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1. Introduction

Statistical data such as the utilization factors of various resources
is often extracted from computer systems through the use of both hardware and
software monitors. But this data, summary in nature, is insufficient for sev-
eral kinds of analysis. For example, it is not possible to observe or compute
the factor of simultaneous utilization of two processors if the monitor has
collected the utilization data cf each processor independently. Gernerally,
statistical data has only limited value in simulation modeling, because a
model constructed to resolve the most specific and detailed questions concern-—
ing the system's performance will require the joint distributions of all rele-
vant interdependent operational parameters. The value of the reduced data is
limited even if it is extracted only to be observed, to gain insight or to
resolve general questions concerning the system's operation, because only de-
tailed data organized in a logical and convenient manner, can show both the
values of the operational parameters and the reasons for those values.

This report concerns the problems of extracting, condensing and organiz-
ing a useful representation of the intermal activity of a multiprogrammed
computer system. The representation is a set of traces of the processor
invocations and busy periods caused by each of the individual user jobs. The
job traces are obtained from a trace of all the events in the multiprogrammed
system called the system event trace. The job traces have greater utility
than the system event trace in several applications.

Motivation for the recording of job event traces

Traces of user jobs that show the demand for the system's resources
made by the job are useful in the following applications:
1) Insight into the interaction of the processcrs, from the point of
view of the degree or quantity of such interaction as it is actually determined

by jobs, as opposed to potential or theoretical interactionms.



2) Input for a simulation model. Use of actual user program traces
will provide more accurate simulations than the technique of constructing
approximate probability distributions from condensed measurement data and
randomly generating jobs characteristics from them, since this latter tech-
nique wrongly assumes the job characteristics to be statistically independent
of each other.

3) Extracting summary statistics describing the system's workload
characteristics.

4) Measurement of the degree of duplicated processing in the system.

As the individual job traces are recorded, it will be possible to determine
the degree to which:processing sequences are duplicated due to multiple sub-
missions of a single job or variant versions of the job. If the degree of
duplicated activity is significant, it will raise the possibility of recording
detailed representations of the job's resource demand pattern (similar to the
job traces), and making them available to the scheduler for predictive sched-
uling. This is the primary motivation for the job trace recording that is
reported here.

Section two of this report is a general description of the hardware and
sof tware processors of the CDC 6600 computer system for which the trace extrac-—
tion is implemented, and the interprocesscr communications mechanisms. The
events of the system event trace are those of interprocessor invocations, hence,
this section also affords a description of the system event trace. Section three
of this report contains a description of the user job trace, and summarizes
the general problems that must be resolved by a program that produces the job
trace from the system event trace. These two sections define and use termino-
logy specific to the CDC 6600 system; yet the aspects of the system that are

presented, and the problems that are described, are those that are common to



multiprogrammed, multiprocessor computer systems. Section four of the report
describes the program, called the event trace decomposition program which pro-
duces the job traces from the system event trace. This description deals with de-
tails specific to the 6600 system, as well as the general problems. Section
five presents several results of the extraction of job traces. These results
show that the job traces are consistent, in that the same trace is obtained

for identical rums of a program, and that they are rather insensitive to

minor changes in the program run.



2. Description of the Multiprocessor System

The CDC 6600 system is described as a multiprocessor system since it allows
several general-purpose processors to be simultaneously engaged in processing
a single job. However, only one processor (the CPU) executes user—generated
code. Ten peripheral processing units (PPU's) execute system routines ancil-
lary to the user program. The diversity of system functions performed by the
PPU's, including but not limited to the I/0 functions, give the CPU-PPU com-
plex the aspects of a general multiprocessor system. The facilities for commu-
nication (signaling and blocking) are general in that they have not been
implemented to achieve a particular user function (such as physical I1/0 per-
formed by a channel) or to be dependent cn a particular state of the system.
The implementation of the software interprocessor communication mechanisms
is not independent of the characteristics of the hardware. The CDC 6600
hardware will be reviewed before the description of the software is presented.

Hardware Background

Figure 2-1 shows the basic hardware organization of the CDC 6600 system.
The CPU is a large fast processor that can execute out of main memory (128K
of 60-bit words) and can execute block data transfers between the main and
backup (ECS) memory units. It cannot directly access the channels, nor the
memories of the PPU's.

Each PPU executes out of its own memory (4K of 12-bit words), and can
access any channel, read and store intc central memory, and interrupt the
CPU if the CPU is executing in user mode. The PPU's are not only suited for
1/0 operations (using their own memories as buffers for data exchanges between
the channels and main memory) but are more capable than the CPU of performing
the control functions of the system. The PPU's cannot directly access the

ECS unit.



Channei:g:zsz\\m\NﬁNN\

ECS

Channel 2 c 1
% entra
PgU .. Memory. 512K
i 7 128K 60-bit
/ 60-bit o

Channel 12

Data transfer

Interrupt— — — —

Figure 2-1

Communication paths in the CDC 6600 System



The Multiprocessor Communication Facilities

One PPU, called MTIR, contains the main controlling routine of the oper-
ating system. It directs the operations of the other (pocl) PPU's. These
pool PPU's have no identity other than the program they are currently exe-
cuting, hence they will often be called peripheral programs (PP's). A PP
requires an available PPU, and communication to the PP will be identified
by the PPU number. MIR also controls the sequencing of the CPU among the
user programs multiprogrammed in main memory.

But not all of the operating systems functions are performed by MTR
and the PP's. Because of a requirement of speed, availability of large
working memory, or communication with ECS, some functions will be performed
by the CPU. This part of the operating system will be called Central-
Memory-Resident (CMR).

A user job resident in main memory is called a control point (CP) and
is uniquely identified by a contrel point number (CP number). Jobs on backup
storage have nc CP number. The CP number is used as an index to a table
resident in main memory, the Control Peint Status Table (CPST). The CPST
provides the relocation address (RA) and field length (FL) of the main
memory occupied by the job.

Each of the virtual processors-——MIR, CMR, PP or CP can communicate with
any other through table entries in central memory. The CPST is one such
table. Ancother important table is called the PP communications area. This
table consists of the following entries for each PPU: one word, called the
input register (IR), which contains the name of the PP being executed in the
PPU; an output register (OR) that contains the PP's requests for service and
their responses; and a message buffer (MB) that contains data needed to

amplify the other entries.



With this background, it is possible to review all of the possible
processor invocation types in the system. Then, as the trace facility is
described, it will be seen to provide a complete record of processor invo-
cations during the trace period. Last, the job trace can be understocd to
be a detailed record of processor invocations resulting from one job. The
mechanisme for invocation are distinguished as primary or secondary, depend-
ing on whether they operate in a conceptually single step, or whether they
are a composite of other invocation types. Both polling and the interrupt
are identified as primary mechanisms.

The possible processor invocation types are shown in figure 2-2.

Primary mechanisms

1. PP-CMR and MTR-CMR invocations. The PPU's can interrupt the CPU,
causing it to execute CMR. When any PP requires a CMR function, it places
the code and parameters of the function in its OR and signals an interrupt.
CMR scans the OR's of all the PPU's and performs any CMR function found.

2. MTR-PP invocation. An idle PPU polls its IR. MIR places a PP
name in the IR; the PPU locates the PP, loads and executes it.

3. PP-MTR invocation. A PP requiring service places the call for
service in its OR. MTR, in its main loop, scans the OR's of all PP's.

On finding a function request, it either dispatches it to CMR or another
PP, or performs it itself. This is called the PP-function request, or
PP-MIR function request.

4, CP-MTR invocation. A control point places a call for service in
address 1 relative to the relocation address of the CP. MIR polls the
RA+1 location of the active CP in its main loop. MIR either performs the
function or dispatches it to another processor, as before. This is called

the RA+1 call.
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Secondary Mechanisms

MIR spends most of its time polling the OR's of PP's and the RA+1
location of the active CP. It performs simple functions itself, and passes
the larger functions on to other processors. The secondary invocations in-
volve a request that MIR picks up and passes on. These are alsc shown in
figure 2-+2.

5. CP-PP invocation. The active CP calls a PP by means of the RA+1
call. MIR recognizes it as a PP name, and places it in the IR of an avail-
able PPU.

6. PP-PP invocation. A PP calls for another PP by one of three methods.

a) A PP specifies its need for an auxiliary PP by placing the PP
name and the 'request PP' (RPP) function code in its OR. MTR picks this up
and assigns & PPU for the PP.

b) A PP can cause sequential execution of another PP in its own
PPU by placing the new PP name in the IR of the PPU, and transferring to the
PPU idle loop. The new PP will execute without MIR being appraised of the
change of PP in the PPU. This will be called PP self-assignment.

c) A PP may request that another PP begin after a specified time
delay. It requests the 'Enter Delayed Request' function (EDR, which is
performed by MTR), specifying the desired PP and delay. MIR places the PP
call and name on the 'Delayed Request' stack, and assigns the PP when the
delay expires. A PP may make an immediate request by specifying a delay of
zero.

In the hierarchy of processes that constitute the system, CMR is at the
lowest level. CMR never invokes MIR or a PP, nor does it modify the status
of a CP. Thus the CMR-MTR, CMR-PP, and CP-CMR processor invocations do not

exist.
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The only processor invecations that are missing from figure 2-2, then,
are invocations of a CP. CMR, following periodic orders by MTR, sequentially
transfers contrcl among the control points that are not blocked for a signal
from another processcr. But this is allocation of the CPU as a resource,
and is not to be confused with the logical invocation of a process, or vir-
tual processor. Strictly speaking, a CP is not invoked by another process,
because it is at the top of the hierarchy of processes. However, MIR en-
ables processing at a CP by setting the status of control point to 'ready'.

Thus, the following two communication paths should be considered as
forms of invocation.

7) MIR-CP. MTR sets the status of the CP to 'ready for CPU'. If
the CPU is idle, it is interrupted to begin processing at the CP.

8) PP-CP. A PP requests reactivation of a CP via the PP-MIR function
'recall central program' (RCP). MTR changes the CP status.

A CP may request blocked status for a specified period, or uﬁtil the
completion of a PP, by means of the RA+1l call 'Recall' (RCL). If a specific
delay was requested, MTR places a request for its Recall Central Program
function on the delayed request stack.

The Event Trace

The choice of the processcr invocations to be recorded as events and
the amount of data to be recorded with each depends upon the level of detail
desired in the analysis. More detailed analysis requires more voluminous
data to be recorded and reduced; and as the expense is increased, the incre-
mental benefit of the analysis is correspondingly decreased. (This effect
is exacerbated by the increasingly large amount of artifact generated by the
recdrding process.) For analysis of the efficiency of operation of the
machine, a desirable operating point is the recording of enough data to

determine the utilizatiom of each process in each system function; that is,
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events signalling the entry and exit time of each identifiable system pro-
gram. Because of the cost constraints, the implementation of the UT-2 event
trace makes significant approximations to this ideal.

Specifically, the events recorded, in terms of the invocation types
shown in figure two, are the following:

a) All RA+1 calls, recorded when the RA+1 call takes place. (Invoca-
tion types 4 and 5.)

b) The PP-MIR functions, usually recorded at the time the function is
completed. (This is invocation type 3; the events here will serve as a
record of cother types as well.)

¢) Events providing the CMR entry and exit times. (The times of invo-
cation type 1.)

d) Events describing the completion of CMR functions. Since CMR
functions are completed quickly, the time of these events will be essentially
that of the CMR initiation, hence, this completes recording of invocation
type 1. If the CMR function cannot be completed immediately (due to queueing
delays) an event is recorded at the time the function is first attempted, and
another when the function is completed.

e) Clock update events, recorded when CMR is active for an extended
periocd. This provides an estimate to the time of interrupt events when the
CPU was in supervisor (nmon-interruptible) state, as well as indicating the
duration of CMR functions.

f) Events provided by the scheduling routines describing the status
changes of the OS.

The PP-function events (b, above) provide sufficient data for the com~
plete specification of all other processcr invocations. When an idle PP

first reads a program name in its input register it immediately calls for
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the PP-function "LPP' to find the location of the required PP. Hence, invo-
cation type 2 is in the trace. When a PP completes its operation, it so
signals MIR by means of the PP-function 'Drop PP', hence completion time of
the PP is available.

Both 'Request PP' (RPP) and 'Enter Deiayed Request' (EDR) are PP-MTR
functions. Hence, invocation types 6a and 6c appear in the trace. The
presence of PP self-assignment (invocation type 6b) is implicit in the trace,
in the form of an LPP function without a corresponding DPP. A PP completing
a function for a CP will issue the PP-MIR function RCP to change the CP
status to ready. This is invocation type 7.

In summary, not all of the data associated with the event of each
invocation type is recorded at the time the event takes place. Timing infor-
mation in particular may be recorded in events surrounding any particular
invocation. However, the events of each inveccation type are recorded in
some form in the system event trace,‘and each is tagged with the identifi-

cation of the PP or CP making the call.
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3. Decompesition of the Event Trace to Job Traces

The two qualities most desired of the individual job traces are com~
pleteness of the representation of the user job's demand for system resources,
and independence of the scheduling effects of the operating system. Complete-
ness of the resocurce demand data is achieved in the job trace chosen for the
UT-2 operating system by including all the events that can be related to that
user that are not scheduling events. From the preceding description of the
event trace, this is seen to provide a detailed record of processing periods,
memory requirements, channel holding time, etc.

The degree to which the job traces are independent of the scheduliﬁg
effects is indicated by the reproducibility of the results of the tracing
and decomposition processes. If a single program is run several times with
identical data, the job traces obtained in every case should be the same.

Format of the Job Trace

A job trace consists of a set of sequences of (time, event) pairs.
There is one such sequence for each processor run. The events are those

produced by the processor, and the times are relative to the beginning of

the processor run. A simple example of a job trace is shown in figure 3-1.
Each sequence beginning with an 'lpp' event and ending with a "dpp' event
represents a peripheral processor run. The events of these sequences are
those of invocation types 1, 3, and 6 recorded in the system event trace.

The right most trace of figure three is the trace of the central processor
activity. These CP events are the RA+1l calls (invocation types 4 and 5)
recorded in the system event trace. Those that are calls for PP service
(invocation type 5) include pointers to the PP runs providing the service.

The leftmost PP sequences in figure 3-1, which are not called by the CP,

represent the initialization sequence of the user job. These PP rumns occurred
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for the job before the CP was ever activated. The 'Recall Central Processor'
event in a PP sequence (invocation type 8) represents the enabling of the
central processor. It does not include a link to the central processor in
the job trace, because due to lack of synchronization of the PP and CP, this
PP event cannot specify the particular point at which CP processing should
resume.

Use of the Job Event Trace

The format of the job trace results from consideration of future pro-
cessing requirements as well as completeness and scheduler independence.
The use cf the trace as input to a simulation model can easily be imagined.
Each pseudo-processcor of the simulation model will maintain its own pointer
tc its event sequence and will simulate an invocation by passing the pointer
indicating another processcr run (which is in its event sequence) to the

pseude processor being invoked.
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General Considerations of the Decomposition Process

The decomposition program creates the individual job traces in a
single scan of the event trace. The program maintains counters of accumu-
lated preccessing time for each program run.

In most instances, the number of the processor (CP or PPU) which
produced the event is present within the recorded event. Then, the process
of collecting the events associated with a particular job requires maintain-
ing the mapping from every PPU to the CP for which the PPU is operating,
and from each CP to the job occupying the CP. Both of these mappings will
vary during the activation ?eriod of any one jocb.

The techniques for eliminating the operating systems scheduling effects
depend upon the particular form of these effects; some are general, in that
they would appear in any trace of multiprocessing system, others specific
to scheduling in the UT-2 operating system.

Removal of Scheduler-Induced Operations

In resolving the question of which processing activities should be
charged to the user job (and become part of the job trace) and which con-
sidéred operating system overhead functions, the concept of reproducibility
of the user job trace is useful. If the processing activity appears each
time the program is run (with identical data) it should be considered part
of the user program trace.

In the UT-2 operating system, a particular PP program, 1lAJ, is called
to supervise the processing of each control card. This 0S function will
become part of the job trace. Memory scheduling for a job is done period-
ically by a scheduler in CMR. If a job is to be brought into memory (assigned
a CP) the PP 1RJ (Resume Job) is called. When the job is to be removed, the
PP 1SJ (Suspend Job) is activated. The 1RJ run at the beginning of a job

and the 18J run at the end are required, and are part of the event trace.
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Other 18J and 1RJ activations during the job's run are due to the pre-
emptive memory scheduling algorithm, and are not included. The decomposition
program sets a flag at the occurrence of beginning-of-job conditions (sig~
nalled by an overlay of the PP 1PS) and end-of-job conditions (the PP 1CJ)
so that only the required 1S8J and 1RJ runs are included as part of the job
trace.

The effects of the Round-Robin CPU scheduling algorithm are easily
removed as the CPU burst time events are summed to become the accumulated
processing time of the job.

Monitoring Job Initiation

The consideration of reproducibility dictates that a PP run that is
made for a system control point will sometimes be included in a job trace.
The appearance of a new job in the system is associated with the activation
of the PP 1PS (which has other functions besides initiating jobs). Since
the new job has not been assigned a CP at this point, 1PS operates for a
system control point. After it becomes clear that the 1PS activation is
introducing a new job, the entire PP run is saved in the job trace.

Because the events of the PP 1PS cannot be immediately stored in a
job trace, the decomposition program accumulates complete PP traces in a
buffer associated with the PPU before saving the PP run in the job trace.

Removing System Delays from the Job Traces

A requested system function that was not immediately satisfied, due
to queueing delays, appears twice in the event trace; once, negated, at
the time of the original call (tl), and again, at the time the call is
completed (tz). If the function was requested by a CP, the CP will have
either been blocked during the interval (tl, t2) or it will have been per-

forming useful computation; it will not have been in a 'busy idle' loop



18

awaiting completion of the function. Hence, the delay ty-ty has no
effect on the accumulated processing time for the job.

A PP requesting a PP-MIR function does wait in a loop for the
completion of the request. The delay t2—t1 must be removed from the
relative processing time of the PP. The decomposition program accom-
plishes this by adding the delay to the apparent real time of the PP's
initiation, which is the base from which the relative run times of the

PP are computed.

Associating Processor Invocations with Processor Sequences

When a PP program calls for another by the RPP PP-MIR call, or when
the control point calls for a PP, the called PP will not be synchronized
with the remainder of the calling processcr run. The called PP may be
initiated and in fact may terminate either before or after the calling PP.
This presents complications in the order in which PP sequences are stored
in the user event trace, with the proper linkage from calling PP to called PP,
If a Control Point continues activity after an RA+1 call for a PP, it may
then issue additional RA+1 call and in fact may have several requests for
runs of a single PP outstanding at once. The PP runs made in response to
these calls may not appear in the system event trace in the same order in
which the requests were issued. The decomposition program must properly
identify the PP sequence occurring for each call. These and other capabil-
ities of the decomposition program are discussed more completely in section
four.

Stability of the Decomposition Program

When the event recording and trace decomposition are applied to several
runs of a single program with the same data for each run, the structure of

the event traces should be identical. The only differences that should
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occur are in the relative times of the events in the trace. These are due
to hardware effects that are extremely difficult to measure. Examples are:
a) the amount of interference with processing due to memory cycle-stealing,
b) the unpredictable time spent in a busy form of waiting until the MTR
polling sequence picks up the RA+1l call, and c) the unpredictable seek time
in disk operations. The implemented trace recording and decomposition pro-
cedures are stable in this regard. These and other results of tests of

these procedures are presented in section five.
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4, The Event Trace Decomposition Program

The decomposition program is uged to collect complete interactive user
job representations with respect to the jobs' demand for the following sys-—
tem resources:

The central processor (CPU)

Pool peripheral processcrs (PPU's)
Main memory (CM)

I/0 channels

User job representations (job traces) are created by the decomposition
program in a single scan of an event trace tape produced by the UT-2D
system event recorder. The event reccrder, a software probe embedded in
the system monitor control programs, records on magnetic tape detailed
event traces containing a microscopic history of user program activity and
monitor decisions during the recording session. The decomposition program
distinguishes (in the event trace) events associated with particular user
jobs and deletes from these the effects of the system's multiprogramming
environment to produce individual user job traces which are both compact
and complete, with respect to the resource requirements for each job.

Figure 4~1 shows the procedures required to obtain the user job traces.
The job traces produced by the decomposition program are examined for
resource—demand patterns, and are used as input tc a trace~driven simulation

model of the system to analyze predictive scheduling policies.
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Primary program capabilities

1. Since complete user job traces are desired, the decompositiocn program
recognizes the occurence of system initialization and termination sequences
for user jobs in the event trace. Jobs become known te, and leave, the
system in several different ways —— for example, a job initially recognized
as interactive may be switched to batch status at user discretion -- and
hence recognizing when a particular job starts and when it terminates is
not necessarily a straightforward task. Only those user jobs which are
initialized during the recording session are traced (since only from these
jobs can complete traces be obtained).

The occurence of an initialization sequence for a user job causes the
decomposition program to allocate buffer space for the job trace. A termi-
nation sequence for a user job signals the pregram to move the accumulated

trace for the job from program buffer storage to a mass storage file.

2. During its lifetime in the system, a user job may execute sequentially

at several different control points as a result of scheduler-initiated memory
swaps. Occasionally, a swap in sequence for a user jcb must be aborted be-
cause of a CM-scheduler decision conflict. The decomposition program recog-
nizes aborted swap in sequences (punts) by maintaining what is essentially a
swapping state graph, represented in the event trace as a sequence of special
events, which describes the status of a control point during the implemen-
tation of a scheduler decision (see Figure 4-2). If a control point in the
"rollin" state becomes vacant, a punt has occurred. If the control point
becomes active, then the swap-in has succeeded, and the decomposition pro-
gram notes that the swapped-in job is now executing at the specified control

peint.
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Memory swaps require resources, at the very least a PPU to perform the
swap—-in or swap-out and possibly an I/0 channel if ECS has become full and
the system disk must be used as a swapping device. Since these resources
reflect only the multiprogramming environment of UT-2D, and not the resource
requirements of the affected user jobs, the events associated with memory
swapping (except for the CM of an incoming job) are not included in the job
traces. The "think time" interval between a swap—out and the next swap-in
for a particular user job may be recorded for use in the trace-driven
simulation model, however, if the job is suspended due tc a "TTY wait"

condition.

3. The ﬁser job traces must reflect only the jobs' actual demand for
resources. Hence the effects of the UT-2D multiprogramming enviromnment
are filtered from each job trace as these effects are recognized. Events
generated by swapping activity, as described above, are discarded. In
addition, the following are removed from the user job traces:

(i) time spent in queues for system resources
{(ii) time spent waiting for global memory compaction

(iii) uninteresting events, such as local and global file reservations,
which do not reflect a user job's use of resources

(1) and (ii) require adjustments to be made to PPU holding times -- that is,
queueing or compaction times are subtracted from the accumulated processing
time of a PPU working for a user job. (iii) merely requires that the decom~
position pregram record only a specified subset of events asscciated with
user jobs. The events that remain, then, are used to produce the user job
traces and include the following:

(1) CPU bursts for user jobs
(1i) wuser requests for service (RA+l events)
(iii) control command (CC) generated PPU runs

(iv) channel reservations and holding times, exclusive of queueing
delays
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(v) CM requests issued by PPU's working for user jobs
(vi) PPU runs, with holding times adjusted as described above
(vii) PPU drops

(viii) cleck ticks, used to obtain channel and PPU holding times

4. Cause/effect relationships between user requests and system actions

are recorded by the decomposition program in order tec produce an accurate

history of user job resource demands. This is accomplished as follows:
i) RA+l requests for a PPU transient program are linked to the resulting
PPU program traces. The linking process is complicated by the possible
variations in the sequence in which RA+1 requests are made and satisfied.
For example, a series of RA+1 requests may appear in the event trace
prior to the LPP event for the first RA+1 request in the series; hence
a table of outstanding requests and pointers into user job traces is
maintained by the program.
ii) PPU program requests for reactivation of the PPU program after a
specified time interval (EDR requests) are linked to the resulting PPU
program traces. System resource requests issued by a particular PPU
program for a user job are collected in an event sequence buffer asso-
ciated with the PPU (the decomposition program maintains an event
sequence buffer for each PPU in the system). When an executing PPU
program terminates and drops the PPU, the information contained in the
asscciated event sequence buffer is transferred tc the appropriate user
job trace, if one exists, or else is discarded. The decomposition pro-
gram uses the table of outstanding requests and pointers to determine
whether or not a calling PPU program exists for the terminated PPU. If
the terminated program was indeed called by a PPU program in a different
PPU, the event sequence trace of the terminated PPU must be linked into

the calling PPU's event sequence trace buffer (if the calling program
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has not yet terminated) or into the associated user job trace (if the

calling program has terminated and its event sequernce trace has been

transferred). Similarly, pointers in the table must be modified when-
ever a PPU program with outstanding EDR requests terminates, drops the

PPU, and has its associated event sequence trace moved to a user job

trace.

As an illustration of the above procedure, consider a user—initiated
request for additional CM. The PPU transient program RFL is loaded into a
PPU and determines if the desired storage is available. If not, RFL will
issue an EDR for itself and drop the PPU. This sequence is repeated until
the desired CM is obtained. As each RFL terminates, its’event trace is
transferred to the corresponding user job trace and is linked to the previous
RFL which issued the EDR (except for the initial RFL which is probably linked

to an RA+1 request). (See Figure 4-3).

5. CPU bursts for individual user jobs are recognized and accumulated in a
fairly straightforward manner. Since a CPU burst for a control peint appears
in the event trace as a single event, it is necessary only to maintain a
record of job assignments to control peints to be able to associate a burst
with a particular user job.

RA+1 requests may be issued only during a CPU burst:; hence accumulated
burst times are used to mark time intervals between BA+1l events in the job
traces. Figure 4-4 shows the format of a user job trace containing event
codes, links, and accumulated times. Necte that the PPU times shown repre-
sent accumulated holding time for the particular PPU relative to the load of

the first PPU program in a sequence.
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Auxiliary Program Features

The decomposition program contains a storage management facility which
dynamically allocates buffer storage for a given user job trace subsequent
to the initialization sequence. The job trace actually consists of blocks
of CM, allocated on demand and linked together in a list structure. When
a user job terminateé, the associated trace blocks are written to an exter-—
nal trace file on disk, and the CM storage for the trace is reclaimed for
future use. Thus the decomposition program's data area will grow dynamically
during program execution but will never greatly exceed the actual CM require-
ments of the program.

The UT-2D operating system is frequently modified to provide expanded
services to the community of users. Occasionally such modifications affect
the format or sequencing of the event trace tapes. As z result, event traces
sometimes present a moving target to the would-be analysis program. An error
trap facility in the decomposition program allows the output of accumulated
trace information and system status when anomolies in the system event trace
are recognized. Originally intended as a debugging tocl, the errcr trap
facility now keeps us abreast of system changes which affect the event traces.

Input control variables (which may be modified dynamically during program
execution) allow the decomposition program to:

i) Begin or terminate job tracing at any desired point in the event
trace tape (or disk file copy);

ii1) Record and save the state of the program at specified pecints in the
event trace teo provide a restart capability;

iii) Output formatted details of the state of the system during the re-
cording session continuously or at specified pointse during program
execution;

iv) Output formatted copies of job traces as they are written to mass
storage.
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Program Cutput

The decomposition program produces job traces for all complete jobs
recognized in the event trace tape within the bounds specified by the input
control variables. Job traces contain one word for each event recorded by
the preogram, and contain the following information:

i) Event type (ccde)
ii) Link (if any)
iii) Time (if relevant)
iv) Resource type (sometimes implicit in the event type)

v) Amount of resource used (size or helding time)
The job traces are designed primarily as input to a trace-driven simulation

of the system, but have been formatted tc lend thenselves to hand analysis

as well.

Structure of the Decompogition Program

A small preprocessing routine positions the event tape past the initial
low-core table dumps and, if so directed, skips to a particular buffer within
the event trace. A large Fortran control subroutine then defines and initial-
izes the various tables, pointers, and data structures used in the program,
and initiates job tracing. This routine controls job recognition and event
tracing, and calls on a number of compass and Fortran utility routines which
perform dynamic memory allocation, state saving and program restarting, job
trace output, job trace compaction, and error detection and processing

functions.
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5. System~Independence of the Event Trace Recording and Decomposition

Processes.

The event trace decomposition program produces a user-program
resource utilization profile that is almost entirely independent of
the system's action in scheduling and monitoring the run. To obtain
an indication of this independence, a set of ten jobs (described in
the following section) was executed twice during a trace period, with
no changes to the jobs or their data made between the runs. The order
of the jobs was permuted between the runs, and the total load on the
system varied. The trace for the various runs of each individual job
are almost identical. Occasionally a few RA+L calls, which are due
to a user program repeating an unsatisfied request, appear in one run
and not the other. Otherwise, the sequences of RA+1 calls for each
pair of job traces is identical, and corresponding CPU bursts no more
than a millisecond different. (Each trace CPU burst is the sum of several
quanta of processing time. The quanta are variable length, and measured
within one millisecond of accuracy, and with a quarter millisecond
precision.) |

The numbers of PP runs for each pair of job runs are likewise
well correlated. The PPU run times do show some variance, due to disk
positioning and the interference of another machine sharing these units. The

aggregate statistics for each of the two sets of job rums, are the following.

Set Run 1 Set Run 2
Total CP events 932 844
Total CP time (seconds) 30.807 30.795
Total PPU runs 526 524

Total PPU time(seconds) 129.706 129.525
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These data show that the recording and decomposition process is
stable, with only minor variations. The differences in the resource
utilization patterns of two runs is therefore due to the differences
in resource demand in the runs rather than operating system effect.
Some examples of program resource demand patterns are presented in

the next section.

Correlation of Resource Demand Patterns Between Similar Job Runs.

The event trace recording and decomposition procedures are
implemented to study and measure the degree of duplication of particular
processing patterns. This data may be extremely helpful in the design of
schedulers which may use the prediction of jobs'resource requirements.
Hence, it is of some interest to observe the differences in the extracted
resource demand patterns as the control cards, program, and data of a
job are modified. Therefore, programs that are basically similar but
differed to the degree one might expect from two runs of a production
program or two compilations of a program in development, were run during
the trace period. The results show the resource utilization patterns
to be rather insensitive to these changes. The results are as follows:

1. Changes of Control Card Specification.

In runs one through three, the same relocatable binary program
was loaded and executed. In run one, this was specified by a single
control card, but two separate control cards were used in run two. In
run three, the program was read from the file system, loaded, and executed

in three separate control cards. The results are as follows:
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Run 1 Run 2 Run 3
CP events 34 53 69
CP time (seconds) .291 .306 .328
PP runs 27 30 46
PP time (seconds) 1.547 1.961 2.443

As before, the differencesin the number of CP events are due to
repeated requests for a function that the operating system may not
be prepared to accept. This is a system influence that is not filtered
out, yet any application of these traces can ignore the superflous
requests. The variation in PP run time among these three runs is
due to disk positioning and interference due to sharing.

2. Changes in Compilation.

Run four was a straightforward correct compilation of a

Fortran program, but several errors (undefined statement number, paren-
thesis mismatch, illegal statement function) were introduced into the

source program in run five. The results are:

Run 4 Run 5
CP events 62 64
CP time (seconds) 3.113 3.142
PP runs ‘ 46 48
PP time (seconds) 10.611 11.537

The differences in these two runs is actually within the error
of the trace and decomposition process. The sequences of supervisor
calls were exactly the same (when the repeated events are eliminated)
and the additional CP time for run five accumulated over the length

of the program run, so the sequences of individual CPU burst times



are almost exactly the same.
3. Compilation With Many Errors.
Runs six and seven were again Fortran compilations. Run
six had five Fortran errors, while several cards of the source program

were scrambled in run seven, causing 24 errors. The results are:

Run 6 Run 7
CP events 63 85
CP time (seconds) 3.335 3.217
PP runs 50 51
PP time (seconds) 12.663 15.426

These results again show similar processing patterns. The sequence
of supervisor calls was identical for sixty percent of the accumulated
CPU time, and the sequences differed only in the name of one supervisor
call (except for repeated supervisor calls).

4. Changes in Data

The amount and type of computation occurring in runs of a
program may vary over a great range, depending on the data values used.
But the usual repeated occurrences of a production program probably
result in similar execution patterns. Runs eight and nine are runs
of a Fortran program that weaves doubly-linked lists together. Run
eight executed and terminated normally, while run nine which had diff-
erent data, terminated when a bad data value was read on input. The

results are:

Run 8 Run 9
CP events 102 106
CP time (seconds) 4.809 4,496
PP runs 72 74

PP time (seconds) 15.586 16.478
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Summary

The system event trace decomposition process produces a job trace that
is independent of the multiprogramming effects of the cperating system.
The traces obtained are in a form that is useful for input to simulation
modelling. The traces cbtained indicate that there may be a good deal of
repetitive processing activity in the system. Scheduling algorithms test
use predictive data collected from the system are being designed, and
will be evaluated through simulation modelling, with the user job traces

as input.
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