above (the P*s reflect the proportional service
requests that an 10 device muét sustain for
optimal throughput as shown by Buzen [B7].)

d. Terminating condition 1: Are the corresponding P
and P* within tolerance? 1f yes, stop. Otherwise,
continue.

e. Reload the IO devices with the files whose
frequency of loading sum to the corresponding P*
computed via the branch and bound approi;mation
described earlier, also recompute the mean services
times.

f. Terminating condition 2: Aré any files reassigned
to different devices? If no, stop. Otherwise go
to b.

The simulation model refines the value of f and the system through-
put while the analytical model refines the values of the Ps.
Cooperation between the simulation and analytical models is

useful in making the throughput analysis both feasible and

tractible.

A more detailed description (than the above) of the iterative

procedure is given in the following flowchart. The reader is cautioned

not to lose his perspective.
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3.3.3 An Example

An example illustrating the above procedure is now
given.. It should be noted that the analysis technique éon~
siders the queuing of file requests and distributes them to
the IO devices to reflect the proportion that each device
must sustain for optimal throughput. The igportance of this
optimal distribution is emphasized by noting that the relative
improvemenﬁ in system throughput between the first and last
iterations is 23%. |
~- Some preliminary definitions are given before describing
the example. System throughput is the throughput measured at
- the CPU since all‘requésts flow through it. The activity pfdfile
is given in Figure 3-2. It consists of a) iS program files,
13 of which are reusable (i.e., if a copy is élready loaded
when the file is requested, then that same copy is reused without
having to reload a new copy), and b) 27 data files, 1 of which
is reusable. When processing of a non-;eusable filé finishes,
that file is deallocated from executable mémory.' When the pro-
cessing of a reusable file finishes, that file remains in executable
memory until it is replaced by another fi1e which needs its memory.
If a reusable or non-reusable file is a data file, its meﬁory is
deallocated only after it is rewritten to the appropriate device
with a probability of 0.1. Note that the frequencies of requesting

a file are unnormalized, and the volumes vary from 254 words to



5,630,400 words.

The degree of multiprogramming (i.e., the number of
jobs‘located an&where in the model) is five. The hardware
characteristiés’of the system model topolﬁgy shown in Figure. .
3-3 are the same as those described earlier except a) the CPU
has a mean execution time/instrucfion of 1.0 microsecond, b)A

the capacity of the single executable memory is large enough

to prevent memory queuing of the five largest records in the

activity profile but small enough to ﬁrevent the entire activity
grofiie from being perﬁanently loaded into executable memory,
) thé capacity of any of thelthree 10 devices is 1arge"enoﬁgh
to load all files, and d) five channels are available for déta
transfer. These charécteristics imply ﬁhat no memory or channel
queuing occurs in Figure 3-4. Also the system is load bound

due to:the speed of the CPU.

| The initial strategy of loading the most f;équentlyl

executed files (not the most frequently loaded) on the fastest

10 device without overflowing its capacity loads.all of the

42 files of the activity profile on IOl as shown in Figure 3-6.
The column headings of this figure are'interpreted as follows:
a) N is a sequential numbering of the files‘for convenience,
b) J, ID, F, R, V are the parameters of the activity profile,

c) ACTUAL REL FREQ is the normalized frequency of requesting a
file, d) OBSERVED REL FREQ is the normalized freiuency'of'observed.

file requests, e) OBSERVED OBJ REQ is the number of times each
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file 1is requeste& (OBJect in a transaction'oriented system),
£f) COMPLTED LOAD REQ is the number of times a record of the file
'is loaded, and g) CURRENT LOCTN and CURRENT STATUS fndicate the
 current state of the file. Values of the appropriate columns '
correspond to the subsequent simulation model run. The mean
service timé for the CPU and I0 devices are computed on each
iteraﬁion for use in the analytical model. Also "terminating
condition 1' can be ignored since the tolerance is set to 0.0.
Each iteration in the analysis technique of the hybrid

model is summarized as follows:

()
& .

Iteration: 1 2 ‘
Simulation Model Results
CPU Throughput: 209. 219. 257. 257. .
f: .33 .33 .33 .32
P2: 0.00 .08 .20 .18
P3: 0.00 .01 .03 .02
Analytical Model Results -
CPU Throughput: 243. 271. 267. 270.
Pi%: .92 .76 .80 .81
P?_*: . . 06 . 20 . . 17 - 17

P3%: .02 .04 .03 .02



The procedure terminates on iteration 4 becau;e no new file
assignmént is mgde; The terminating file assigﬁment is shown
in Figures 3-7a, 3-7b, and 37e. A plot of the CPU throughput
for each iteration is shown in Figure 3-8. For each iteration,
the top line represents the steady-state CPU throughput obtained
from the analytical model. The 1éwer line represents the CPﬁ
throughput of the simulation model as it approaches steady-

state since it is a function of the number of jobs processed. -

- 69
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3.4 Static File Assignment

Static file assignment is file assignment for a given

arrival period since it assumes the use of a static activity

profile (i.e., the workload is known and fixed throughout this

period). The hybrid model of the analysis technique is used
in experimeﬁts to isolate the cause/effect relationship of the
load factors, the degree of multiprogramming, and the hardware
characteristics upon optimal static file assignment. The
memory management strategies are proposed for obtaining (near)
optimal static file assignmen; using the impéftant rate deter-

mining factors.
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3.4.1 Simulation Model Verification

3.4.1.1 Onmne Executable Memory

Befofe the hybrid model is used for obtaining optimal
static file assignment, the simulation model of Figure 3-4
(corresponding to the system modei of Figure 3-3) must be
verified. A first step in‘verificaticn is to make the simulation
model assume conditions such that the resﬁlting'model can be
anaiy;ed analytically. The necessaryvconditions are: 1)
sufficient executable.memory to avoid memory queuing, 2) sufficient
channels tovavoid channel queuing, 3) known branching ?robabilities
to the associated IO devices, and 4) known exponential ser§ice
distributions for all servers (i.e., 1041, 102, 103, and CPU). The
first two conditions are satisfied by setting the capacity of the
executable memory large enough so that memory queuing cannot occur,
and by sefting the number of channels in the mndel_eaual to ihe
degree of multiprogramming. The third condition is satisfied
by generating three sets of non-reusable files (here,NSO files
pér set) and by assigning each set to an 10 device after equally
setting the request frequency parameter of each file to the
«nown branching probability to that IO device divided by the number
of files in the set. The fourth condition is satisfied by dividing
the ordinate of the cumulative distribution of the exponential
distribution (known for each server) into equaliy spaced points (éhe

point per file which is assigned to that server), and then using the
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correSpOnding value of the abscissa as the service time parameter.
Of course, the appropriate parémeter (i.e., instructions executed/
requesi, or wo:ds loaded/request) is selected depending on
whether the server is the CPU or an IO device. It should be nbted
that this method of discretely sampling a continuous distribution
slightly skews the sample points toward shorter service times
since the asymptote of the function is trun;ated. Because of
this, the throughput of each server in the‘simula;ion‘model is
slightly larger than the corresponding th;oughput in the énalytical '
model. A better méasure for comparison is server utilization
" since it is computed independently bf throughput in the simulation
. model. Also dueAto trénsient‘fluctﬁations before steady state
is reacheé in the siﬁulation model, a closer comparison is
Vexpected for higherAutilized servers. |

After comparing the simulation model to the analytical
model for a wide range of branching probabilities (for 3 above)
and mean service times (for 4, above),‘the ‘worst' case and the
"best' case (with respect to CPU utilization) parameters can
given in Figure 3-9. Three observations should be made from these
parameters: 1) the mean service times of the simulation model
are all slighﬁly larger than their anaiytical model countérparts,
2) the coefficient of variation of all simulation model servers
are approximately one, and 3) the worst case model is I0 bound

and the best case model is CPU bound. Additional verification
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results of the worst and best cases are given.in Fig;res 3-10
and 3-11, respectiﬁely. The rows of Figures 3-10a and 3-1la are
labelled as mean ThroughPUT, mean UTILizatiﬁn, mean Queue LENgth,
and mean WAITing time. They contain pairs.of values, the top.
value being generated by the simulation model and the bottom by
the corresponding analytical modei (obtained by using ASQ [x11).
The columns represent different degrees of multiprogramming.
Figures 3-10b and 3-11b represent the service time distributions
thai ;he simulation model generated for each server in the worst
and best cases. Notebthe similarity between these distributions
and their corresponding exponential distribution.

The second step in verification of the simulation.model

is to examine the channel queué in more detail., Since current

analytical models cannot produce exact results for comparison, other

simulation models must be used. Since simulation model results
are compéred to simulation model results, only grosé differences
imply potential modeling errors.

Channel utilizations are compared in Figure 3-12 using
tﬁe worst case parameters of Figure 3-9. Remember that the number
of channels is set equal to the degree of multiprogramging to
avoid channel queuing. Each column pair, fepresenting a fixed
degree of multiprogramming, contains a left cbmpoﬁent whose values
for channel utilizations generated by the simulation model of

Figure 3-4 and a right component whose values are generated by an
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equivalent simulation model using the ASPOL language [C8]. Note
that the top valueé in each colqmn agfee more ciosely than

the bottom values since both simulation médels allocate the
channels on a top to bottom basis.

When the simulatiocn modeis are modified so that only one
channel is available for allocation (permitting channel.queuing
to occur) but otherwise using the same worst case parameters, the
valpes for server utilizations are compared in figure 3-13, The
rows contain pairs éf utilization values, the ﬁop value being

generated by the simulation model of Figure 3-4 and the boftom
by an equivalent ASPOL simulation model. Noté that no.gross
differences occur.

The final step in verifying the simulation model is to
force memory queuing and to coﬁpare the utilization of the‘servérs.
By setting the record size parameter (words loaded/request) of
all files tb be the same and then by setting the cap;city of the
executable memory large enough so that Snly one record at a time
caﬁ be loaded, memory queuing is guaranteed. Figure 3-14 compares
the utilizétion of the servers of equivalent simulation models
for various degrees’of multiprogrammiﬁg. (The top value of each
~ Tow 1is geueratéd by the simulation model of Figure 3-4.) Note that
only one channel is necessary because only one job at a timé can

flow past the memory queue. Also no gross differences are present.

3.4.1.2 Two Executable Memories

When two executable memories are used, more accurate

‘84
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results can be obtained from the analytical model if the concept
of 'different classes of customers' [B2] or (equivalently job
- typing' [C2] is used. This enables files to be typed according
to the executaole memory to which they are assigned. This
t;ping information is used to generate moTre accurate CPU throughput
since it takes advantage of the fact that files which are processed
in the fast executable meoTy (classified as type 1 files) have
a shorter mean service time than if they are processed in the
slowercexecutable memory (classifie& as type 2 files). Chagdy
et. al. [C3] have extended Buzen's computational techniques for
solving anelytical models when the model satisfies local balance
- conditions [C1]. These techniques are used since the analytical
model satisfles local balance when the CPU service discipline
is changed to processor sharing (PS) Refer to [B2]. It should
be noted that the 'changed' model closely approximetee real
‘world conditions when the CPU discipline is PS and all I0 oevice
disciplines are FCFS. The number of jobs of each type is
approximated by the integer part of the expected value for the
number of files being simultaneously proceosed in each executable
memory.

The CPU service discipline of the simulation model is
also changed to PS necessitating reverification of server correct—
ness. (PS is a commonly used queuing discipline of simulation '

models requiring that the queue entries be ordered on their



remaining processing time. The bookkeeping overhead for maintain-
ing this discipliné is greater than first-come;first—serve but
considerably less than round;robin.) 1f iny one execuﬁable
memory is used (requiring only one job type) and the above o
necessary conditions are satisfiéd to make the simulation model
analyzable analytically, the simulation model is verified ag;inst ,
the corresponding analytical model using ASQ. After comparison
is made for a wide range of branchiﬁg»probabilifies-(for necessary
condition 3, abOVe)‘agd mean service times (for 4, above), the
‘worst' and 'best"case (with respect to CPU utilization) parameters

are given in Figu:e 3-15. Detailed verification reSulés are
given in ?igures 3-16 and 3-17 fdr the‘wo;st and best cases,
respeétively. It should be nofed that the PS discipline gives
closer results under low CPU ﬁtilization (10 bound) or higﬁ CPU
utilization (CPU bound). This is related to the number of jobs
'shared’, either few or many. ' .

By logically viewing the singie executable memory of
Figure 3-3 as containing several physical memories, each having
a different access time and capacity, the 'PS' simulation model
is easily used in experiments with mofe than one executable
memory level. .?o further clérify this abstration, the resource
management algorithm of the memory ccmbination is as followé: when
executable memory is requested and is available, it is allocated

from the fastest memory; otherwise, the request must wait for

‘88
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memory to become available. (This allows the more frequently
executed files to‘be assigned to the faster executable memory
levels.) 1In fhe experiments which follow, no more than two
levels are used. This algorithm greatly simplifies simulation
model construction and.verification for more than one execﬁtable_
memory.

Verification results for the simul;tion model which
allows two executable memories with the same access time are
identical to those of the previous figures when the folloﬁing
parameter changes are made (for condition 1, above): the capacity
~of the first executable memory is sét to zero, the capacity of
~ the second executable meory is set largé enough to avoid memory

queuing, and all other parameters remain unchanged. The
distinguishing feature is that more real time is now required to
execute the simulation model. Additional tests reveal the
same results wheﬁ the capacity of the'first executable memory is
small enough so that the second executable mémory must also be
used to avoid memory queuing (all other parameters being the
same). This indicates that the resource management algorithm

for the executable memories is functioning as expected.
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3.4.2 Strategies

It is of interest to evaluate‘the effectiveness‘gf

' initiai file assignment strategies. Step 'a' of the iterative

proéedure of the analysis technique (i.e., initially.load the

10 device according to some loading strategy) provides the

mechanism by which different initial loading strategies zfile

assignments) may be evaluated. The use of 'good' strategies

for this sfep produces closer first approximatiOns to optimal .

file assignment. When weighted by the computation cost of the

Bfrategy, the 'goodness' of the initial memory management strategy

can be determined, , _ %f

?he followinginitial strategies are evaluated by

. the above method: | '

| (1) Load the most frequently executed files omn the
_fastest devices using device capacity as the only
ioading constraint.

- (2) Load the most frequently executed files on the
faéteSt devices using devicé capacity and semi-
optimal branching probabilities (defined below)
as the loading constrain;;.j

(3) Load the most freéuently zkecuted files aftér

frequency normalization (i.e., request frequency
. BN

divided by volume) on the fastest‘deviéé using

device capacity as the only loading constraint.
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(4) Load the most frequently executed files after
frequency normalization on the fastest deviées
.using device capacity and semi-optimal branching
érobabilities as the loading constraints.

(5) Load the most frequently executed files on the
slowest devices using device capacity as the only
loading constraint. | |

The semi-optimal branching probabilities are coﬁputed via the
analytical model (as described in section 3.3.2.2) when the
mean 10 device servicé time is generéted by using the mean record
‘;ize of all files and the device characteristics (i.e., mean
sizé * transfer time +‘latency time). Strategy (5) is a worst
case strategy for cpmparison phrﬁoses. -It should be noted

' that in the experiments which follow the latency time of the IO
devices is the dominating factor in calculating the semi—oﬁtimal'
brapcﬁing probabilities of the ini;ial loading straﬁegy since
the record size parameter éf all filés is relativeiy small
(resultiﬁg in a small transfer time). Congequently, little
difference is noticed here if the branching proﬂabilities are

-célculated using latency time alone.
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3.4.3 Experiments

The experiments for evaluating‘Static file assignment
strateéies use the following values for the domain va:iables
of the hybrid model. The load factors (i.e., job chafactefistics,
workloads) are the same as those described earlier in the
definitions section. The degree of multiprpgramming for the model
is seven; this value appears to be realistic in the sense that
higher degfees of multiprogramming have little effect on system
throughput (using these job and hardware characteristics); The
distinguishing feature of the experiments is the difference in
| only one hardware characteristic: the caéacity of the executable
' memories. The firstvegperiment uses only one executable memory '
jevel of 32K words capacity and the second.gxperiment uses two
executable memory levels, a fast memory of 16K words capacity
and a slower memory of 16K words capacity. Otherwise, the hard-

ware characteristics are the sameé as those mentioned earlier.



3.4.4 Results

To lend additional credibility to the hybrid model

by sho@ing that it is functioning as expected, the optimal

throughputs for the different cases are given:

1 2
MEM MEM
. RL 140. 119.
RE 139. 11s.
RP 140. 118.
NL 96.9 94.2
) NE  121.° 114.
NP 138. 117.

The reader should note the-following:' 1) all cases in which
the files are usable (R*) are CPU bound yielding a throughput
similar to the NP case (e.g., when the CPU is the throughput
bottleneck, whether or not the files are reusable makes little
difference), 2) thg throughput of the NL case of both executable
memory configurations ére similar sincé executable memory'
access time 1is not the thrqughput bottleneck, and 3) additional

executable memory is helpful only the CPU bound cases.
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A summary of the systém throughput for the various

initial loading strategies and cases are now given. The values

are the CPU throughputs corresponding to the first file assign-
ment iteration. Note that the summary consists of the cases
in which all files are non-reusable because all reusable file

cases are almost identical to the NP case.

Strategy
2 4 5
- 1 MEM 82.3 84.1 87.3 92.6 75.8
*. 2 MEM 82.0 83.5 - 85.2 88.7 75.6
NE 1 MEM 109. 110. . 113.. 11e. 105.
: 2 MEM 103. 100. 107. 110. 101.
NP 1 I{EM 136& 135- 138O 137. 1360
’ 2 MEM 116. 115. - 117. 117. 118.

The following observations from these results should

be made: - 1) when the -system is CPU bound {(case NP), there is -

almost no difference from the worst file assignmént strategy
(136. for one executable memory and 118. for two executable

memories). Generalizing these results, when the system is CPU

bound (regardless of job charactéristics or 10 device configuration),

it makes little difference as to the assignment of files on the

I0 devices, 2) when the system is balanced (case NE), there
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is a 12% difference between thé worst file assignméﬂt strategy
and the optimal throughput (values of 100 and 114, respectively).
Since there is a 3% difference between the best file assignment
strateg& and the optimal throughput (values of 110 and 114,
reséectively), the aﬁtual improvement is 9%Z. With only a marginal
improvement in throughput, the cost of producing the file assign-
ment must be considered, 3) when the systeﬁ is load bound (case
NL), the greatest improveﬁent in throqghput can be observed. A
22% difference between the worst file assignment étrategy-and
optimal throughput (values of 75.8 and 96;9, respectively)»and

‘; 5% difference between the best file aséignment strategy (values

ofv§2.6 and 96.9, fespectively) :esultslin a 17% improvement.
| (Note that the best file assigﬁment strategy, the one which con-
sidéts both the capacity and branching probability‘constraints,
is near optimal.) This case of‘maximum imprcvement‘éue to file |
assignment is discussed in more detail later, and 4) for a given
strategy, the throughput difference between one executable memory
and twé éxecutable memories for case NL is.smaIQ because the
second executable memory is rarely used, but the difference for
case NP is greater because the second executable memory is rela-
tively heavily use&. Again, additional executable meﬁofy«is
helpful only in the CPU bound case.

Figure 3-18 giVesAthe throughput results of the load

bound case. For each strategy, throughput is a’function of the

number of iterations until convergence to optimal throughput is
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achieved. As has been noted earlier, strategy 5 éi.e., loading

the most frequenily executed files onAthé slowest devices using
device capacity as the only loading constraint) is a worst case
strategy given here for coﬁparison purposes. The ;emaining four
strategies represent those which gonceivabiy might be uéed. ‘fhe
significant factors involved in these strategies are 1). frequency
normalization, and 2) utilizing the branchiné probabilities as a
loading constraint. The only difference between strategies 1 and

2 énd strategies 3 and 4 is frequency ncrmalization>(i.e., re&uest
frequency divided by volume). The result is that the later

: ;trategies have better initial throughput than the former. Also

a secénda:y effectris noted. When the frequency is chmalized,

the capacity constraint does not dominant the branching probability
constraint as quickly. In other words, files can bé loaded on an
10 dévice such that the branching probability is better satisfied
before the capacity of the device prevents additional loading. Thg
initial approximations of strategies 1 and 2 are closer together
than the initial approximations of strategies 3 and 4. The only
difference between-strategy 3 and strategy 4 is the utilizétion of
the branching probabilities as a loading constraint. The result

indicates an improvement of 6.1% in throughput when this constraint

is not ignored. Since the time cost of computing the semi-optimal

100

‘branching probabilities is quite reasonable (less than 20 CPU seconds

on the CDC 6600), near-optimal loading strategies must include

this constraint. In summary, the throughput improvement of strategy
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4 over strategy 5 is over 207 emphasizing that file assigmment is

a crucial factor in system throughput when the system is load

bound.



CHAPTER 1V
THE UT2D PERIPHERAL PROCESSCR LIBRARY -- A CASE STUDY

4.1 introduction

The UT2D operating system is a systenm whichlcoordinates
‘the activities of a CDC 6600 and a CDC 6400. Essentially, it is
a pair of autonomous operating systems whicﬁ cqmmunicate to share
resources such as mass storage (e.g., extended core storage (ECS),
disks), peimanent files, and certain system libraries (e.g-»
Peripheral Processor Library). Normélly,‘the 6600 system.handles
bétch jobs and the 6400 system handles interactive jobs. Since
batch jobs produce a greater variety ofvresource'demands on the
' system, trace data frcﬁ the 6600 is used to parameterize this case
. study. |

The CDC 6600 computer system 1is composed of 10 small pro-
cessors called peripheral processing units (PPUs) in addition to the
cenfral processor. The pufpose of these PPUs is to perform input/
output and control functione in support of the central processor.
All PPUs have access to 12 channels which‘are in turn connected to
various I0 devices (i.e., memories). Data transfer on the channels
is controlled by instructions issued by<:he PPUs and can provide
either single word or block transfer from the devices. ﬁ;ch PPU has
{ts own memory of 4096 12-bit word capacity which is separate from
the 660C's central memory. The peripheral processors act as a buffer

between the external environment and the central processor.
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An important function of the operating system is to
coordinaté the activity of the various PPUs. Communication be-
tween the operating system and the PPUs is éccomplished through
cémmunication afeas (1.e., mailboxes) 1in central memory. For -
ex;mple, a PPU 'idles' in its resident program by checking that
wérd 0 of its communication area remains cleared. Whenever the
oﬁerating system wishes a ??U to perform some function {such as

transferring data between central memory and a disk unit), it

-

enters the appropriate function namé into word 0 of the allocated
PPU’'s communica;ion'area. After the residenmt program 'senses'

that word O is no longer cleared, it must then>locate the requested
‘transient program'in the Peripheral Processor Library. {This library
may reside in many storage lévéls of a memory (I0 deviﬁé) ﬁierarchy.)
Afte: this p;ogram is located,‘it is loaded into the PPU's meﬁory and
executed. Follqwing completion of the-transient ﬁrogfam, word 0 is
cleared and the PPU idles back in its resident program. The (pseudo)
10 devices froﬁ which the PPU loads this transient program are central
méhory, ECS, and the system disk.  Additional information concerning

the operation of the UT2D operating system.and the CDC €600 hardware

system can be obtained in [82, T2].

It is the purﬁose of this case study to indicate where to
assign the programs of the Peripheral Processor Library in the memorxy
hierarchy so as to maximize the throughput of the PPU sgubsystem. This
is accomplished by varying the capacity constraints of the three I0

devices in order to produce optimal system throughput as a function
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of device capacity. In this manner, a near-optimal capacity solution

to this assignment.is obtained.



105

4.2 The Model

The model interconnection topologyvis given in Figure
4-1. The systém consists of four servers, central memory., ECS,
a disk unit, and a PPU. The simulation queuing model correspond-
ing to the system model is given in Figure 4-2. It is interpreted
in the following way. First, a request forl; program in the
Peripheral Processor Library must queue for the secondary memory
in which tﬁe program is loaded. The fequest is then serviéed im-
plying the transfer of the program iﬁto the executable memory of a
.?fU. Upon completionvof the loading process, the program is executed
by the PPU. After completing PPU service, the request recirculates
" in the model becoming a new requéstr Tﬁé total number of prograﬁ
vrequests‘circulating in the model (the deggee.of multiprogramming
for ﬁhe model) is the same as the number of available PPUs. Conse-
quently, after a program is loaded, no queuing for a PPU is required.
Alsé note that no explicit-incluéion‘of_executable memory is necessary
since each PPU and its executable memory can be viewed as a unit.

The PPU server in the model stands for a set of fPUs (and assoclated
executable memories) equal to the degree of multiprogramming (i.e.,
one PPU per program). A "' -
The same hybrid model that is used in the experiiéﬁts with
one executable memory can be used here. All that is required is a

modification of a few hardware characteristics (see II1I.2.4) of the

simulation model of Figure 3-4. They are as follows (the queue and
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server names are .the same as those of Figure 3-4):
1) an»infinite amount of exécutable mémory for allo-
cation in the "Mem' queue,
2) an infinite number of channels for allocation in-
the 'Chl' queue,
3) setting the number of 'CPUs' available equal to
-
the degree of . multiprogramming.
The first two modifications eliminate the possiﬁility of queuing
for executable memory or channmels. The third ﬁodification also
eliminates queuing but also allows PPU holding while the program

is being executed. All else remains the same; no simuiatiou

program changes are necessary.
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4.3 Model Parameterization

The follbwing parameters are assumed to accurately and
sufficiently qharacterizeAthe behavior of the CDC 6600 PPU sub-
system (i.e., ﬁhe loading and executing of transientvprograms‘from
the PPU Library) using the UT2D operating system. Includéd in the
parameters themselves are the effects of inﬁer—machine interference
(on shared resources such as the PPU Libraf&) since both the CDC
6400 and the CDC 6600 were operational when the event recorder was

gathering data on the 6600.
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4.3.1 Activity Profile

As before, the activity profile is composad of five
parameters for each program in the PPU Library: reusabilitf
of the program, request frequency of the progranm, instructions-
executed/request, words loaded (record size)/request, and wvolume
of the program. The activity profile is given in Figure 4-3.
(Note‘that the record size and the volume parameters are given
in octal for convenience. This is the only figure in wﬁich octal
notation is used.) The parameters given 'by definition' are re-
usabllity, record size, and volume. All reusability parameters
~are 'P' since each file is a program whlch is not serially reusable
(f.e., a new copy must be loaded upon each request). The correspond-
ing record size and volume parameters-ére equal since the eﬁtire
program is loaded upon request.

The parameters that are more sensitive to system behavior
‘are requeét frequeﬁcy and instructions exeﬁuted/réquest. These are
obtained from a summary of the trace data (event sequences) generated
by the event recorder. A detaile& description of this summary is given
in [H3]. The request frequency parameter is simply a count of the
number of times that a given PPU transient program is located (refer
to section 4.1). The inmstructions executed/request parameter is
" obtained from the mean time between consecutive PPU transient program
locations. However, some of the transient programs reside in central
memory while oﬁhers reside on the system disk. If a program resides
on the disk, the mean time must be adsustéd to remove the effects

of queuing for the system channel (and, at the same time, the system
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Name  Reusability  Frequency Instructions Record Size Volume
2WD P 11861 .93 125 125
2RD P 11289 95 122 122
2E1 P 41 ‘ 25651 137 137
1RJ P 586 941 _ 346 346
2MT P 3432 119 712 712
183 P 567 - 680 265 o 265
1DB P 3853 ) 67 231 ‘ 231
LDR P 578 259 307 307
2PD - P 3367 ' 46 263 - 263
RFL P 1396 69 170 170
278 P 910 100 536 536
CIO P 22960 3 174 174
1ss P 392 174 : 432 432
1PL P 585 63 224 ) 224
11D P 148 . 342 164 164
CPU P © 3983 9 416 416
2PU P 352 49 412 412
~ PFM P 1214 28 460 460
- 2WM P 2102 16 : 2717 277
EPR P 1196 16 - 565 565
3A3 P 165 : 54 145 145
2SP P 140 60 520 520
1cJ P 1246 ' 56 73 B
3EA P 60 171 - 264 264
PCC P 174 . 14 55 . 55
217 - P 116 42 32 32
2FE P 117 32 12 12
OPE P 1338 , 7 110 110
2AM P 97 36 . - 76 ' 76
2JE P 109 21 : 17 ' 17
ipPs P 2208 - 3 212 212
2E2 P 46 50 140 . 140
SNP P 760 6 67 67
2DF P 875 4 N 37 - 37
1AT P 900 4 246 246
RCC P 48 16 47 47
1SR P 28 -~ 32 204 204
MSG P 745 3 . 46 46
CLO P 28 17 14 14

Activity Profile
of PPU Transient Programs

Figure 4-3
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disk), disk seek delay, disk rotation delay, and disk transfer delay.
This adjustment is more easily understood by referring to the follow-
' iné event sequence (which is normally generated when a PPU transient

program is loaded and executed):

from CM: from the System Disk:
1. locate program X 1; locéte program a
2. request system channel
3. allocéte system cbannel
4. release system channel

5. locate program y 5. locate program b

Thevevent trace summary contains the mean time bétween events 1 and

5 (for both cases). - It also contains the mean time between.events

2 aﬁd 3 (hére, 35 ms) corresponding to the software qusuing for

the system channel. Between evénts 3 and 4, the PPU transient pfo-
gram is loaded from the system’disk.’ Using the haréware characteristics
diééussed later, a mean load timé is 53.4 ms (mean.seek time is 25

ms, meén‘rotation time is 26 ms, and mean transfer time is 2.4'ms).
Since events é through 4 are unique to loading érom the system disk

and their mean times are known, the mean time between events 1and 5

can now be adjusted a;cordingly7 Also, ;f a program's request frequency
is less than 25, it is discarded as never having been loaded becguse the
time between events 1 and 5 probably does not characterize its

mean time sufficiently well.
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4.3.2 Degree of Multiprogramming

Another major parameter of the model is the degree of
multiprogramming. It is the parameter which specifies the
aﬁouut of poteniial queuing interference due to requests for
’PPﬁ transient programs which reside on the same IO device. The
event trace summary contains the mean number of PPUs allocated
fér the trace interval. Its value is 3.89. Since a P?U can only
be executing a singlg transient program at any given time, the

-

degree of multiprogramming is set to four.

ors e el
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4.3.3 System Model -- Hardware Characteristics
The ha:dwére characteristics assumed by the model are
given below. ‘All times are givén in micréseconds; the transfer
times are given in units of either (60 bit) words or (64 X 60 bit)
physical record units (PRUs). Theée capacity constraints arei
variable aé stated in the purpose.of this case study. The péra—
meters are defined as follows:
A. Four PPUs with a mean ezecution time/instruction-of 1000
B. Three IO Devices |
- 1. Centfal Memory (M)
| " a. Capacity of 0, 2000, 4000, and 6000 words
b. Mean laténcy‘time of 2000 |
c. Transfer time/word of 5
2. Extended Core Storage (ECS)
a. Capacity of 0, 2000, 4000, and 6000 words
b. Mean latency time of 6000 .
¢. Transfer time/PRU of 2000
3. (CbC 808) System Disk
a. Capacity of infinity
b. Mean latency time of SIOOQ
Mean seek time of 25000
Mean rotation time of 26000

c¢. Transfer time/PRU of 1000



Note the following comments about these parameters:

1) The mean gxecution time for a PPU tiansient pfogram is ob~-
tained by multiplying mean number of imstructions éxecuted»
-per request (a parameter in the activity profile)vby the
execution time/instruction. Since the mean number of
instructions executed is computed using;ﬁilliseconds, the
execution time/instruction is also a millisecond.

2) Since the total volumé of all observed PPU transient programs
is approximately 6000 words, the capacity constraints.for CM

~. and ECS vary in steps of 2000 words. The capacity of the
-system disk is arbitrary to allow programs not loaded in CM or
ECS to be assigned'to it. . Its capacity comstraint is set to.
1nfin£ty.

3) Since CM and ECS have no seek and rotatioﬁal delays, the
latency time parameter corresponds to the overhead associated
with transferring programs from these devices.

4) Brice [B6] has shown that the mean seek time for the disks .
varies from 19 ms to 31 ms dependiﬁg pfimarily on the workload.
A mean seek time of 25 ms is used here.

55 The transfer time/PRU is twice as 1§ng for ECS than for the
system disk since the PRU must intermediately floﬁfthfough cM.

Additional information concerning hardware cha;acteristics can bé

obtained from the following references [B6, C7, T2]. Professor

John H. Howard, Jr. supplied parameter definitions using ECS since

program loading from this device is not currently implemented.

114
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4.4 Model Validation

The purpose of validation is to establish the credibility
of the model by comparing its results with known results obt#ined
from the actual system. It is an indication of how well the
model itself reflects the actual system. If poor validation is
observed, thé input parameters as well as the level of detail
includéd in the model are questioned.

By setting the caﬁacity.of CM to 2000 words, ECé to O
words,yand the system disk to infinity, and holding all other
parameters (activity profile, degree of multipfogramming, and the
system model) the same as those given in the previous section; the
‘ﬁhrOughput as comﬁuted by the model has a value of 59. The observed
throughput of the actual PPU subsystem.is 52; The model pro&uces
a higher value for throughput because (1) a constant degree of
multiprogramming of 4 could not be sustained by the actual system
(i.e., the degree of multiprogramming sometimes well below 4), and
(2) the capacity of CM is slightlyflargef than the corresponding
capacity in the actual system. .Hoﬁever, it?is félt that these two
values compare sufficiently well to es;ablish the credibility of the

~model.
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4.5 Model Results

It should.be observed ;hat géneration §f optimal
throughput of the PPU subsystem does not ﬁecessarily optimize
thrsughput of the entire computer system. For example, optimal
PPU subsystem throughput may use many more words of CM for
transientAprogram assignment than another near-optimal éssign—
ment. The result is that while PPU subsystem is optimized,
thrqughput of the computef system is degraded dﬁe to a decrease
in the degree of muitiprogramming caused by fewer CM words avail-
able for user programs. This observation must be remembered

when evaluating the following results.



4.5.1 Throughput and Assigned Memory

The table in Figure 4-4 gives optihal throughput and
the associated‘assigned memory of the I0 devices (i.e,, how
much capacity of each device is actually used) for vafious
memory capacity constraints. System disk assignment is computed
by subtracting the assigned memory values for CM and ECS from
the total ;ransient program volume (i.e., 5819.words).

The entire table is not compiete because a) some con-
straint combinations ére deemed impractical (such as 0 CM and
b ECS), and b) some entries can be implied from other entries
(suéh‘as 2000 CM, 6000 ECS can be implied from ZdOO CM, 4000 ECS}.

The follbwing importént-obServétiqns can be made from
Figﬁre 4~4, First, by increasing the capacity of CM from O.words
to 2000 words, the corresponding incfease in throughput is |
app:o#imately'9z'in all cases. Increasing the capaéity of CM
beyond 2000 words does not-affecf throughput in an& case. Second,
by incfeésing the capacity qf ECS from O Words, the corresponding
increase in Ehroughpﬁt is near zero for all casés. So it would
appear that when considering the PPU subsystem alone, the appro-
priate capacities for CM and ECS are‘ZOOO and 0, respggtively.
However, it is noted tﬁat ﬁhe relative difference in throughput
between the O CM, 2000 ECS and the 2000 CM, O ECS combinations is
approximately 6.5%. Since this difference is so small, the former
combination is desirable over the later combination in terms of

both storage costs and optimizing the entire computer system's
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2000

4000

6000

4000

i. NE - Not Evaluated

2. Values:

a.
b.

Co

Results of
PPU Transient Program Assignment

Figure 4-4

Actual CM assigned

Actual ECS assigned

0 2000 6000
55 55 55
NE 0 0 o
1996 3992 5819
59 : 60 . 60
1996 1996 1996 NE
0 1969 3823
60 60 .
3992 3992 NE NE
0 1827
60
5819 NE NE . NE
0
A. Margins -- I0 device capacity constraints
" B. Entries

Throughput of the PPU Subsystem
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performance {since an additional 2000 CM words are available for
user programs at a cost of 2000 ECS words). This analysis indi-
cates that the PPU library which is currently stored in CM should be

transferred to ECS, thus freeing CM for other uses.
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4.5.2 Program Assignment

Assignment of the programs in the activitj profile of
Figure 4-3 to be IO devices is given in Figures 4-5a and 4-$b.
This assignment corresponds to the table eantry of 0 CM, 2000 ECS
which generates a throughput of 55. Note that less frequently
requested p£ograms are often unexpectedly assigned to faster 10
devicés to more closely match the optimal branching probability
of that device with the total f;equency requests of the~programs

assigﬁed to that device.
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CHAPTER V

CONCLUSIONS

5.1 Summary of Results

The major contributions of this work are listed as - -

follows:

1.

3.

An analysis techniqué has been implemented for ﬁhe
automatic generation of optimal system throughput
and corresponding file assignment which includes-
queuing delays.

This analysis/ev;luation tool, the hybrid modél,
can be used as a primitive in a higher leﬁel,v
automatic design process.

The optimal branching probabilities to the I0
devices are often shown to have a significant
influence on the system.throughput. These proba-
bilities as well as device capacities,hﬁve been
identified as important comstraints for practical
loading strategies.

The hybrid model can be used to produce resﬁlts
which can be compared to those of more sophisti-

cated (future) analytical models (for verification).

Two file systems, a transaction oriented system and an

operating system library, have been investigated using the hybrid

model and results have shown to be applicable to realéwofld problems.

For example, given a set of files with known characteristics and a
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set of secondary 'storage units with known characteristics, results
are produced which assign particular files to particular devices
such that system throughput is optimized. |

It should be noted that the overhead cost of maintaining
optimal file assignment is best jﬁstified in the load (I0) bound
cases.

It has been illustrated that the application of this
analysis technique is not limited to systems consisting of a single
CPU and a single executable memory, and has been shown to be
~ practical with respect to the time and cost needed to produce the
results. |

A final important point is that the hierarchical approach
used in strﬁcturing the file assignment problem produces clarity in

the quantitative definition of the problem.
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5.2 Extensions -

The analysis technique presented here uses many simplifying
assumptions about the input parameters as well as the hybrid model.
Futﬁre work includes relaxing some of these assumptions. For
‘example, it is assumed that file (job) chara@teristics are suffi-
ciently characterized by five parameters (iie., reusability, fre-
quency of file request, processing time per reéuest, loading time
per request, and file volume). A more correct characterizatioﬁ wbuld
include the fact that files are not requested independently of one
v;ndther. This might be specified by including a sixth parémeter
giving a list of next files to bg processed alOné with the corre-~
sponding probabiiities of doiﬁg so. Another example involves the
abiiity to analyze more exact analytical models that include resource
holdipg (such as holding a chanﬁel in éddition to a device for déta
transfer). ‘

When the job characteristics change from one period to the
next périod (as with a dynamic activity profile), an algorithm'
should be designed fo balance the performance tradeoff between
allowing a file to be loaded from a slower device and percolating
(inducing overhead) that file to a fast device and ther loading it.

Finally, the long range goal involving this analysis te;hnique
is to generate a completely automatic design process, one in which
the input parameters might be job characteristics, hardware
characteristics (such as timings and costs), a total budget, and

performance constraints. The output would be a system designed for
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the job characteristics which would satisfy budget and perfor-

mance constraints.
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