, No. 4.

This is the foundation of what would later become
structured programming. It is a substantial contribu-
tion to the field of programming and well worth reading.
Canning, R. (ed) The Advent of Structured Programming

Management. EDP Analyzer, June 1974.

This report contains an analysis of different

" approaches to structured programming and describes

some user experiences with this programming technique.

Dahl, 0., E. Dijkstra, and C. Hoare. Structured

Programming. Academic Press, New York, N.Y. 1972.

In this book, Dijkstra considers that if the art

of programming is properly disciplined, it can be made

107

to have the rigor necessary for applying the theorem
proving processes used in science. The correctness of
a program (considered modular in structure) can then
be established by using mathematical induction over
certain already proven assertions. This work is fairly
heavy reading, but well worth the effort.
Dijkstra, E. GO TO Statement Considered Harmful.
Comm. ACM, March 1968, Vvol. 11, No. 3.

This letter on the GO TO statement was written
by Dijkstra when he became convinced that unconditional
branches should be abolished from higher level
languages.

Donaldson, J. Structured Programming. Datamation,

December 1973, Vol. 19, No. 1l2.

This article describes how control paths can be
simplified through the use of structured programming.
Gries, D. On Structured Programming. Comm. ACM,
November 1974, Vol. 17, No. 1l.

This is a good article for use as a reference
since it covers the major advancements made in the
area of structured programming. |
Liskov, B. A Design Methodology for Reliable Software

Systems. The MITRE Corporation. Proceedings AFIPS

1972, Vol. 41.

108

This paper is limited to the description of SPIL -
A Language for System Design and Implementation.

9. McCracken, D. Revolution in Programming. Datamation,

December 1973, Vol. 19, No. 12,
This article provides a general overview of
structured programming.
10. Miller, E. and G. Lindamood. Structured Programming:

Top down Approach. Datamation, December 1973, Vol. 19,

No. 12.

This article gives a general overview of
structured programming with emphasis on the top down
design approach.

11. Mills, H. Mathematical Foundations for Structured
Programming. IBM Corporation, Federal Systems
Division, Gaithersburg, Md. 1972. FSC 72-6012.

This is the mathematical proof that simple
structured programming control logic is capable of
expressing any program requirement. It is an
interesting piece of work, but limited in usefulness
as a reference for information about the structured
programming method.

12. Mills, H. How to Write_Correct Programs and Know It.

13.

109

IBM Corporation, Federal Systems Division,
Gaithersburg, Md. 1973. FSC 73-5008.

This report is a very delightful, clearly stated
overview of structured programming.
Mills, H. Top-down Programming in Large Systems.

Debugging Techniques in Large Systems. R. Rustin

(ed). Courant Computer Science Symposium 1, New York
University. Prentice-Hall. Englewood Cliffs, New
Jersey. 1973.

This is a very well written article on top down
structured programming. It provides good references

to other work being done in this area.

CHAPTER 5

CONCLUSIONS

The high cost of software development has forced
the data processing industry to look for new and practical
ways to produce software. The goal has been to beat back
the spiraling costs by achieving gains in productivity,
guality, and maintainability. Over the last several
years, this effort has yielded significant improvements
in programming and management techniques. It has brought
about the introduction of modular programming, a complete
package which combines a new programming methodoiogy with
a new approach to group organization; the Chief Program-
mer Team which is a new concept in team organization; and
top down structured programming which is a new and highly
disciplined methodology based on recent theoretical
findings.

Each of these three new approaches has limita-
tions and can be used effectively only when matched with

the particular needs of an installation. In general,

110

111

modular programming is well suited to large installations
where the bulk of the work is in development rather than
in maintenance. The skill mix within the group is not
critical and can vary from highly experienced programmers
and analysts to junior programmers and trainees. This work
environment offers job satisfaction to all its members
since meaningful jobs can be found to match all skill
levels. The loss of personnel due to normal turnover does
not cause noticeable disruptions, and the workload can be
shifted around to a moderate degree without any adverse
effect on the schedules.

For small and medium sized installations, the
Chief Programmer Team approach should produce a better
fit. Effective operation under this approach requires
the proper skill mix, however. The chief programmer and
his assistant, the backup programmer, must be highly
experienced and capable individuals. The members of the
support team must also be experienced people. Otherwise,
an inordinate amount of the workload and responsibility
falls on the chief programmer and the backup programmer.
The work environment here places a large amount of emphasis
on technical problem solving. The team members benefit
from the constant exposure to the highly skilled people

around them. This creates an atmosphere for promoting

112

professional growth and makes it an ideal training ground
for future team leaders. A drawback in this approach is
the heavy dependency that is placed on the chief program-
mer. Even though he is closely supported and backed up by
the backup programmer, his departure from the project may
result in a major schedule setback.

Top down structured programming is a programming
methodology that brings a disciplined approach to the
processes of design, coding, testing, and integration.

Its main objective is to divide a system in such a way

that individual pieces can be designed, implemented, or
modified without affecting the rest of the system. The net
effect is the reduction of a complex problem into a
hierarchy of small and manageable pieces. This programming
method promotes production of code that is well designed,
easy to debug, and easy to maintain. It is an approach
that most users, regardless of size or work environment

can adopt. It does, however, require a management that

is attuned to its demands of strict discipline and need

for well documented standards.

Modular programming, the Chief Programmer Team,
top down structured programming - all of these new
approaches to programming have their strengths and

weaknesses, advantages and disadvantages. Any installation

113

that is interested in adopting one of these new approaches
should investigate its needs carefully. Before coming to
a conclusion, it should examine its operating environment,
the typical kinds of applications to be done, the skill
mix of its programmers and management, and the size of the
operation, among other factors. Only then can an intelli-
gent choice be made from among these three approaches or
any others that may be under consideration. The proper
decision will result in a host of real benefits to the
installation in terms of improved program quality and

reduced costs.

BIBLIOGRAPHY

Baker, F. Chief Programmer Team Management of Produc-
tion Programming. IBM Systems Journal, 1972,
Vol. 11, No. 1.

System Quality Through Structured Program-
ming. Proceedings AFIPS 1972, Vol. 41,
Part 1.

Baker, F. and H. Mills. Chief Programmer Teams.
Datamation, December 1973, Vol. 19, No. 12.

Bohm, C. and G. Jacopini. Flow Diagrams, Turing
Machines, and Languages With Only Two
Formation Rules. Comm. ACM, April 1966,
Vol. 9, No. 4.

Boehm, B. Software and Its Impact: A Quantitative
Assessment. Datamation, May 1973, Vol. 19,
No. 5.

Cammack, W. and H. Rodgers. Improving the Programming
Process. 1IBM Corporation, Poughkeepsie,
N.Y. 12601. 1973. TR00.2483.

Canning, R. (ed). The Search for Software Reliability.
EDP Analyzer, May 1974.

Issues in Programming Management. EDP
Analyzer, April 1974.

The Advent of Structured Programming.
EDP Analyzer, June 1974.

Clark, R. A Linguistic Contribution to GOTO-less
Programming. Datamation, December 1973,
Vol. 19, No. 12.

Dahl, 0., E. Dijkstra, and C. Hoare. Structured
Programming. Academic Press, New York,
N.Y. 1972.

114

« ar g

115

Dijkstra, E. Structured Programming. Software Engineer-
ing Techniques, NATO Science Committee.
J. Burton and B. Randell (eds).

GO TO Statement Considered Harmful. Comm. ACM,
March 1968, Vol. 11, No. 3.

The Humble Programmer. Comm. ACM, October 1972,
Vol. 15, No. 10.

Donaldson, J. Structured Programming. Datamation,
December 1973, Vol. 19, No. 12.

Freeman, W. Computer Models of Thought and Language.
R.C. Schauk. Kenneth Mark College.

Goldberg, J. (ed) Proceedings of a Symposium on the
High Cost of Software. Proceedings of a
Symposium Sponsored by the Air Force Office
g% Scientific Research. Stanford Research
Institute, Menlo Park, California. SRI Project
3272.1973.

Gries, D. On Structured Programming. Comm. ACM,
: November 1974, Vol. 17, No. 1l.

Hamilton, M. and S. Zeldin. Top Down, Bottom Up
Structured Programming and Program Structuring,
MIT, The Charles Stark Draper Laboratory,
Cambridge, Massachusetts 02139. E-2728,
Revision 1.

Hoskyns Systems Research, Inc. Implications of
Using Modular Programming. Central Computer
Agency, Guide No. 1. New York, N.Y. 1973.

I.B.M. A Disciplined Approach to Application Develop-
ment. IBM Corporation, Productivity Techniques,
Bethesda, Md. 20034.

Improved Programming Technologies. IBM Corpo-
ration, Data Processing Division, Installation
Productivity Programs Department, White Plains,
N.Y. 10604. 1973.

1lle

Liskov, B. A Design Methodology for Reliable Software
Systems. The MITRE Corporation. Proceedings
AFIPS 1972, Vol. 41l.

McCracken, D. Revolution in Programming. Datamation,
December 1973, Vol. 19, No. 12.

Miller, E. and G. Lindamood. Structured Programming:
Top Down Approach. Datamation, December 1973,
Vol. 19, No. 12.

Mills, H. Chief Programmer Teams: Principles and
Procedures. IBM Corporation, Federal Systems
Division, Gaithersburg, Md. 1971. FSC 71-5108.

Mathematical Foundations for Structured
Programming. IBM Corporation, Federal
Systems Division, Gaithersburg, Md. 1972.
FSC 72-6012.

How to Write Correct Programs and Know It.
IBM Corporation, Federal Systems Division,
Gaithersburg, Md. 1973. FSC 73-5008.

Top down Programming in Large Systems.
Debugging Techniques in Large Systems. R.Rustin
(ed). Courant Computer Science Symposium 1,

New York University. Prentice Hall, Englewood
Cliffs, N.J. 1971.

Myers, G. Composite Design: The Design of Modular
Programs. IBM Corporation, Poughkeepsie,
N.Y. 12601, 1973. TR 00.2406.

Naur, P. and B. Randell (eds) Software Engineering.
Report on a Conference Sponsored by NATO
Science Committee. Garmisch, Germany.
Scientific Affairs Division, NATO, Brussels 39,
Belgium.

Parnas, D. A Technique for Software Module Specification
With Example. Comm. ACM, May 1972, Vol. 15,
No. 5.

On the Criteria to be Used in Decomposing
Systems Into Modules. Comm. ACM, December 1972,
Vol. 15, No. 12.

on Ly

Parnas, D. Some Conclusions from an Experiment in
Software Engineering Techniques. Proceedings

AFIPS 1972, Vol. 41.

Weinberg, G. The Psychology of Computer Programming.
van Nostrand Reinhold Company, New York, N.Y.

1972.

117

wow w4

