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CHAPTER I
INTRODUCTION

It appéars that during'every stage of development of computer
systems that fhe demand for computer memory haé increased. Two major
reasons causing this increase are-1l) larger memories have made it
possible to attempt larger proceséing tasks (often these new tasks
expose other tasks which require even larger memories), and 2) the
development of multiprogr;mming and time-sharing computer systems.
Professor C. V. Ramamoorthy has prophesied [R1] that in the foresee—
able future, computer.systems will always be able to utilize all of
their memories, even a trillion bits. In other words,'memdry access
time and capacity will be a major bottleneck of computer sfstem appli;
cations. Consgquentiy, efficient utilization of memory is essen%ial
to satisfy the demands for memory.

A memory hierarchy results from physical and economic con-
siderati&ns which make it impossible to provide un;iﬁited stbrage in
single memory. Several memory levels with different access times,
capacities, and costs are necessary. Such a hierarchy cousists of
e#ecutable levels such as core memory and non—-executable levels (I0
devices) such as drums, disks, and tapes. It is a well-known fact that
computer system performance is critically governed by the choice of a
cost-effective memory hierarchy. |

The goal of memory hierarchy management is to use strategies
(algorithms which assign information (files) tovthe lévél which ié
warranted by several factors included -in their activity profile (de~

fined later). System designers have been trying to exploit the
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heterogeneﬁus nature of program and data files so that files which are
the least frequently accessed (have a low activity profile) are loaded
"in slower memories and files that are the most frequently accessed

afe loaded in fast memories. Management of executable levels has

long been considered and many of the associated problems are well
understood. However, the parallel management of all I0 devices when
;iewing the computer system as a whole has been perfor@ed on a more

ér less heuristic basis. Strategies for the parallel management of
non—ex;cutabie memories is the sﬁbjéct of the dissertation. By
adaptively applying these strategies to dynami;ally changing workloads,
the achievement of dynamic floﬁ of files (described by Opler'[Ol])‘

A in the memory hierarchy can be realized.

It has long been recégnized that the assignmeﬁt éf'program and
data files to different memory levels is a very critical factor in
computer system performance. For example, a criticélAfactor in deter-
mining the response time for time-sharigg users is the swapping memory
to which the files are assigned. This factor is accentuated evén more
by the shift toward the automated management of the hierarcéy. In
some cases all responsibilities for the maﬁagement of a hierarchy
have been assumed by the operating system and/or system hardware
(making the hierarchy invisible to the user.) Therefore, a controlled
evaluation of file assignment yielding strategies employiné the major
rate determining factors for hierarchy management is justified.

Work on optimization of‘file assignment to levels of a

memory hierarchy show that queuing delays. associated with I0 devices



is a very important factor affecting system throughﬁut. The dominant
effort 6f-this re;earch is the construction, parameterization, and
-verification éf a hybrid modei (using both simulation and analytical
solution techniques) which includes queuing delays. Note that the
term 'hybrid model' refers to the solution technique itself. Simulation
is used to provide a realistic model; anvangiytical model is used to
guide the simulation so that evaluation of ;onfOPtimal file assignment
can be avoided. Experimegts utilizing the hybrid model as a tool to
isolate the cause-effect relationship of importan£ dom#in'variébles on
system throughput are performed. Memory ﬁénagement strategies are
then proposed from the insight gainéd fr;m these experiments.

The appfoach used here differsifrom previous approaches in at
least thrée ways: 1) the entire s}stem is included in attempt to
optimize total systém performance, 2) queuing delays are accounted
for at all servers in the model, and 3) non-executable memories are
managed on a logical information_block (file) basis rather than on a
physical information block (page) basis. All significant holding
times at all servers thréughout the entire system is included in this
_approach. However, many important simplifications (such as first-come-
first—sérve queuing disciplines) are used. )

Chapter II contains the gener51 definitions ;nd background
(including citations to the literature) necessary for optimal file

assignment generation techniques discussed in Chapter III. Chapter

IV applies these techniques to the files of the UT2D operating system.



CHAPTER 1II
GENERAL DEFINITIONS AND BACKGROUND

The term 'memory hierarchy' is a convenient way of re-
fgrring collectively to the various levels used in computer systems.
Each successive storage level contains a memory with characteristics
which follow these two fundamental principles; 1) the larger the
memory, the slower the access time (i.e., the average time needed
to locate a storage unit) and 2) the slower the access time, the
lower the cost per storage unit; The memory hierarchy itself is

necessitated because of physical and écoﬁbﬁié‘gonsideratiens, that
is, for a given performance méasure, a computer system which’
'satisfies this measure for the least cost is desired. System
designers must balance the coé; savings accfuing from a membfy
hierarchy against the performance degradation caused by the
hierarchy.

In this chapter, the two background topics discussed are
1) hierarchy topology and management, and 2) models of memory .
hierarchies. The main purpose'of‘detailing this background of
memory hierarchies is to provide a perspec£ive as to where the
memory management strategies presented in the next chapter belong

with respect to the problem domain.



2.1 Hierarchy Topology and Management

This section is divided into.the topics of managing executable
and non-executable storage levels of a memory hierarchy.. In theory,
a distinction between executable memofy and non-executable méﬁory is its
access time, an executable memoryjhaving a fast access time {commen-
surate with the CPU cycle time) and a non-executable meﬁo;y having a
slower access time. In other words, the faster memories are executable.
In practice, the distinction is whether or not the CPU instruction
fetch circuitry is connected to the memory drives. The management of
‘ executable memories has been the primary concern of the 1iteratﬁre
[A2, A4, B1, B3, B4, B5, C4, D2, D3, D4, D5, Fil, F2,4L1; L2, R3, T2,
Wl, W2, Vé] leaving the (practical) management of non-executable.
memories lafgely ignored when this set of memories (I0 devices) is in-~
corporated in;o an integrated computer system. However, a; is noted
later; the management of individual I0 devices under'non—varying work—.

loads has been fairly well explored [D1, F3, S1, T1].



2.1.1 Management of Executable Memories

The management of executable memories is discussed using
;he following two approaches: centralized versus distributéd exe~
cution. The distinguishing feature is that centralized management
allows execution from the first level only, whereas distributed
management allows execution from either of the first two levels.
There exist many papers in the literature concerning centralized
execution [B1, B3, B4, B5, D2, D3, D&, F2, L2, R3, T2, W1, W2] but
not as many concerning distribufed execution [A2, A4, C4, D4, D5,
¥1, L1, V2]. Both’approaches employ a memory‘hierarchy normally
consisting of no.more than’thfee levels, of which the firét two
"are electronically accessed. The third level, a supporting memory,
may be electronically or mechégically acceSSed (e.g-, large'qapacity
sto?age (LCS), extended core storage (ECS), drum).

The common goal of management strategies of executable
‘memories is to‘keeﬁ the most frequently accessed storage block in
the fastest memory level. Centralized éxecution achieves this.goal
by using management algorithms>which produce no access queuing due’
to either overflow removal (with an instru;tion stack) or mandatory
updating of all copies of a modified storage block( with a cache).

A totally general solution to the selective transfer problem assoclated
with distributed exeéution is currently unknown. Consequeﬁtly, optimal
storage block management.can only be approximated (with the core/LCS
combination). The third level, a supporting memory, is managed by

algorithms which may require access queuing (especially‘if mechanically



accessed memories are used).

The common memory management strategies (for centralized,
distributed, and supporting) are.now summarized. Centralized exe-
cution is discussed from the viewpoint of the first memory level.
Distributed execution is discussed from the viewpoint of the core/LCS
combination. Strategies for the ﬁanagement of supporting memory are

only highlighted.

2.1.1.1 Centralized Execution

A few modern processors employ an instruction stack which
" provides storage for the most'recently referenced instructions [T2].
There are two major advantages of this strategy. First, the in-
struction fetch is much faster in many cases especially since it allows
procgssing to broceed at the speed of the faster stﬁck for loops
contained within the stack. Second, fewer storage conflict conditions.
are possible since fewer actual storége references are made. Its
major disadyantage is its small capacity. However; even if a program's
working set cannot.be contained in the stack, pgrformance is not |
appreciably degraded due to the small disparity in access gimes between
the stack and core memory.

Another current memory management straﬁegy eﬁpipys the use
of a high speed buffer memory, called a cache, between the CPU and core
. memory to partially compensate for the disparity of their access times
[L2, Wl]. The cache is managed so as to hold the contents of those

portions of core memory that are currently being accessed. Most CPU

memory fetches can then be handled by referring to the cache, so that



most of the time the CPU has a short aécess time. The net effect of
the cache is to reduce the number of required core memory fetches,
or to make core memory 'look faster' as seen by the CPU,-in-that

the expected access time to core memory is smaller. The re5u1; is
the principal advantage of this strategy: a program's wofking set
accumulatés,in the céche.

Closer inspection of cache operation illuminates a major
disadvantage. Two CPU cycles are required to fetch data residing
in the cache. The first cycle is used té examine registers and
validity bits to détermine if the data is within the cache. If so,
ﬁﬁe second cycle is used to retrieve it. If the data is not in the
. cache, additional cycles are required while the page is 1oaded from
cére memory. Rollout of the replaced data from.the cache to core |
memorf is never necessary since store operations always cause core
memofy to be updated in most cache designs. Hence, a major disadvan—
tage 1is whenevei a page in the cache is modified, its copy in core
memory must also be modified (at core access time) causing an en-
forced wait upon the CPU. Howeve?, the mandatory updating produces
no access queuing for core memory. It should be noted that if a
particular working set generates much storing, the cache offers
litfle advantage.

Another problem of using the cache occurs in a multipro-
gramming environment. If the degree of multiprogramming is one and
if the applica;ion program is one in which the accessing of memory

is not random but follows localized patterns, then the use of a



cacﬁe can normally be justified. 1If the degrée of mﬁltiprogramming
is large, then determining the accessing patterns to memoryis more
complicated (evén if all jobs aré the same application program)

and use of a éache is more difficult to jﬁstify. One factor govern-
ing the competition for the cache-is the CPU scheduling algorithm.
The cache would be defeated if thé time quantum for a job expires
just when that job has retrieved itsbworking set into the cache
from core memory. The fa;t that typicél jobs when run separately
do hot produce random memory accessing does not imply that typical
Jobs Qhen run concurréntly do not produce (near) random memory

~ accessing. .

Finally, like the instruction stack, the cache reduces
the effects»of>channei interference upoﬁ core memory. However, if
the entire computer system is IO bound, the cache again offers little -
advantage.

Hanagement strategies of a single core memoéy have iong
been a topic that has been widely explored in the literature [B1,
B3, B4, B5, D2, D3, D4, R3, W2]. One of the best known of these is
;He work of Belady which evaluates the performance of paged memories
in terms.of page fault rate as a function of page sizg and core
memory allotment. Denning has also contribﬁted the highly regarded

concept of working set to page replacement.

2.1.1.2 Distributed Execution

In the distributed execution approach, the CPU may access
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and execute information stored either in core memory or LCS. .The
goal of the management strategy is to kéep the most frequently
access;d information in core. Conseduently, the selective trans-
fer problem immediately arises; when should information be moved
into 1LCS? Some of the conclusions incorporated into management
strategies are tradeoffs based on the cost gf not moving the in-
formation-and accessing at a slower rate, and the cost of moving
the informétion to access it at a fast rate [C&,.D&, D5, F1]. . The
strategles are based on having a valﬁe for the fréquency of access
tb the desired information. This value is generally not known and
can only be approximated by measurements taken either statically

"~ [c4] or dxnamically [Fi], Because of the disparity of access tiﬁes
- between the CPU and LCS is even larger thaﬁ~between the CPU and |
core mémory, the transfer of information between these two levels
(which is performed by the CPU) is very time consuming. Without
the.use of additional hardware to make the core/LCS combination a
self-contained memory unit, it appears that distributed execution
is not a likely path for fufure architectﬁre.

2.1.1.3 Supporting Memory ' :

et

P il

The supportingvmemory level oé e#ecutable memory'is normally
 comprised of either a bulk core memory such as ECS or LCS, or a

-fast 10 device such as a paging drum. This level 1s primarily used
ags a swapping medium in a multiprogramming/interactive environment.

Both of the bulk core memories are at least three orders of magnitude
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faster ﬁhaA the fastest IO device. ECS has an a&véntage over LCS
in that its transfer time, a function of the number of words
'mpvéd, is non—linear (e.g., it takes the same time to transfer
ten words as one word, but it takes longer to transfer 500 words
than one word). Consequently, further improvements in response
time of buik core memory probably must come from the use of 'ECS-
1ike® block transfer memories. Current management strategles of
bulk core me@ories involvés ménaging them as a fast 10 device of
zero latency time and of véry 15w probability of delay due to
access queuing [Bl, F1, F2, L1, V2]. Management strategies of
fast I0 devices are the same és those of single device management
strategies of noﬁ—executable memories and are discussed later

under - this topic.

W\
\\



2.1.2 Management of Non-executable Memories

Some strategies for managing sing}e non-executable
memorieé have long been praéticed, in particular, preplanﬁed data
layout on mechanically accessed 10 devices so as to reduce laténcy
time. However, concepts underlyiné queuing algorithms [D1, F3, Tl]-
and device folding [S1] have only recently been studiedg. The manage-
ment of multiple IO devices when viewgd as a sys;em has been largely
ignored. New hardware such as device-to-device channels has further

added to this management problem.

2.1.2.1 Single Device Management

Tﬁe goal of preplanned daﬁa layOug on mechanically. accessed
I0 devices is to keep the inforﬁaiion that is most likely to be
referenced next almost under the read heads by the time it is
referehceq. (This strategy was used on the IBM 650 drum memo;y).
Of course, preplanned data layout is a staﬁic techniéue and depends
upon correctly collecting/predicting exﬁernal reference characteris-
tics. In a multiprogramming environment, this strategy is most

amenable if a single IO device can be assigned to an individual

application program. B

L

Several queuing algorithms currently exist which optimize
the response time of the I0 device which they schedule. Thése
"algorithms include shortest-seek-time-first, SCAX, and minimal~total-
processing~time policies {D1, F3, T1]. For the most ﬁari, these

algorithms are implementations of results from non-executable single

12
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server modéls discussed in the next section. A tradeoff must be

made between the overhead required to execute these. algorithms and
" the expected improvement in response time. In some computef’systems,
i£ does not pay.to schedule individual IO devices either because the
overhead of the algorithms is too large or because the .mean queue
length of the device is small.

| Folding of a rotating IO device is an allocation and access-
ing management strategy wﬂich sacrifices device capacity to gain a
_reduct;on invaccess time [S1]. An iO device 1is folded by keeping
several copies of an information block equaliyAspaced over the device's
surface so that when an inforﬁation block is accessed, it is serviced
"by retrieving the block closest to the read heads. Experience with.
this atrategy is somewhat limited especially concerning tﬂe'éverhead

of maintaining multiple copies.of an information block on a potentially

glow I0 device.

2.1.2.2 Multiple Device Management

Heretofore, multigle device managgment‘of non-executable
memories has been largely ignored. An exception to this is thaé
tﬁe same information block may be allocated across a device set>in
order to reduce access‘time (e.g., a file is allocated“;cross a
successive disk sequence of a disk set {(on a one track/disk basis,
if possible) tc attempt a reduction in seek time when accessing the
file). The success of ;his strategy is highly correlated with ex-

ternal referencing characteristics.
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The'strétegies presented in the next chaptér are those
for managing non-executable memories. They differ from previous
" strategies inAat least three Qays. First, in attempts to optimize
total system performance, say‘system throughput, thef’includeifhe
entire system. In othér words, they do not view the non—eﬁecutable
Amemories as stand-azlone memories. Second, gﬁey account for queuing
or waiting time delays not only for the individual devices, but
also for the CPU, for thé‘channels, and for executﬁble TMemory.

Buzen [B7] has shown that whenever a choice of Ioidevices'can be

made, it should be made so that a greater‘proportion of accesses
 flows. to the fastest device (so thaﬁ it ;s always busy) for optimal

. system performance; the fasteg the deviée implies the greater its

‘ utilizatién. Strateéies for proportioning these acceéses for
‘optimizing system tﬁroughput are given. Thira, the non-executable
memories are ganaged on a file or segment (logical information block)
basis, rather than on a page (physicai information bleck) basis. This
is a more realistic situation for many operaﬁing systems.

New hardware concerned with non-executable memories greatly
gdvance the management of these memories on a dynamic basis. Séecial—
ized hardware is a;ready available for the management of particular
I0 de§iées (e.g., CDC's Direct Data Pafh'éllcws infoégatién to flow
" 4into ECS from a lower storage level without flowing through core-
memory). These advances make it easier for the more frequently

loaded files to percolate to faster non—-executable memories. However,

models incorporating these advances are currently embryonic.



2.2 Models of Memory Hierarchies

ThisISection classifies the models of memofy hiera;chies
into two categories: models which assume no internal queuiné, and
. models which permit i{nternal queuing. Internal queuing means that
queues are gllowed to form béfore the servers inside the model.
Bowever, for open single server models which permit the formation
of a queue, the queue itself is considered to be cutside the‘model
and is.treated as a holding aréa.for arriving requests.. When no

{nternal queuing is assumed, the literature contains many Treports

concerning the models of memory hierarchies [Ai, A3, A4, C6, C5,

p1, F3, M1, RZ, T1, T3, y1]. But when internal queuing is permitted,

relatively few reports are found [c1, S21. Such models, be ;hey

exact or approximate, are currently an area of active research.

15
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2.2.1 Models Without Internal Queuing

Moaels which assume no internai queuing are discussed
‘using the follcwing two approaches: those stressing the modeling
of executable memories [A3, Cc5, M1, T3], and those stcessing the
modeling of non-executable memories, the 10 devices [Al, A4, C6,
K D1, F3, R2, Tl, Y1]. Special notice should;ce taken of the models
of Ramamoorthy and Chandy. [R2], and Arora and Gallo [A4] because
the analysis technique described in the next chapter employs an

_extension of their models.

-

-

2.2.1.1 Stressing Executable Memories

The model used by Mattsonm, et';lu [M1] yields an effi~
cient procedure that determines the frequercy of access to each
.level in a memory hierarchy as a function F of the capacity of
each level. It assumes that a page address trace has already been
collected and that the replacement algorithm is a stack algorithm.
The effects on F of other variables such as page size and number
of levels in the hierarchy ¢can be determined during the same pass

- of the address trace. Consequently, this is an analysis/evaluation

model of a single address trace.

o
o

The model is given in Figure 2—1. The address trace has
been replaced by a page reference generator. Note that this
abstraction does not differentiate between CPU and channel memory

references. Since centralized execution is assumed, the model

-
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Mattson's Model
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operates .as folléws: At a given timé, the referenée generator
presents a request for a page. Undef demand paging, if thi;
page is located in the first level, the reference proceeds #nd
no page movement occurs. Otherwise the referenced page is movéd
into the first level from a iower level. The retrieval time
depenis on the level number (distance) of the nearest level
containing the referénced page. If the first level is already
full, a stack replacement algdrithm (normally least rec;ntly used)
selecis some other'pagé for deletion. Downward percolation from
‘the first level is ﬁever necessary since wheneﬁer a page is
modified in the first level, its copies in all lower levels '
(éxcept the lastj must also bg modified. However, percolation

betweén the next-to-last level and the last level must be performed.

The function H(C), called the success function or the hit -

ratio function, is the probability of finding a referenced page

already loaded in the first level memory of capacity C of the

memory hierarchy. :Briefly, it can be eéaluatgd in one pass of the
addressrtrace as follows: |
’a. maintaining a stack of the referenced pages ordered
from most freéuently used to least frequently used
b. méésuring the distance from the top of the stack to
the referenced page (each new reference coming from
the addréss.trace)
C. -éenerating'H from the frequency of these distances

(values of H for ailAcapaéities are generated

18



19
simultaneously sinee capacities ere fixed distances
from the top of the stack).
Ic is important to understand the derivation of this‘function since
it is an integral part of other works [C5, T3].
Only two minor faults can be found with the assumptions
‘of this model. First, it assumes that no memory interference

exists between the references of the CPﬁ ané the channels. Further-
more, it assumes that channel references are dlrected to the first
memory level. This is not the case in the real system behlnd this
model (i.e., the IBM 360/85 cache/core/drum). Second, it assumes
: rhat no temporary storage 1is required for staging a page from the

last jevel to the next-to-last 1evel of the memory hierarchy. In

the real system, this is again pot the case.

| Three points must be stated concerning the potential

misuse of this model. First, the address trace whlch is used to

generate the success funct;on H(C) is'assgmed to characterize the

workload. However, COMmON address traces are collected in a uni-
programming environment and represent a particular workload onl&.

The success function may be unpredictable if the address trace is
Mcollected in a multiprogramming environment with a large degree of
"multiprogramming and inappropriate management policies. (The designer

must be aware of how closely the composite success function of many

jobs approximates the success function of a single job.) This impor-
tant assumption is often ignored. Second, this model may 1ull the
designer into managing the entire memory hierarchy on & page;basis.

.'-This is impractical for a large capacity hierarchy, one reason being

1
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the enormous page location tables which must be maintained. Third,
this model assumés no internal queuing (e.g., no (or constant) in-
terference at the drum level). This is immaterial for gene;ating
the success function (since it is not g function of access fimg) but
may lead the designer into over-specifying the capacity of theAnext-
to-last level in order to prevent queuing.

The major contribution of this work aside from producing an
efficient procedure thatgevaluates the frequency of access to each
level in a memory hierarchy is that. it develops a clasg of replacement.
algorithms (stack algérithms) such that the probability of a page fault

. 1is a monotonic deéieasing function of memory éapacity.> T@is is npot

. always true, ccn;rary to iﬁtuition. For example, FIFO replacement.iS'
Akﬁown to have an‘increasing section in its fault probability curve as
ﬁemory capacity is increased for partiéular address traces kBS]. The
importance of this wqu is also emphasized by notigg that if is the
father of many design.models {T3, G1, C5]. |

. Chow [CS].generalizes the success function H in ordef to obtain
analytical solutioﬁs forr0ptimal aesign-problem of memory hierarchies.
In the sdlution process, the follﬁwing thrée aséumptions are made:' 1)
each memory level is characterized by its access time, capacity, and
cost per unit storage, 2) gﬁe memory management strategy is completely
characterized By the.success function H, and 3) the fault rate function
F (=1 - H) and the memory coét function, both being nonlinear, are
representable by power functions. A ciééed form solution for the minimum
average acces§ time per memory refereq;e is‘obFained as a function of

i

system capacity and cost. -The solution técﬁnique uses the theory of
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geometric programming to solve.this nonlinear proérémming problem.
Using this solﬁtién, answers to questions such as 'What is the
,optimuﬁ capaci;y of each storage level?' and 'What is the optimum
number of 1evelé in the hierarchy?' are obtained.

This set of solutions on the optimization of memory hier-
archies is the most mathematically rigorous to date, but 1s most.
applicable in a uniprogramming environment.: For this solution set
to be completely valid in a multiprog;amming environment, three
impli;it assumptions about the nature of a computing systeﬁ muét Se '
made. First, all programs, including the'operating system, must have
tﬁe same success funétion characteristics. While this agssumption aids

in mathematical tféctability, it'disalléwg a dynamically changing work-
load. How close a static (buf genefél) success function approximates
‘a dynamic success function is a subject for future resear;h. Second;
the degree of multiprogramming Qust not be too largé and inapproériatg
management poiicies must not be gsed to avold making H unpredictable
(which defeats the memory hierarchy management strategies). And third,
since a constant access time is assumed for the.léét level, quéuing at
the last level is disallowed. For counterexample, in an actual
gqmputing system a given program is allowed to execute until it
‘references informafion in the last level. While the‘féferenced in—v
formation is being transferred into the next-to-last level, the CPU
is switched to another proéram which may Immediately do the same

thing. The mean waiting time could be used in the calculation of

the constant access time except that it depends on the capacity of
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the next—té—last'level, a variable which is being solved for,
So this solution set may cause the designer to overvspecify the

- capacity of the next-to-last level.

~ 2.2.1.2 Stressing Non-executable Memories

fhe second ;pproach of models which assume no internal
queuing 1s that of stressing the modeling of non-executable
memories, the I0 devices [Al, A4, C6, D1, F3, R2, T1, Y1]. This
approach can be furfher classified into single server models [Al,
c6, D1, F3, T1, ¥1] and multiple server models [A4, R2]. Manage-
ment algorithms‘for ordering a queue of refereﬁces according.to
. some discipline (such as shortest-seek-time-first) are proposed
from single server modeling results. By management algorithms is
meant the séheduling of waiting ﬁemory references according»tb the
currént state and the characteristics of the IO device. These
.models do not éonsider the nature of the coﬁputing systembthat
-generates the feferehces (i.e., they aré stand-alone models), nor
do they include intrafiie organizétion. The multiple server ﬁodels
extend results by proposing management strategies for more than one
‘device undér the assumption of no queuing delays. They also con-
sider on a very generai basis the processes that geneféée the |
* references to the hierarchy.

Primarily, single server models concerned with scheduling
moveable head disks are contained in the reports Sy Denning [D1]

and Teorey and Pinkerton [T1l]. Their models are used to evaluate



many queuing disciplines over the first-come-first-serve (fCFS)
discipline (which induces 2 random seek pattérn since it does not
take‘édvéntage sf positional relationships among the queued
refefences). The shortest—seek~time~first (SSTF) discipline is
rejected because it may allow discrimination against those
references -whose requested information requifes a long seek time
(i.e., the yariénce of the.mean seek time is lgfge); With the
SCAN access method [D1], the disk arm §weeps back and forth across
the cylinders changing direction only at the inner and outer
,;;iinders to avoid fhe discrimination of SSTF (i.e., to reduce the
variénée but at the expense of the mean). Teoreyzand Pinkerton
.note that ender heavy léading éonéitions.(ite., the disk is a
sysfem bottleneck), the difference in performénce between SSTF
and SCAN is nearly indistinguishéble. 0f course many othef
queuiﬁg disciplines are possible; bu: the above threé are probably
the most popular and most widely éiscussed in the literéture.

.A single server modgl concerned with d;um analysis is in
an early report by Céffman [C6]. He provides an.exact analysis

of an approximate drum model under the assumption of Poisson

arrivals. Results for particular disciplines are derived which

- represent bounds on the performance of actual drum systems. A

most recent model concerned with the scheduling of both drum and
disk is the minimum~total-processing-time (MTPT) discipline reported

by Fuller [F3]. The MIPT discipline orders the set of pending IO

23
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requests (onn each new request arrival) such thac the order
minimizes the total processing time for the set. However

Fuller notes that, even for the efficieat implementation of the
ﬁTPT algorithm; the difference in drum performance between
shortest-latency-time-first and MIPT is nearly indistinguishable
under heavy loading conditions.

The multiple server models are used in the ogtimization
of computer systems with more than one IO device [A4, R2]. The
objecg is tovminimize cost per écceés to the memoryvhierarchy
-[R2] or to maximize throughput of the system'[AA]. However, their
solution techniques impose aséumptions such as no internal q%euing‘
"which results in thelr proposed management strategles not being
widely adopted. An extension.of their models which inéludesﬂ
internal queuing'is given in the next chapter.

Ramamoorthy and Chandy [R2] describe a technique for
‘cost~performance evaluation of a memory hierarchy in terms of a total
memory cost pef memory access, the selection criterion being tﬁat of
the lowest ratio. Their model; consisting of several 10 device§
{(non-executable memories) all directly conﬁected to an‘implicit
executable memory and :hat‘to a CPU, is given in Figure 2-2. Note
that memory~tc-memory channels do not exist. The model operates as
follows: the CPU retrieves a unit of information from a given
memory level, transforms it, and then stores it.back into the same
level. In the solution process,(the following two major assumptions

are made: 1) each memory level is characterized by its access time,
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capacity,vand cost per unit storage, and 2) memory requirements
and frequencies of usage for pfograms and their associated data
are known a priori (1ike the success function H for a particu-
lar .workload). An algorithm for the minimum average %ccess tiﬁe
per memory reference is obtained satisfying system capacitﬁ and
cost cogstraints. (Note that the cost of associated hardware
such as channels and cont?ollers is not inciuded ip the model.)
Then integer programming techniques are used to sglve éor optimum
capacity of each memorj when that memory ;s constructed of
individual modules.

For these sclutioms to bg Qalid in a multiproéramming
. environment, the folloﬁing additicnai assumptions must be made.
First, thé activity brofile must characterize the activity of
‘all appropriate programs and data, includiné fhe operating system.
Also, the activity profile is assumed to be constant (static) in
time (i.e., it is assumed to be a steady state representation of
activity). This disallows a dynamically changing workload. Second,
the probability of accessing any block must not -depend on past
accessing history. Finally, competition for resources (which
inducequueuing) for the programs must be ignored.

The major coaéribution‘of thié work is not so much that
it is the first to produce quantitative solutions to this problem
" (by applying operations research techniques) as.it is the first

to quantitatively formulate the problem. In other words, it is the

first to define the cptimization problem, the objective function,

e



the variables, and the constraints. Note the similarity between
this work and the later work of Chow [C5] especially since both
assume a static workload in a uniprogramming environment.

Arora and Gallo [A4] extend the use of the activity pro-
file to aid in maximizing the throughput of the entire computer
system. A ﬁypical system configuration is given in Figure 2-3.
Since.optimal system throughput greatly depends on where program
and da;a files are loaded and processed, a linear programming (LP)
problém is formulated whose objéctive'is to minimize the sum of
the following times for all files:

a. inétruction execution times im the executablé mémorieé,

b. accéss and transfer times from the non-executable

. memories.
Note that the above sum does not include qﬁeuing time for system
resources. | |

The variaﬁles of the LP problem are as follows:

1. hardware parameters:-

by :  transfer time from the mth executable memory,
a, H access time for the nth non~executable memory,
Ch.m : ‘traﬁsfer time from the nth non-executable to

. *

the mth executable memory.
2. job characteristics (given in the activity prefile):

v file size *

4 : average record size that must be loaded

i : average number of executed instructiocns

27
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£ : frequency of fiie execution

£' *© : frequency of file loading.
Note that f' is a function of many variables, including where a
file is loaded which is being solved for. By defining a load-
ing factor per file as a time (execution time + access time 4.
transfer time) per unit size ratié, a simple loading strategy
is shown to be optimal and operates as follows: the fiie with
the greatest loading factor is loaded into the ﬁastest memory,
the next file with the greatest factor into the same memory, énd
so on until the capacity of that memory is exceeded, then the
_ process is repeated on the next fastest memory.

This soluﬁion is valid in a gniprpgramming énvironment
where the‘loading frequencies (f') are known. Assuming prior
knowledge of the loading frequencies, this strategy loads the most
frequently loaded files (everything else being equal) in tﬁe
fasteét memory. So if only two files' are cpntained in the
activity profile and the capacity of the fastest memory is large
enough, both files aré loaded there, even if a second memory is
available and is oﬁly slightly slower than the first. In a multi-
programming environment, this would normally produce sub-optimal
system throughput. The model of the nmext chapter rectifies this

problem.
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2.2.2 Models With Internal Queuing

fhe literature contains relatively few reports of models
which permit internal queuing [Gl, S2]. The most notable example
of such a modelris that of Shedler [S2]. The system modeled is
a EPU accessing and processing files stored in a two-level memory
hierarchy, a drum containing a file directory and a disk containing
fhe files themselves. A Mafkovian model is constructeé and operates
as follows. After jobs are served by the CPU according~to a
geomet;ic distribution of service times, they flow to the drum
for a geometrically distributed number of references in the file
directory, and then flow to the disk to be served by an arbitrary
-distribution. The power of this technique is illustrated by the
relatively simple derivation of utilizations, mean queué 1éngths,
and mean waiging times. It shﬁuld be noted that a job has only one
path to follow after it determines where the requested file is located
(from the directory on the‘drum). Thus optimal device usage is not
a problem.

A model permitting internal queuing is given in the next
chapter. The model alsc includes multiple.non-executable memories
(e-g-, parallel disks in Shedler's model). Thé key to the analysis
technique is optimally proportioning file accesses among the I0

devices. When this is done, optimal system throughput is obtained.

=



CHAPTER III
FILE ASSIGNMENT IN MEMORY HIERARCHIES

3.1 »Intfoductidn

| Fundamental to the generation of file assignmeﬁt strategies
in memory hierarchies is a model which maps domain variables, |
notably the job characteristics, the degree 5f multiprogramming
(potential job interferenée due to queqing delays); and the systen
model, into values of ;ystem performance metrics, éay a value of |
system throughput. If the jobs themselves are requests for the logd-
iﬁé (t;ansferring a record of a file from secondary memory into
exegutable memory before processing, if pot already there) and
processing’ (executing program files or accessing intra-record infor-
‘mation of data files) of files then the job characterlstics are
commonly given in an activity profile, cne entry per file., Each
entry contalns characteristics of a glven file (e.g., the frequency
with which a file is requested by different JObS. See section 3.2.2).
The object of the model, generating optimal system throughput, is
gccomplished by deciding 1) where individual files are to be loaded
and 2) where they are to be processed in-the memory hierarchy. This
decision process ié referred to as file assignment. §o£e that the
optimization of file assignment is the fundamental problem of analysis/
evaluation of memory hieraréhies. The analysisltechnique described
later is an approximate solution to this problem.

The model which permite internal queuing is then used as a

primitive to gain imnsight into the load factors (of the files in the
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activity profile. See section 3.2.2), the degree df.multiprogramming,
and the hardware.characteristics (of the system model) effecting
system throughﬁut and corresponding file assignment. Memory ménage—
ment strategies (practical assignment algorithms), a functicn of
load factors, degree of multiprogramming, and hardware characteristics,
are given for obtaining file assignment unde: using a static activity
profile. (This implies that the time period for measuring the re-
quests for all files is ;ufficiently long so that they may comprise
a‘single file request distribution.) These are called static memory
managément strategies.

| Multiple file request distributions can beiconsidéred by
using a dynamic activity profile (i.e., a profile in which the
frequency of requesting a file is not known & priori and varies with
diffgrent time periods). A dynamic activity profile may be viewed
as a sequence of static activity profiles, each being valid for ome
time period. Consequently, a strateéy is suggested for managing
dynamically the non-executable levels of the memor§ hierarchy. 1t
uses the same analysis technique as that used for a static.activity
profile, but it is triggered dynamically by monitoring file accesses.
This strategy attempts to adapt the computer system to the workload
and not the workload to the computer system. ‘

It 1s an important simp;ification to separate the management

of executable memories from thjf;anagement of non-executable memories,
This allows more frequéntly procaised files§§rgeaom to percolate tb

faster executable men. rics without regard to their loading require~



ments, and the more frequently loaded files freedom to percclate
to faster non-executable memories without regard tc‘their pro-
cessing requirements. (It is assumed that appropriate datax
transfer paths exist among the meméry leve;s.) |

It has been demonstrated that executable memories and
specialized .10 dev1ces can be managed on a page basis [C3, Gl,
Mi, T3]. However, management of the entire non-executable
memories on a page basis‘appears doubtful primarily beﬁguse of
enormous page 10catiog tables that must be maintained fqr large
capacity hierarchiés. Consequently analysis techniques assuming
that the entire hlerarchy is managed on & page basis seens
 imp1aus1b1e at the present state of the art. Note that the
strategy referenced above manages non—executab;e memories on
a file or segment (logical information block) basis, rather thau

on a page (physical information block) basis.
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3.1.1 Approach

The management strategies are generated in the follow-

ing steps (corresponding to sections of this chapter):

A.

Analysis Technique

A model which includes queuing delays is con-

structed which maps three thropghput variablés;

activity érofile, degree of multiprogramming,

and the system hafdware/SoftwareAcharacteristics

into system throughput and corresponding filé |

assignment. .

Stétic File Assignment Strgﬁegies

1. The céuse/effect relatioﬁship of hitherto
unstudied throughput domaiq variables on
file assignment is isolated via the model
constructed in A.

2. Memory management strategies are giﬁen for
static file assignment frdm the insight

gained in B.1.
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3.1.2 Design of System Models

Before éroceeding to the definition section, a brief
look at computef system design is given. 'The reader should observe
two points: i) the model of A is a primitive of the hierarchy
design process, and 2) the primitive does not spend effort to
minimize system model cost; it only evaluates the system model
for performance metrics.

The fundamental éroblem of computer system design is .
mapbing design inputs (such as jébichéracteristics, individual
?ardware/software component costs and timings, maximum cost,

' minimgm throughput) into a préposad systenm while at the*samé

time ensuring customér satisfaction, a funétion of several §ariab1es
including various performance metrics (é.g.,‘throughgut, responsé
time,_etc.) and total cost of the proposed system. Let the domain
variables be throughput and cost and let their corresponding input

constraints be throughput and cost___. The customer is satisfied

min
when any poipt in the shaded area of Figure 3-1 is spanned by a pre-
posed system. Since there are normally many systems that ensure
satisfaction, the designer can choose one according to other strategies
(such asvmaximizing the cost of a éystem for the givenrthroughputmin
constraint at the expenée of the custqmer).‘ Heré, the strategy

"of minimizing the cost of the system for the given throughputmin
constraint is assumed not onlv to make the system the most competitive
possible for the design inputs, but also to eliminate the need off'
minimizing system cost at primitive levels of the design process.

For example, the problem of memory siéing does not arise [as in R2]
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if the design process steps from one intermediate mihimal cost
system modél to tﬂe next minimal cost system model which
increases thrdughput in its attempt to generate a proposed
system. |

For the purpoée of solving memory hierarchy desigﬁ
problems such as those described above, the.énalysis primitive
is used fo calculate performance. The desién procedure is
composed of a set of nestéd loops, one‘for’each design parameter.
The innermost loop uses the parameter settings ané the-primitivé
59 compute a cost-performance product. Nérmally, the hierarchy
‘yielding the lower product (subjectAto c&stomer cost-perfcrmance
.constraints) is selected. Intelligent éearch strategles are
employed to reduce search time; Noté however that the analysis

primitive is the subject of this chapter.
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3.2 Definitions
3.2.1 System Throughput

Throughput is the rate at which requests are serviced
per unit time and is measured at various points within the |
system moﬁel. System throughput is throughput which is measured
only at points corresponding to job arrival/ééparture. Through-
out this chapter, the thrbughput optimization problem is approached

frdm the viewpoint of optimizing the throughputof’tﬂe entire

| systém (measured at the CPU), and not of individual subsystems.
(Often when individual subsyétems are optimized and then interfaced
together, the entire system performs in a.suﬁ-cptimal manner. For
example, a sophisticated scheduling algorithm is used to minimize
waiting time of requests at an individual IO device; But when the
device is included within the system, the mean queue length is
one. Hence, the throughput of the CPU is sub-optimized due to the
overhead induced by executing the algorithm.) . |

The systgm throughput function, being in non-closed form, is
defined as a function of the following three domain variabies: the
activity profile of the files, the degree of multipregramming, and
the system model. All three variables must be given éi@ce the
analysis process does not specify the workload nor design the
system model; it merely analyses it for system throughput and file

assignment.
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3.2.2 Activity Profile

The first domain variable is the activity profile, a

representation of the job characteristics abstraction. In this

case the following five parameters are included inm the prcfilei

a.

b.

e.

(Serial) Reusability of a File (i.e., single copy

sharable)

Its values are:

P - Program File, Not Reusable
D - Data File, Not‘Reusable
PR - frogram File, Reusable
DR - Data File, Reusable

Note that reusable files which are loaded are not

_ reloaded for additional ﬁ§age and that program files

which are loaded but otherwise unused are not SVapped—r
out on replacement. |

quueét Frequency of the File

Instructions Executed/Request

(for CPU service ﬁimé)

Words Loaded (record size)/Request

(for loading service time) T

Volume of the File

The last four parameters are used by Arora and Gallo [A4] and

represent easily measured statistics of a file 'in a tramsaction

oriented system. Refer to Figure 3-2 for an example of an activity

profile.
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Reusability Frequency Instructions

PR 3.1 6000

PR 1.2 3000
- PR .26 3000
" PR : .26 3100
PR .76 ‘ 2900
PR .32 2900
PR .32 2400
PR .14 800
PR .176 1800
PR .14 1800
PR .15 1000
PR .15 - 600
PR .15 1000
P .296 10
D .228 1700
D .268 10
D .820 1
D 1.420 304
D 492 3
D <176 : 1
D <492 . 10
DR .001 . 20
D - .296 27
D - .101 30
D 1.130 40
D .843 ' 47
D .180 ‘30
D .001 20
D .912 30
D .090 ) 1
D . 560 50
‘D .140 4
D .068 1
D - .068 7
D .0001 50
b .001 100
D .750 7 -
D .0001 100
D .001 4 50
D .001 3
D 5 75
P .001 - 1000

Activity Profile

Figure 3-2

Record Size

2112
6000
3456
1920

254

3200
2752
254
1088
1792
832
640
384
. 64
1700
150
2
304
6

2
2000
462
27
'35
46
47
33
28
33
1
202
2

1

7
245
209

1000~

66

1056
see

Volume

2112
6000
3456
1920
1254
3200
2752
254
1088
1792
832
640
384
21504
167040
24000
264000
516800
90024
330
113154
462
216000
1033352

5630400

135360
68360
26032
600000
1320
126000
2112
4400
93060
21102
30030
54012
60060
20064
240042
3168

482608
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Notice £hat the activity préfile includes a parameter
representing a priori knowledge of request frequenc& of a given
file. This knowledge of inter-file (job) behavior can be obtained
by a variety of different techniques. Probably the easiest of.
these is to assume certain file behavior dictated by experience
with a particular environment. A more sophisticated technique of
obtaining an activity profile is monitoring the files themselves.
The needed parameter can be méasured especially easily Qith a
softwére monitor since it represents knowledge only at a very gross
level of detail. '

The analyéis probiem of improving system throughput is
aﬁproached by using two different types of actiﬁity profiies:
first; that of using a static activitf.profile, and second that of
using a dynamic activity profile. A static activity profilé is a
constant; it is independent of time throughout the analysis proccess.
In other words, a static activity profile remains insensitive to
transient fluctuations of file reéuests-because steady state request
frequencies of files are known. ‘Since it.is tiﬁe jndependent,
values of system throughput and corresponding file assignment are
static and need be calaulaged only once. Therefore, a static
activity profile implies static memory management strategies.

A dynanmic activ}ty profile is one whose frequency of file
request parameters are time dependent and allow;d to vary during

the analysis process. This time dependency stems from the facts

.41



that 1) the files may experience high usage at some periods of
time and low usage at other pefiods, anﬁ 2) more importantly, the
‘assumpﬁion of a priori knowledge must be reiaxed sinqevsystem
designers may have imprecise knowledge as to the steady state
Tequest frequencies of files for a single period of time. Con-
sequently, the files themselves may percolapé in the memory hierarchy,
at one period being loaded in a memory of fast access time and
at another'period of relatively slow access time._ The problem is
not doing the physical file movement, but.knowing.when to.dﬁ it.
if one percolates too frequently, one induces sub-optimal perfor-
mance due to the overhead cost of excessive file movement; if ome
- does not percolate freéuently,endugh, orie induces a sub-ocptimal ﬁer—
formance due to use»of incorrect file assiénment. Therefore, a |
Adynamic activity profile implies dynamic memofy management strategles.
Later experiments are made to gain insight into load
faciors effectihg ﬁemory management. These 1qad factors are defined
here for conciseness. They are simply parameter permutations of
the activity profile of Figure 3-2 defined as follows:
a. All Files are Reusable
(1) Case RL, all files gfe load bound
(2) Case RE, all files are balanced
(3) Case RP, all files are processing (CPU) bound

b. All Files are Non-resuable * L e
(1) Case NL, all files are load bound ‘

(2) Case NE, all files are balanced

(3) Case NP, all files are processing bound
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The lcad bound cases (RL and NL), ﬁhe balanced cases (RE and NE),
and the processing bound cases (RP an& NP) are obtained from the
activity profile of Figure 3-2 by setting the teusabilit§ parameter
such that all files are either reusable (R) or not (N=nill), and
by dividing the given words 1oadeé/request parameter by 1, 5, and |

10 for the respective cases.



3.2.3 Degree of Multiprogramming

The second domain variable of the system thréughpnt function
is the degree of multiprogramming. It is the variable which
specifies the amount of potential queuing interference (job coﬁpeti~
tion) for sgrvicing fequests'or for allocating resources.

, A common definition of degree of multiprogramming is the
number of jobs circulating in the model which have already queued
for and been allocated executable memory. However, her; for
simplicity, the degreé of multiprogramming is the number of jobs
;irculating in the model regardless of thgir lécation. For gxample,
jobs waiting in the memory.queue'are counted in the desgree of |

mdltiprogramming.
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3.2.4 System Model -- Hardware Characteristics

The third domain variable is the system model, a repre-
Sentation of the hardware/éoftware characteristics. In this case
it is composed of the following paraméters;

a. Hardware '

(1) Numer of CPUs and Associated Mean Execution
Time/Instruction

(2) Number of Executable Memories and Associateé
(a)i Capacity
(b) Transfer Time/Word

(3) Number of IO Devices anq_Associateé
(a) Capacity |
(b) Mean Latency Time
(c) Transfer Time/Word

(4) Number of Channels -

(5) Intercomnection Topology

b. ‘Software'

(i) Queuing Discipline Algorithms.

(2) Resource Management Algorithms

The hardware characteristics that are used in the later
experiments are now given (the number and capacity of ex;cutable

memories 2re defined with the exPerimehts themselves). Primarily,

they are the same as those used by Arora and Gallo_[A4] and repre-

sent the hardware of a transaction oriented system. They are

defined as follows (times in microseconds):
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D.

Single CPU with Mean Execution Time/Instruction of 10.0

Two Executable Memories

1.

Fast Memory

a. Capacity of 32K Words

b. .Transfer Time/Word of 0.5
Slower Memory |

a. Capacity of 32K Words

b. Transfer Time/Word of 2.0

Three 10 Devices

1.

2.

Fast Drum

“a. Capacity of 1.2M Words

b. Mean Latency Time of 4,300

¢. Transfer Time/Word of 4.2
Slower Drum

a. Capacity of 1.2M Words

' b. Mean Latency Time cf 17,000

c. Transfer Time/Word of 4.2
Disk | |

a. Capacity of 3M Words

b. Mean Lgtency Time of 47,500

c. Tranfer Time/Word of 7.0

Two Pooled Channels

Interconnection Topology of Figure 3-3.

a
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The software algorithms (e.g., FCFS queuing disciplines, least
frequently used replacement algorithm)‘are chosen for convenience
of anaiysis since extensive work has been done on the éffect of
these algorithms on system performance. |

A variable number, greater than or equal to ome, of CPUs,
executable memories, and non-executable mem§ries may exist in the
system model, each number being independent of the remaining
numbers. Each CPU may potentially be'connectéd to each executable
memory. . The problems of memory interference are not dealé Qith
directly. Each executable memory may potentially be connected to
each non-executéble memory (I0 device) via'assigned channel(s). A
channel is connected t§ only one device; however, a channel may be
connected to more than one executable memofy. Note that device-tc;

device channels are not allowed.




3.3 Analysis Technique

This section deals with the following three topics:
1) assumptions imposed on the systenm throughput domain variables,
2) construction of a model which mapsvan aétivity profile, a.
degree of multiprogramming, and a system model into a value for
system throughput and corresponding file assiénment, and 3) an

example illustrating the analysis technique.
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- 3.3.1 Assumptions
3.3.1.1  Activity Profile

The cdnditions imposed on the activity profile are minimal.
ﬁ:First, the activity profile is static in time for a given arrival
,ﬁperiod. In other words, the frequency of requesting a file is known
iié priori and does not vary. Second, there must exist an initial
:?feasible file assigpment, one in which all the files of. the activity
 {profi1; can 5e loaded (assigned} on.the I0 devices of the system
'jimodel. Also the IO service request of a file (given by the words

) ffloaded/request parameter) must be characterizable by its mean service

7 time; 1ikewise for the CPU service request.

3.3.1.2 System Model

The conditions imposed on the hardware of the system

model concern the interconnections and the transfer times associated

" “with the various memories and devices, as well as memory interference
generated by multiple CPUs and/or channels. The interconnections

must pose a realistic model. For instance, if an I0 device is in-

cluded within the model, then an interconnection between some exe-
cutable memory and that device is assumed. Also the system model

assumes that the transfer time of the channels is governed by the

" device transfer time and.not the executable memory transfer time.

- This is a reasonable assumption since the transfer time of the

fastest device is larger than the transfer (acceptance) time of the

... Slowest memory. If this is not true, a design error exists since
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it would be more Qractical to transfer executable instructions
from the devige rather than frém memory; It is assumed that

the exécutable'memories can be characterized by their cépacity
and;transfer time/word.and that the I0 devices can be-charactefized
by their capacity, mean latency time (seek time + rotation time),
and transfer time/word. Finally, it is assumed that memory inter-
ference does not exist (or is small enough to be negligible).

This means.that bandwidths of memory busses may sometimes be
overspecified.

- The conditions assumed by the s9ftware of the system
model are as follows: a dispatching discipline of first-come-

- first-serve for all quéues with rio preemption of servers, and

a least frequently used replacement algoriﬁhm for executable
.memory management. These assumptions are médé to allow analysis
of the analytical model and ease of verification of the simulation

modél.



3.3.2 Hybrid Model

A coaventional approach.for iﬁproving éystem through~
put is to construct a simulation model cofresponding to the
system model, to postulate an assignment of the files, and then
to gather the throughput metric bj executing the model. This
approach has the obvious flaw that the postulation may use tﬁe
system model sub-optimally (due to device queuing), especially
for reusable files since an 10 device may be ovérusad at the -
expense of the othefsf An arbitrary postulatién of file assign~-
. ment is made to keep this feasible by avoiding a simulatioﬁ
model'evaluatioﬁ for each of the file assignmént combiﬁatiqns.
Clearly, thlS ad hoc approach must be improved

A reference system usad to illustrate the new approack

taken in this dissertation for optimizing system throughput is
giVen in Figure 3-3. It consists of one CPU, ome level of directly
executable memory, and three secondary memories, say a fast drum,
a fast disk, and a slow disk. Of course a ‘channel interconnection
exists between each of the secondary memories and the executable
memory. There are a total of two channels servicing these inter-
connections. The pfimary purpose of ﬁsing‘this example is to help
the reader keep his perspective in the following discussion.

The construction of a model which maps the previoﬁsly
defined domain variables into;system thrOughpuﬁ_and corresponding

file assignment utilizes two jnternal models -- first, a detailed
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level simulation model and Second, a gross level anélytical
queuing médel. Tgese two models are referred to collectively
as a hybrid qﬁeuing model., The use of a two component'model

is suggested by the necessity of carrying out the inferaction
shown in Figure 1 and aescribed succeedingly.

| The gross level model shown in Fique 3~5 reflects

the effect of file assignpent through the s;rvice times of the
I0 devices and the branching probabilities to each device. Thgs
 for the three I0 devices included in this figure, there are
only six dependent parameters regardless of the number of files
~ to be assigned. For a given set ofvdevice service rates and

. for a given value of £, the p;obability:that a file is already

.

loaded in executable‘memory when it is requested, there exists
a set of branching probabilities, Py, PZ,...,' Piseevs B, which
maximizes system throughput. Thus the optimality of a file
assignment can be estimated by haw acéurately the model yields
the values of Pi’ A knowledge of the characteristics of rotating
devices reveals that mean service rates are effected by file
assignment somewhat less than are the branching prbbébilities.
Since the identity of the files is not maintained in the
gross level model, a médel with a greaﬁer level of detail (i.e.,
one which fully resolves the identity of files) is necessitated
to generate file assignments. This is accomplished using the

simulation model shown in Figure 3-4.
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The exploration of the parameter spaée of possible file

assignments is a very formidable task if carried out without

guidance (as in conventional approaches). The solution of the

gross level model suggests the following iterative procedure:.

(1)

(i1)

i)

(iv)-

)

(vi)

Note that the optimization is actually carried out via evaluation of

Select some initial file assignment.

Evaluate the detailed model to obtain the service
rates for the IO devices and £ (and the per-
formance metric, system throughput).

Determine from the evaluation of the gross level

modei the values of P, which yield optimal through-

i

- put using the service rates and f detérmined

from the solution of the detailed model.

Seléct a new file assignment whose'accumulativé
frequency of file request on an assigned device
is as close as possible to the optimal branching
probabilities decermined in step (iii). |
Evaluate the detailed model for new values of
ﬁevice §ervice rates and f. (Hote that new file

assignments may return different service rates

~ due to differing record sizes and positioning

time.)
Iterate on steps (iii) - (v) until no changes in
file assignment occur or the Pi are stable within

a predetermined tolerance.

the gross level model.

.35
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The points remaining to be discussad include.the algorithm
used for &etermining the optimal branching probabilities and the
selection of ﬁew file assignments. The determination of the initial
filg assignment‘(loading strategy) is discussed 1ater;

The determinatién of the optimal values of the branéhing
Aprobabilities in the gross level model is cgﬁputed by an exhaustive
grid seérch. The throughput of the model ié evaluated for the values
of Pi at intervals of 0.5 between 0 and 1. During the course of the
‘development of this work, Hogarth and Chandy [Hl].establiShed ﬁhe
convexity of system throughput with respeét to the set of Pi' This
“result would allow a more efficientAdete;mination of the optimal
~set of Pi’ However, the grid search method was retained because
it was alfeady embedded in the compuéer program and because the
determination of Pi consumed only about 20% of the processing time
of model evaluation.

Each néw file assignment for m;atching the optimal P, is
generated by the following procedure:

(1) For all files, compute the ratio of frequency

request to volume.

(11) Select an unassigned file with the 1argest ratio

| fof_assignﬁent to the fastéstvdevice as long as the
device capacity is not exceeded.

(iii) 1If step (i1i) does not assign all files, force
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assignment of the remaining filesvto the fastest
device as long as the device capacity is not exceeded.
- The reader should note that 1) the‘above procedure terminatés since
aﬁ initial assignment guarantees sufficient capacity, and 2) the
solution of step (ii) is a very economical approximation tc the
costly solution generated by the corresponding branch and bound
integér program. It has been shown’[K2] that for a large number of
files, this approximation is almost exact.

. A discussion of the major ﬁomponents of the hybrid model
{the simulation.model, the analytical queuing model, and the
iterative érocedure) follows in more detail. The reader may wish
" to continually refer to the above discussion in order to maintain

his perspective.

3.3.2.1 Simulation Model

The simulation éueuing model corresponding io the above system

model is given in Figure 3-4. It is inﬁerpreted in the following
way. First, a request for a giveﬁ file reaches branch point f. At
b;anch.point f adecision is made as to whether the file is loadéd

in the executable memory. If it is, then the request is scheduled
for processing on the CPU. If it is not, the requested file must

be loaded. So branch point f is answering the question "is the
request file loaded?” Assume it is not. The request must queue for
executable memory and then must queue for a channel. After obtaining

these two resources, it must queue for the secondary memory on
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which the file is loaded. Finally the requesg is serviced trans-
ferring the fi;e into executable memory. Upon the completion of

the loading process the channel.is releaséd and the file is scheduled
for processing by the CPU. After completing CPU service the server
is released and the file request recirculates to the beginning of

the simulation model becoming a new requesz.- Note that if f.
accumulates the number of successes of finding of requested file

in executable memory, then in the limit £ repreéents the success

function of Mattson [M1].

- 3.3.2.2 Analytical Model

The model presented here takes advantage of the féct that
optimal system throuéhput can be obtaiﬁed from an apalytical modél
of known service time distributions, known branching probabilities,
and a;known degree of multiprogramming. An example of an analytical
queuing model corresponding to the sfstem model of Figure 3-3 is
given in Figure 3-5. It is interpretea in the following way.

A request for a file reaches point f£. At point f a branch is
probabilistically made corresponding to whether or not the file

is loaded in executable memory. If the bypass Cverticgl) path

is taken, then it is aséumedrto be loaded and tﬁe request is
 scheduled for processing on the CPU. If the other (horizontal)

path is taken, then it is assumed that the requested file must

be loaded. Hence, it is scheduled for loading oﬁ probabilisticaliy
selected I0 device (secondary memory).  Upon completion of the loading

process, the file is then scheduled for processing by the CPU.



After completing CPU service the file request recirculates to
the beginning of the analyticai model bécoming a new request.
- Notige,that in this analytical model memory aﬁd

chaﬁnels are not expli;itly represented. Consequentl&, the
‘model makes assumptions that sufficient memory and channels

are always available so that a request never has to wait for
these resources. Notice also that the analytical model deter-
mines the ﬁrobabilities, Pi, P2, and P3, such’tha: accessing the
10 devices with these probabilities will produce optimal o
system throughput. All else has been spgcified such as the
'already loaded’ probability‘f, the Seryice time means, and

- the degree of multiprogramming.

An importan£ assumption not previdusly mentioned is
4that file requests are independent and identiéally distributed.
While a systematic treatment for serially dependent file re-
queét sequences is possible using simulation models, it certainly
requires more sophisticated analytical—models of job/file behavior.
The present state of the art of such models is still embryonic
and is an area of current research.

Now to the problem of mapping Ehe activity profile,
the degree of ﬁultiprogramming,'and the system model into
optimal system throughput.. If this is done by simulation alone,
a point by point evaluation method of each of the combination

of file assignments must be used. If there are 42 files and 3
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secondary ﬁemories, there exist (42) combinations. Clearly, a
point by‘point simulation evaluation for large combinations
becomes infeasible simply because qf time required for the évalua-
tions. Conseqﬁently, the solution of this combinational optimiza-
tion problem by simulation alone is infeasible.

At the present state of the art of queuing theory, it
is intractible for the analysis of an. analytical model fer a
large number of files since each state must 'remember'“whether
or not‘a particular file is loaded.- Therefore, the procedure for
the generation of optimal systém throughput involves analyzing a
hybrid modél. A hybrid model is one which employs the advantages
of both the simulation model and the analytical model.‘ The

simulation model maintains information on each file while the

analytical model partitions the possible file assignments.

3.3.2.3 Interative Procedure in Detail

The iterative prﬁcedure for thé analysis of the hybrid
nodel is as follows: , |

a. Initially load the IO devices according to some loéd-
iﬁg strategy, also compute the mean service time,

b. Analyze the simulation ﬁodel to obtain: £, CPU
“throughput, Pl, P2, P3, and mean service times of
the CPU and. I0 devices.

¢. Analyze the analytical model to obtain: Pl*, P2%,

and P3* using f and the mean service times from
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