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Abstract

A symmetric queueing discipline is defined as a scheduling
algorithm that assigns processing rates to the jobs in a queue
only at arrival and departure times, and for each n, the
processing rate distribution over the n customers in the queue,
ordered by their relative arrival time, is constant. A simple
and complete characterization of a particular subclass of syﬁ—
metric disciplines, called the Batch Processor-Sharing (BPS)
algorithms, is shown to be a generalization of the Last-Come-
First-Served Preemptive, Processor Sharing, and the No Queueing
disciplines. It is shown that all BPS disciplines have the
departure independence or MM property, and furthermore, any
symmetric algorithm with the MM property must be a BPS algorithm.
Disciplines from this class can be chosen to form analyzable
queueing networks with general service time distributions,

priority queueing, and load-dependent processing rates.



1. Introduction

A queue has the MM (Markov implies Markov) property if, whenever the
arrival process is Poisson, the departure process is also Poisson. The MM
property is of importance in the analysis of queueing networks, since the
steady~state behavior of a network of queues with the MM property is
determined only by the average input and ocutput rate of each queue. The
queues are then independent of each other to the extent that the state of
the network can be expressed as the product of the states of the individual
gueues.

It is well known that every queue for which the processing-time
distribution is exponential has the MM property. (Queueing disciplines
that schedule on the basis of future or accumulated processing times, or
which allow the processor to remain idle when a customer is ready, are
excluded.) The product form for queueing networks with exponential service-
time distributions is introduced in the classical papers by Jackson (J1)
and Gordon and Newell (Gl).

If the processing-time distribution of the queue is general, the MM
property is an attribute of the queuveing discipline, that is, the rule by
which processing power is allocated to the customers in the queue. Chandy
(C1l) defines the concept of local balance and shows several instances in
which this property leads to the product form for networks of queues with
general service-time distributions. In particular, it is shown that net-
works of queues with the Last~Come-First-Served Preemptive (1LCFSP) disci-
pline and the Processor Sharing (PS) discipline have the product form. Also,
if an arriving customer can be guaranteed immediate service by an available
processor, the No-Queueing (NQ) discipline (the M/G/e queue) affords the

product form.



It is shown by Muntz (M2) that if the steady-state balance equations
of a queue satisfy the departure independence condition, the queue has the
MM property. It is thereby shown that the LCFSP and PS disciplines have
the MM property. The NQ discipline is shown to have the MM property in (M),

The results in (Cl) are generalized by Baskett, et al, (Bl) to queues
with different classes of customers. In (C2), a characterization of a
general queue is presented, and the local balance condition for a single
queue is defined to be equivalent to the departure independence property
when the balance equation is satisfied. With these definitions, local balance,
departure independence, the MM property and the product form are all
equivalent.

Furthermore, through the concept of station balance, (C2) defines a
sufficient condition for local balance. The PS, LCFSP, and NQ disciplines
have these properties, but the complete class of disciplines that have these
properties is unknown.

In this paper, the MM property is considered for a particular class of
disciplines, called symmetric disciplines. A queueing discipline is sym-—
metric if the allocation of processing power to customers in the queue is
made only at arrival and departure times, and for a given number of jobs in
the station, the processing-rate assignments made after an arrival match
those made after a departure. PS, LCFSP, and NQ are included in the class
of symmetric disciplines. A simple rule for processing power assignments
in symmetric disciplines is presented, and it is shown that this rule is

both a necessary and sufficient condition for the discipline to have the

MM property.



2. Departure Independence and Local Balance

The concepts of departure independence and local balance for a queue
are defined in this sectilon.

Let S represent the state of a queue. Let S+ be the set of states
which have exactly one more customer than S, let S be the set of states
that have exactly one less customer than S, and let U be the universe of
all states except S. Let R(S,S') be the conditional rate at which the queue
state changes from S to S', given that the queue state is S;

The balance equation for a queue equates the rate at which the queue
leaves state S to the rate at which it enters state S. It can be written to

show the various kinds of transitions as follows: ‘

P(S) | p. , R(5,80)+ . L R(5,8")

S'es 8'eU-S
= 3, P(S)RES',S)+ 2., B(S") R(S,9). )
S'eS S'eU-8

If a queue has the departure independence property, then for all S, the
rate at which the queue leaves state S due to an arrival, equals the rate at
which it enters state S due to a departure. Departure independence equates
the terms represented by the leftmost summations on either side of (1).

1f the input process to the queue 1s Poisson with average arrival
rate A, (an M/G/n queue), the conditional rates of transition out of a
state due to an arrival, is state-independent, i.e. g: +_R(S,S')==>\ for
all S. Muntz (M2) has shown that if the departure iiéZSendence equation,
which in this case is expressed as

AP (S) = Z + P(S') R(S',S) (2)
S S



holds for all S, then the output of the queue is a Poisson process. Queues
with the departure independence property are therefore also said to have
the MM, or "Markov implies Markov" property.

If the departure independence equation is assumed to hold, the terms
of the balance equation remaining after the departure independence terms are
cancelled, will be called the local balance condition.!

If the processing—time distribution has a rational Laplace transform,
it can be represented by an exponential network. Each customer in the queue
is represented in the state by the stage of processing that he has reached
in the exponential network, and in particular a newly arriving job always
enters the queue in the first stage. TFor deterministic disciplines, then,
only one state transition is possible when an arrival occurs in a par-
ticular state S, and the conditional rate of that tramsition is the input
rate. If the input process is Poisson with parameter A, let s*€3s” be the

set of states such that R(S',S) =X for S'e $*. Then the local balance con—

dition is expressed as follows:

P(S) Z +R(S,S')=>~ Z P(S") + Z + P(s’) R(s',S) (3
S'eU-S gtes® S'eU-5 -8

The system of balance equations describes the state probsbilities of
a queue. If these state probabilities satisfy either the departure indepen-

dence or the local balance conditions, they will satisfy both conditiomns,

1 Local Balance, as originally defined by Chandy (Cl), equated the rate

at which a network leaves a state due to a customer arriving at a parti-
cular queue, to the rate at which the network enters the state due to

a customer departing from the queue. The local balance defined here is
analogous. It states that the rate at which the queue leaves a particu-

lar state due to a customer changing stage (including departures) equals

the rate at which the queue enters the state due to a customer changing
stage (including arrivals). This definition is consistent with that of (C2).



and the queue (the combination of queueing discipline and processing~time

distribution) will be said to have the MM-property. Conversely, any state
probabilities that satisfy both the local bzlance and departure indepen—

dence conditions are the state probabilities of the queue.
1f the departure independence conditions are satisfied for any

processing-time distribution then the queueing discipline will be said to

have the MM-property.

3, Symmetric Disciplines

0f the many forms of possible queueing algorithms, those that schedule
on the basis of accumulated or expected processing time are excluded.
Processor reassignments are in principle possible at times other than at
arrivals and departures. But since accumulated processing times are not
considered, periodic reassignments are the oﬁly remaining possibility.
Periodic reassignments of processing power by various forms of the
RR-algorithm are commonly used to time-share the processor, or to make it
appear as though a single processor can be fractionally allocated, so
the need for considering periodic reassignments is obviated by the capa-
bility of non-integral processing rates. Last, the queueing algorithms
considered are restricted to the simple but broad subclass of algorithms
called symmetric algorithms. These are defined as follows.
Definition: A symmetric algorithm is a rule for"
allocating processing power to the customers in a queue
that has the following properties:
a) Processing rates are assigned to the customers in
the queue only when there is a change in the number

of customers in the queue.

b) For each n>0, the processing rate distribution over



the » customers in the queue, ordered by thelr
relative arrival times, is constant.
Ir = symmetric discipline, if the last customer te arrive recelves
service and departs before any other arrivals or departures, the remaining

customers continue processing at the same rates as they did before the

last arrival. PS, LCFSP, and NQ are symmetric disciplines.

4. Sufficiency of the BPS-discipline for Departure Independence and

Local Balance

A general rule for allocating processing power to the customers in
a queue, called the Batch-Processor gharing (BPS) rule, is defined.
Disciplines that allocate processing power according to this rule are
called BPS-disciplines. In this section, it is shown that BPS-disciplines

have the local balance and departure independence properties.

Definition: A processing-rate sequence {ge,gl,gz;..}
is a sequence representing any mapping from the non-regative
integers to the non-negative reals, with g0==1 and g, s n>0.

For n >0, g, is the total number of processors available when

there are n customers in the queue.

Definition: An E-sequence E=={el,e2...es...} is an
arbitrary finite or infinite strictly increasing sequence of

integers with e, = 1.

Definition: A BPS-discipline is a rule for allocating

processing power to customers in a queue such that for
processing-rate sequence {gn} and some E-sequence E, when
there are n customers in the queue and e, =max{e |eeE&es<n},

each of the last n—esi-l customers that arrived receilve

g

processing service at the rate-;:;gqu , and the remainder do
s+l

not receive service.



It is obvious that if ga==i for n20, when E={1}, the BPS-discipline
described is PS, and when E={1,2,3...}, the BPS-discipline described is

LCFSP. 1If g =n for n>0, and E={1}, the BPS-discipline described 1s NQ.

Theorem 1

Any BPS—discipline has the departure independence property for any
processing-time distribution with a rational Laplace Transform.

Proof: It is well known that distributions with rational Laplace
Transforms can be represented by an exponential network (Bl, Cl). A general
exponential network has k stages; processing is exponentially distributed
with parameter vy at each stage 1<sig<k. Processing terminates after stage
i with probability l-ai and continues in stage i+l with probability a,.

A BPS-discipline is characterized by a set of processor-sharing
intervals described by E=={e1,ez...es...}. If there are n customers in
the queue, and

es==max{eleeE&e5n},
let ns==n—es-bl be the number of customers in the sth interval. For j<s,
let nj==ej+l—ej be the number of customers in the jth interval. |
For 1siss, 1sisk, define nj,i to be the number of customers of interval
j that are in stage i of processing. Within a processor—sharing interval,
there is no distinction between customers that are in the same stage of
processing, since they all receive processing at the same rate. Therefore,

the state of queue with a BPS-discipline, in which the processing-time

distribution is a k-stage exponential, is the vector

(ns,l’ns,Z"'ns,k’ns—l,l'"ns—l,k""nl,l""nl,k)'

The departure independence and local balance equations for the

queue are the following:



Departure Indepencence

1f n-§’-].<es_§_:L or es=max{E},
P(ns,l”'ns,k’”'nl,l“'nl,k} A
k FUE S |
- S bl
8 41 jglP(ns,l"'ns,j+l"°n5,k""nl,y”nl,k) _——Lj“—us-é-l pj(l aj). (4a)
And, for n+1=es+l,
P(ns,l'"ns,k""nl,l"'nl,k) A
k
= Bne1 jg‘lP(ns+l,l"'ns+l,j'"ns+1,k’ns,1"‘nl,l“'nl,k) uy(d-ay) (4b)
_ [0 if 143
where Deyy,aT {1 55 ;ag )
Local Balance
{-: ns,iui

P(ns,l"'ns,k""nl,l""nl,k) g, L o

=AP(nS’l-l,ns’z...nS’k,...nl,l...nl’k) a(ns’l) a(ns—l)

+ }‘P(ns—l,l’ns—l,?_' . 'ns—l,k’ .. 'nl,l' . 'nl,k) a(ns’l) (l-—a(ns-—l))

n +1
..§zi:1-_.__ a(n )

k
+ gnjgzl’(ns’l,...ns’j_l+l,ns,j—l,...ns’k,...nl’l,...nl,k) n_ uj—l aj_1 s,

(5)

_f0 if n=0
where o(n) = 1 4f n>0.

The form for the state probabilities of a BPS-discipline is then

P(ns’l. . .ns’k,. . 'nl,l" . 'nl,k)

K <u-Ai)nh,i
(6)

where p = A , A =the average arrival rate for the Poisson inmput

Process,
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The theorem is proven by showing that (6) satisfies the departure
independence (4) and local balance (3) equations of the queue. Th
satisfies the balance eguaticn, hence describes the state probabilities,

and the queueing discipline has the MM property. The details are in

Appendix A.

5. Necessity of the BPS Processcr Allocation Rule for Departure

Independence and Local Balance in Symmetric Disciplines

In this section, it is shown that the BPS processor allocation rule
is the only rxule that provides the departure independence and local

balance properties in a symmetric discipline.

Thecrem 2

Any symmetric algorithm for allocating processing power to the cus-
tomers in a queue that affords the departure independence and local

balance properties when the processing-time distribution has a rational
Laplace Transform, must be a BPS-discipline.

Proof: Suppose the customers entering a general queue are numbered

by the inverse of their relative time of arrival; the most recent arrival
is numbered one. The state of the gqueue can then be described by the

vector (kl...kn) when there are n customers in the queue, where k,, 1<ign,

, th
is the processing stage of the 1~ most recent customer to enter the queue.

P is the probability of this state.
kl...k

. .th
Let {rn i}’ l1<ign, be the service rate of the 1 customer when
’

n
n customers are in the station. Necessarily, Z: r =g .
=1 n,i ol

It must be shown that for some processing~time distribution, the only

values for {rn i} for all n, that satisfy the departure independence and
»
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those that are specified by a BPS~-

An exponentizl distribution will not serve, since it affords these

ny discipline. Therefore, a two-stage exponential net-
work is chosen. The processing rates of the two stages are ¥ and Uy«
With probability 1-a, service terminates after the first stage; with

probability a, it enters the second stage. The general balance equation

for this distribution is

n
.k {A*'g: fa,abi) SRR S0 D)
E?
”éfii P oo 1k, ok o, 1B §(ky,2)
n+l
+§; S R S A TR S SRR m) To,y o D

where §(x,y) =1, if x=y, and &8{x,y) =0 otherwise.

To simplify the notation, a2 normalized probability Qk is

ook
1 n
defined as follows:

CP Lk
¢ - ®)
k}-. ® okn ( \ P .
Ulf
3 A
where j = E: (k -1) 1is the number of customers in stage two, G(n) = j gi’
=1 121

where &, is the processing power when there are n customers, and PO is

the probability of no customers in the queue.
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Also, the normalized total processing rate for state (k, ”kn> is
defined as
1 &
B o T w ke Taga e @
Also, let z =
1
The general balance equation can now be rewritten
Qe (R YTy 8GgD)
17" %n U 170y gt ook
+ZZ Q ; L T, 8(k,2)
i=1 kl’“‘k ,kki+l...xn n,i i
+1
1R A A
+ 1.1 (1-2) +Q az| T :
gn+1 igli kl...ki—'l lkioookn ul kl...ki’“lzki.‘.kn ul n‘;"l,i
L = (10)
The departure independence equation is
1 n+lr 1
Q. = (1-a) +Q az| r
kl"'kn 841 i'- l lki'“kn kl'”ki—IZki"'kn 1 n+l,1
s dan
and the local balance equation is
)
Q =g Q . 6k, ,1) + Q sk,,2)r_ .
PP TN TP =T TR SR L URTII R A
(12)

It should be noted that (12) is a set of recursive equations defining

the normalized probabilities Qk k Since Qo =1, and a does not appear
1. - 8
in (12), the Q are independent of a.
kl. . .kn



Let 1 represent the state (k....k ), where k, =1, 1<si<n, and
-1 0% .
let 19772177~ represent the state @i—w“é{n} where k% =2 and k, =1, 143
B 5, H .
Then, from {12), the following special cases are obtained:
For z},zlggpﬁz‘=gﬂi}aﬁ, {(13)
o1 1 -
Fern>1, Q R =Q T . (14
n~-1 n—-1 .n n,l
21 21 i ?
And, for 2<ksgn,
Q R =g Q +Q T, . (15)
k-1..n~k k-1 .n-k “p* k-2 .n-k n n,k
1 721 17 721 1T 721 1 ’

In fact, since Rln=gn, an =1 for all n.

At this point, it is convenient to prove the following lemma.

Lemma 1:

Suppose processing rates are assigned according to a BPS—discipline
with E-sequence E whenever there are n or fewer customers in the queue,
and departure independence holds for the entire discipline.

If j=ntl-max{e |ecE&esn} is the number of customers receiving service,

then for all 1<kgi,

1 A _n
v (16)
=5t g B152

Q. _ =
lk lzlnk

Proof: The proof is by induction on j. If j=1, n=e ¢ E, and by

— £ 4 = = T
the BPS~discipline, In,?;. &, and R a1 =28 Hence, by (14), Q n-1

21 21
For the inductive step, assume (16) holds when j >1 is replaced by j-1.

it
g

From the definition of j, n is replaced by n-1. Then (16) yields

Q. 1 = = N for 1sksj-1, an
LR PILE S A N o BoTHE




Jood
L2

which can be expressed

. 4.7
- = k i 1
T ) 11 1 . T
4] 1 L : o for 2sksi. (18
k2. .0~k L = 4 L, =itz
1 21 i=i+ -k h=1

The rule for allocating processing pover when there are n customers

and _§==rs+}.—es specifies

g, (3-142) 8,

rn,k= 3 and R %‘;‘lzf"kz -—-==-———3——-——-—-— for 1sk<i.

A

',..

Substituting these values, and (18) into (15) yields

E‘ -1 j=1 1
L~ -~ B M = }j: |
111 . |1=iF1-k T 1 |
L J

i-1 3

which completes the proof of the lemma.

The departure independence equation (11) yields the following
special case of a state with n-1 customers in the queue, and 1g<kgn~1:

1 k

n
Q oy k-1 @ .__Z‘f-‘*'Q_ _ Yo or_ ) (1-a)
lk lzln k-1 8y 1k21n k lir—l n,i 1k 12111 ki=k+l n,i
1 Z‘-:v i
+ ( Q e R S Q,._ o T Daz . (19)
g, 120 liZlk i 12111 k~1"n,i 1=k lk 1211 k lZln in,i

But, since each of the Q's is independent of a, (19) can be satisfied

only if the coefficients of each of a and 1l-a equal the left side of the

equation.

££4 -
Equating the coefficient of 1l-a in (19) to Qlk_lzln__k__l, for the
case k=1, and applying (14) and (15),



14

n.1 LY
T, . = {;,a T {2€>
T, L g R s s
n ,.n-1L i=2
21
r T
- 3
S 1Y 3 .1
072 g g
N ks -
n-2 Ig-r +7 z “n Tn,l -T +r z
21 Pt ®n Tn,2 0 Tn,2 = By n,l 0,1
This has the obvious solution T 178, and T 2=0. Other solutions
bt J 3

depend on the form of the Q's.

Equating the coefficient of 1-a in (19) to Q k-1
1T 21

n-k—1 for k> 1
and applying (15),
k
e,
=17 e +Q )
Q — . = g . e r
lk 12111 k-1 gnR X  nek-1 n lk 12111 k~1 1® n,k+l
1721
)
NS S
1=kl ™%
+ (€Q, , . .+Q _rt_ ). (22)
gnR k=1 .-k n 11( 2211:1 k 1n n,k
17 21
k
Let S = r . . Then, (22) can be rewritten
n,k oy ®i
r
n,k+l
Qpe1, nk-1t g
Q e 121 n
1k-121n—k—-1 n,k Lgﬁ_rn,k-!—l.’i—rn,k-&-lz
T
Q + n,k
k-2, kT g
+ (g -8 ) h _ = s (23)
N N,k g, rn,k+rn,k z

which has an obvious solution Sn k=8 and r
2

n,k+l=0'

Other solutions
depend on the form of the Q's.

It is now shown by induction on n that the BPS-discipline is the

only rule for allocating processing power that satisfies the departure



ipline. For the inductive hypothesis, assume that for all m<n

r
&,
the only processing rates that satisfy (19) are r 1T T l1<i<i and
5 a3
T4 =0, j<i<m, where j=ntl-maxie | lecE &e<nm},
,1

In particular, the processing rates for n-l.customers are

o
@n—l - . . - _ . . _
n-1,i -1 ¢ < si<3-1 and h__}”w-ﬁ s 3<isn, vhere j=ntl-e .
1 z 1
= {7 o b 1) =
Hence, sz‘_z g, % j-«i& j«»i> s and by (14) QZln—Z 2%z Then (21)

is reduced to the polynomial in =z

g, t(i-2+z2) ¢ (j=2+z) r
n ‘n,l -T -f‘z“ Qs— + {gn n, l) -r +:’1 z ° (24)
§ Bt B2 " n,2 % En" 0,17 T, 1

which must be satisfied for all z. This equation is straightforwardly

reduced to the form

n 2 nLj n,1 "8 } z+ (gn—rn,l) &n [(j-—l) rn,l-}‘rrx,‘?"gn.-‘ =0.

i

Setting the coefficient of z equal to zero yields the solutions

En

T =0 or v =
n,2 n,1

. Setting the constant term equal to zero yilelds

[ A

the solutions rn,1= &, °F rn,Z = gn—(g-l) rn,l . Since both conditions

must be satisfied,

g g
(rn’l,rnzz) = (gn,:O) or (-311— ,—f—)

are the only solutions satisfying the departure independence equation

(21) for n customers.

If the first solution is chosen, then r, i=0 for 2¢i¢<n. This
3

assignment of processing rates corresponds to a BPS-discipline with the

partial E-sequence E = {el, -ee€_se +l} where e 41 =0
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<

If the second solution is chosen, induction on k& will show that

LT for L2k <3 are the only remaining rate solutions consistent

For the inductive hypothesis, assume

kg
S = ——2  and x , = g? .
[EYe .S ¥

By the hypothesis of the induction on n, it has been assumed that a
BPS—discipline is used for rate assignments for n-l or fewer customers.

Then, the state probabilities Q %=1 n-k-1 and Q k-2 n-k 2T€ given by
I 21 1™ 2

Lemma 1. Because these ave states with n-1 customers, thelr forms are
given explicitly in (17) and (18). Using these values and the above rates
in the departure independence equation (23), results in a polynomial in z,
which must be satisfied for 211 z. The possible solutions for rn,k+l may
be obtained by letting z=1. In this case, (17) and (18) simplify to

Pty o1 ” i=§;kf T tekss
and
= .
Yezymek T by T pekEd

r )
-1 L i-l r [ 3-1
3T A=k LI nktll L g | T Sl
i=j-k ~ | i=3-k n t1=j+1—-k 3
L

g
This straightferwardly reduces to the unique solution L —fL
3



. . .
Since. if the processing rates sre chogen with e . #n, the solutions
3 o 5"5‘-&- 2
n - . e . 5
are v = —— for L<is3, them v =0, i<izgn. Therefore, for
Ne,% 3 - mn, 4

departure independence, the processing rates wifh n customers are

6. Generalizations and Conclusion

The class of Batch~Processor-Sharing algorithms is defined as a sub-
set of the class of symmetric disciplines, all of which employ a static
processor allocation rule. This rule states that for each n, the distri-
bution of processing power to each of the last n customers to enter the
queue, ordered by their arrival time, must be constant. However, relaxing
the symmetric requirement of the BPS-discipline, to allow dynamic vari-
ation of the processor-allocation rule, will ﬁot necessarily eliminate
the MM-property. It has been shown that for the MM-property in symmetric
disciplines, every incoming customer must be assigned to a processor-—
sharing class, within which each customer receives an equal amount of
service. The only difference between processor—sharing in one of the
BPS classes, and that of the PS~di$cipline demonstrated in (C2), is that
the BPS customers are ordered by their arrival times. But, because all
the customers in a BPS class receive equal service, this ordering is
irrelevant to any external, or input—-output, view of processing in the
class. The jobs of the class may be randomly permuted among the stations
of the BPS class, without disturbing the input-output characteristics.

In other words, the BPS classes are memoryless. As a consequence, if a
BPS class 1s interrupted at some random time, as for example at the

arrival of a new customer, the BPS class will continue to provide a

Peoisson output process when its processing is resumed after the interrupt.
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As long as the discipline used during the period of the interrupt results

in a Poisson outpul processz, the length of the interrupt makes no difference.

Therefore, assume BPS classes {C, .C_} have been filled with customerxs,

Then, resuming processing

classes will preserve the Foisson

output process. The preemptive round-robin discipline, in which a new
customer always preempts the customer on the processor, causing him to be
placed at the end of the processor queue, is an example of such a disciplime.
It is a generalization of the symmetric BPS algorithm.

As another consequence of the memoryless property of the BPS classes,
the size of any BPS class may vary dynamically. A BPS class may once be
preempted in favor of initlating a new BPS class on the arrival of the nth
customer, but after processing of the class is resumed, it may be allowed
to accept a total of n or wore customers. The decision to either continue
the current class or to initiate a new BPS class may be made by the priority
of the new customer, as long as arrivals of the high priority customers
occur in a Poisson process within the total Poisson input process. This
allows the design of MM-disciplines in which a favored class of customers
will have a smaller wait time than other customers.

Network analysis is greatly simplified when the queues of the net-
work have the MM-property. Because algorithms in which the processing
power of a queue 1s variable, and may retain the MM-property, it is
possible to analyze networks that are designed to achieve maximum through-
put through allocating greater processing power to the queues with the
greatest number of customers. This reflects a practical design approach
for computer networks, since the servers in the network may be general-

purpose processors that are capable of workload tradeoffs.
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