MEASUREMENTS OF PROCESSING REPETITION
IN INTERACTIVE COMPUTATION*
by

A. S. Noetzel

October 1975 TR-52

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

* Research reported in this paper was sponsored by NSF grant
GJ-39658



Measurements of Processing Repetition
in Interactive Computation
ABSTRACT

The phenomenon of the repetition of resource-demand sequences due to nultiple
executions of the same or similar programs is investigated. A definition of
resource-demand repetition is proposed, and the technique for measuring this
property in an instance of an interactive system is described. Results of the
measurement of repetition, first at the command level from the system dayfile,

and then at the resource-demand level by a detailed trace facility, are described.
The results show a significant amount of repetition in the compilers and user-

written programs. Implications for operating system design are discussed.



1. Introduction

Operating systems are designed to respond to user program resource require-
ments that are known in advance only probabilistically, according to the statisti-
cal profile of the job class and within the gross upper bounds épecified on con-
trol cards. However, reflection on the modus operandi of the users of a computing
facility suggest that since each program is run many times during its period of
development and productive use, the records of the resource demand generated during
any run of a program are probably quite similar to those generated during the pre-
ceding and succeeding runs of that program. This paper examines the implications of
this repetitiveness for the design of computing systems. A definition of resource-
demand repetition is proposed, and measurement of this phenomenon in one instance of
an interactive system are described. The results show the degree of repetition is
probably not significant enough to be used in predictive scheduling, but does in-
dicate possiblities for the design of language processors and monitors. |

Part two of this paper discusses repetitiveness within user computation in
general terms, and proposes a definition of resource-demand repetitiveness.

Part three contains a brief description of the interactive system on which the
measurements were made, and presents statistics of the useage and resource require-
ments of the various software processors in the system. In part four, a description
of the resources and allocation methods is presented as a background for the tech-
nique of extracting resource-demand characteristics of user programs. The measure-
ments of the degree of resource-demand repetition found in the system are then pre-
sented in part five. The implications of these elements for systemdesign are

discussed in the conclusion, part six.



2. Repetition of Processing in Computer Systems

Processing sequences representing a program in execution may be considered
at the level of individual instructions, or at the level of processing bursts
interspersed with I1/0 and other supervisor requests. We shall call the former
the logical level, since it reflects the logic of the computation, and the lat-
ter the resource-demand level. Processing sequences that are duplicated at the
logical level represent multiple executions of a single routine with identical
data. (Only trivial programs have instruction sequences that are not all data-
dependent.) This duplication of processing effort represents an inherent ineffi-
ciency in a computing system as long as the results of the computation may be
stored and retrieved more efficiently than repetitive recalculation. The eli-
mination of redundant effort has not been seriously considered as an operating sys-
tmes design approach in most cases because it is assumed that the processing effort
that might be saved is not greater than the file operations that would replace
it. But no measurements of processing repetition supporting this assumption have
been reported, whereas measurements of user behavior (2) indicate that the amount
of repetitive effort may be considerable.

The repetition of resource-demand sequences indicates approximate (though pos-
sibly exact) repetition of logical level sequences. Typically, repetitions of re-
source-demand sequences reflect executions of the same program with somewhat dif-
fering data values. A great deal of resource-demand repetition in a system
strongly indicates a considerable amount of logical repetition. It may be noted
that the precision of the resource-demand representation determines the degree to
which it may be considered an approximation to the logical sequence. A resource-
demand sequence showing only gross memory requirements and the pattern of inter-
spersed 1/0 and CPU bursts constitutes a relatively poor approximation to the
logical sequence. Entirely different sets of routines may be invoked between 1/0

request in two executions of a program, yet they may produce the same resource-



demand sequences. But, if the resource-demand sequence also includes the requests
for operating system services by the program, identical resource-demand sequences
are more likely to represent identical logical sequences. Finally, if the se-
quence of page faults is included in the resource~demand sequences of programs run
under demand-paging memory allocation, these sequences will be close indicators
of the logical sequences.

The presence of resource-demand repetition in a computer system might be
exploited in the system design, independently of the consideration of logical re~
petition. If the actual resource-demand pattern of a program is recorded and stored
each time the program is run, it will,in most instances, serve as an exact predic~-
tor of the resource requirements in the next run of the program. Schedulers
which have precise'advance data for resource requirements can achieve much;more
nearly optimal utilization than schedulers that use probabilistic data, an;'can al-
locate resources in sequences that are known to be free of deadlock. Consideration
of this technique of scheduling does raise serious questions concerning overhead
and the efficacy of schedulers that must operate on the basis of partial predic-
tive data. But first, some indication is needed of the amount of resource-demand
repetition that may be expected in a general-purpose processing utility.

The measurements of repetition of resource-demand sequences that are described
in this paper were taken from an interactive CDC 6400 system. This is not a
virtual memory system. The user program requests for operating system service
are included in the resource-demand sequences. Hereafter, repetition of resource-
demand séquences will be taken to mean exact processor-burst for processor-burst
duplication with exactly the same I/0, memory, or supervisor service requests
occurring between the continuous CPU bursts. This definition, with some toler-~

ance, is used in the repetition measurements.



The UT-2D interactive system is half of a dual-processor 6600/6400 system,
in which the processors are coupled through the sharing of mass storage devices.
The interactive operating system has a great deal of involvement in the management
of user programs and files,which enables the collection of data describing the
user behavior at several levels. The close interaction of user and system will
allow for novel approaches to scheduling, once the user behavior is well understood.
The UT-2D interactive system will be briefly described, with a profile of the useage
of its various software resources, so that the repetition measurements, and their

scope of generality may be properly understood.

3. Interactive Command Usage Characteristcs

The study of processing repetition has been performed on the interactive
UT-2D system on the CDC 6400. This interactive system grew out of the file~
based batch operating system for the CDC 60(0series machines and retains many of the
characteristics of the batch system. It has a simplicity of structure that is an
advantage for this particular study, because the various modes of processing can
be identified and separated. The results are reported in terms of the commands
of this system, but the classes of commands will be seen to characterize user
behavior and processing modes in general. After a brief description of the inter-
active system, profiles of processing time and frequency of use of the interactive

commands are presented.

Command Usage Profile

The first versions of the interactive system simply allowed control cards
to be entered from an interactive terminal, and although the vocabulary avail-
able to the user has now been expanded by many commands that are specifically
for interactive purposes, a relatively small subset of the basic control-card
commands still represents the major portion of computation in the interactive

system.



The file system resides on a hierarchy of storage devices. The storage
medium at the lowest level, is magnetic tape. The files on each tape belong
to a single user,and are called a permanent file set. When a file in a permanent
file set is referenced (as by the interactive command READPF)Vthe entire permanent
file set is transferred from the tape to the next level of the hierarchy (if
it is not already resident-there), which is a set of auxiliary disk units. The re-
quired file is read from the auxiliary disk units to the highest level, one of
four large system disk units. The requested file is then logically attached to
the user job as a local file. Any program requested by the user may reference
the local file just as it does the standard local files INPUT and OUTPUT. The
modified local file may be restored to the permanent file set by the command
SAVEPF. The command EXECPF, with a parameter that specifies a binary program
file, performs the same function as READPF, and in additioﬁ loads and executes the
named file. Various forms of the COPY command write the contents of one file to
another.

The interactive system is structured as a command interpreter. Commands
entered at terminals may name system routines, or they may name binary files at-
tached to the user job as local files. For a profile of the useage of the in-
teractive system, it is convenient to partition the commands available to users
into the following classes:

a) Utility commands. Many of the commands in this class, such as READPF,
SAVEPF, COPY, etc., specify various file positioning and transfer operations.
Others control file names and job parameters.

b) Editors and interactive compilers. There are several text editors in
the system; the one most often used is called EDIT. The BASIC compiler has an
interactive mode which can be distinguished at the command level. These processors
are characterized by a large amount of interaction with the terminal once the com-

mand has been entered.



c) Language Processors and other applications software. TFORTRAN and
BASIC are the most heavily used languages in this systesm. The most popular
FORTRAN compiler is called RUN. The BASIC compiler 1s included in this class
when it is not in the interactive mode.

d) User-written binary program files. Used as a command, a file name causes
loading and execution of the program within the file.

Table One shows the frequency of usage of the most heavily used commands of
these classes, relative to the usage of the entire class, and the average amount
of processing time required for each. The processing requirement is specified
in both CPU and peripheral processing unit (PPU) time. Most of the PPU time re-
presents channel queueing and data~transfer time, so the PPU requirement is a
gross measure of the I/0 requirements of a program.

A combined measure of total resource required is CPU time plus one~sixth
PPU time. This will be justified later. The last column of Table One is the’
ratic of the combined (CPU and PPU) time requirements for the individual com-
mand, weighted by the relative frequency of the command's use, to the total pro-
cessing requirements for the entire class. From this table, it can be seen
that the processing for the Utility class is broadly distributed over many com-
mands as opposed to the concentration of processing Edit and Language Processor
commands. Also, the average CPU times of the Utility class are much smaller than
that of the other classes, and by the high ratio of PPU to CPU processing, it is
seen that Utility command processing is I/0 bound.

Table Two shows the frequency of use and processing requirements of the
command classes. In spite of the low processing requirements of the Utility com-
mands, their high frequency of use makes their total processing requirements in

the system comparable to that of the other classes.



Table 1

Profile of Usage Frequency and
" Resource Requirements of Commands

Average Average
CPU Time PPU Time Percent of Class

Command Frequency (sec) (sec) Processing
READPF 15.6 .130 1.99 30.3
RETURN 6.9 .004 41 2.1
SAVEPF 6.0 .152 2.98 16.5
SHOW 5.6 .008 .94 3.8
49 others 56.6 .016 1.04 44.5

a) Utility Commands
EDIT 91.5 .8 6.12 93.6
BASIC 6.4 .57 4,37 4.7
TEXEDIT 2.1 .71 4,55 1.7

b) Edit Commands
RUN 38.8 4.7 1.87 41.9
SPSS 12.0 1.1 1.45 3.4
BASIC 9.3 5.3 1.55 11.1
PASCAL 7.7 6.1 2.00 10.7
COBOL 7.1 7.0 3.53 11.9
24 others 25.2 3.6 1.20 21.0

¢) Language Processor
User Program 100. 3.1 1.01 100.

d) User Programs



Table 2

Processing Requirements for Command Classes

Command Class Frequency Average Processing Percent of Total
Utility 744 .23 18.4
Edit 112 1.78 20.6
Language Processing .080 4.64 39.2

User Program .064 3.27 21.8



The figures in Tables One and Two were accumulated from a search of the
dayfile for three consecutive days. These dayfiles contained the records
of 1203 terminal hours, during which 27,805 commands were entered. The percen-
tages of processing time in these tables are based on the total user-requested
processing, exclusive of overhead. No data for overhead occurring for this system
has been accumulated, but overhead figures for a similarly-structured system (5)
indicate that under heavy load, approximately tﬁenty percent of the total CPU -
time is spent in routines that perform system overhead functions.

Detailed Repetition of Commands

The system dayfile contains a record of the commands and the parameters
of the commands issued by the interactive users. Potentially repetitive program
executions will be represented in the dayfile by instance of repeated use of a
command with constant parameters. It is considered unlikely that the repeated
use of a command with varying file name parameters will produce any significant
degree of resource-allocation repetition, hence, this form of command repetition has
not been measured. Yet it is clear that the resource-demand sequences of many in-
stance of file—operation Eommands are identical if their parameters specify files
of the same length.

A detailed repetition of a command is said to occur each time an interactive
user repeats a command with identical input parameter file names. Parameters
that are not file names are not considered in detailed repetition. In searching
for detailed repetition, notice is taken and adjustments made for several common
file names that often signify different files. One outstanding example is the file
LGO (Load and Go), which is the default name chosen by the RUN compiler for the
object file of the compilation. Repeated executions of LGO are considered de-
tailed repetitions only if the source inputs to the corresponding RUNs were ident-
ical file names. On the other hand, commands using files that have been renamed

through the RENAME command, or differently named object files that have been pro-



duced from the same source file, are not associated with the commands using their
alternate names.

The length of interactive sessions is distributed from a few seconds to
many hours; the mean, in this system, is forty minutes, with tweﬁty—seven com-
mands to the interactive system. The probability thtat a command is repeated
in the detailed sense increases with the total number of commands issued by the
user. Figure One is the cumulative probability distribution for the number of
commands issued between occurrences of detailed EDIT and RUN commands. - This
data was accumulated from the occurrences of EDIT and RUN commands for which
at least seventy of the user's preceding commands (possibly crossing session
boundaries) were apparent in the dayfile. If the command was a repetition, the
inter-reference time is used in computing the probability distribution. If no
earlier use of the command was found, the command inter-reference time is greater
than seventy and possibly does not exist. The difference between‘one and the
limiting value of this cumulative probability distribution is the probability
that the command is not a repetition.

For the EDIT and RUN commands, the limiting value is almost reached after
thirty commands. This characteristic is typical of the remainder of the inter-
active commands as well. The approximate limiting probabilities (probability
of detailed repetition) are given in Table Three. These figures represent an
upper bound on the degree of repetitiveness of the processing associated with
the various commands. It should be noticed that the commands with the highest
frequency of use also have the highest probability of detailed repetition. The
total number of times a detailed command is used is computed as the reciprocal

of the detailed repetition probability.



Figure 1

Probability of Detailed Repetition
of the EDIT and RUN Commands

I 1 i |

10 20 30 40 50 60 70

Number of Commands

EDIT [
RUN ©



Table 3
Proabability of Detailed Repetition of Commands

READPF .83 ’ RUN .87
REWIND .92 SPSS .67
RETURN 42 BASIC .84
SAVEPF .90 PASCAL .82
SHOW .67 COBOL .74

49 others .53 24 others .69

a) Utility Commands c) Language Processors
EDIT .92

BASIC .90 Program Files .91
TEXEDIT .84

b) Editors d) User~Written Programs



4. Resource-Demand Repetition in the UT-2D Interactive System

Each instance of detailed repetition of a command in the interactive
system represents a processing sequence that is potentially identical to a
previous processing sequence. The degree of this repetition will be measured
in terms of the percentage of the total processing time that is actually close
repetition (in terms to be specified precisely in this section) of the prece-
ding sequence, until an irreconcilable difference takes place. 1In this
section, the essential hardware and operating system backgrounds for these
measurements are presented, and the method of extracting this data outlined.
The results of the measurements are presented in section five.

Hardware Characteristics of the UT-2D Interactive System

User programs in a CDC 6400 system are multiprogrammed in a large (64K
sixty-bit words) main mémory, and executed by a single fast CPU. A pool of
seven peripheral processing units (PPU's), which are twelve-bit minicomputers,
each having its own memory unit (4k of twelve-bit words), execute auxiliary func-—
tions including I/O for the user programs. Each function performed by a PPU
is called a peripheral program (PP). Each PPU can access any of the twelve
channels which read and write PPU memory. The PPUs can read and write main
memory, and interrupt the central processor. The central processor cannot
access PPU memory, nor interrupt a PPU. The PPU's are then ideally suited for
control functions, while the CPU is a slave. One PPU, called MITR (monitor),
constantly polls the user program active on the CPU to determine if operating
system service is needed, and, upon finding a request, assigns the required
PP to an available PPU. But not all of the operating system functions are
performed in the PPUs. Some auxiliary functions reside in main memory, in
a portion of the operating system called CMR (central-memory-resident), and

are executed when a PPU interrupts the central processor.



10

The interface between each user program and the operating system is rela-
tive location one of the memory area assigned to the user. The starting
address of the‘active user program is called RA (relocation address), hence
the request for operating system service is placed in location RA+1, and is
known as an RA+1 call. MIR polls location RA+1 in looking for operating system
requests, but, since MIR also polls the other PPU's and performs bookkeeping
functions, it may allow the user program to wait as much as two or three milli-~
seconds before responding to an RA+1 call. The record of RA+1l calls by a
user program is a record of all its service request, much like the SVC in-
struction in other computer systems. Typically, after a user program has placed
an RA+1 call, it goes into a busy idle loop waiting for the location RA+1 to
become zero, indicating that MIR has accepted the request. It will then place an
RCL (recall) code into location RA+l; this is effectively the 'wait' semaphore
indicating the program will block forAa response from the previous
request. If the request was for input from an interactive terminal, a special
system peripheral program rolls the job out of main memory and places it in 'ter-
minal wait' status.

The hardware resources required by a user program are 1) main memory and
2) CPU processing time. Changes in main memory allocation are requested through
an RA+1 call (a system PP requests main memory for a job that is not allocated
any main memory), and each user program is allocated CPU time (in quanta) until
it signals termination of its processor requirement. A program also requests, via
RA+1 call, 3) PPU processing, and, during a PP run to perform I/O0, 4) I/0 de-
vices and channels. The record of RA+1 calls within the processing time of a job,
and the requests made by the corresponding PP runs, reflects the total hardware

resource requirements of the user program.



i1

Method of Tracing Resource Demand Characteristics of User Programs

Detailed measurements of the processing activity in the UT-2D system are pos-
sible through the use of an on-line trace facility. While the trace is in oper-
ation, every communication between the processors of the system is recorded in
a buffer in main memory, along with timing data (to a quarter-millisecond pre-
cision). This buffer is periodically dumped to tape. The trace session ends
when the tape is filled, which under moderate load takes about twenty-five
minutes. The actual recording is done by CMR. In order to record interpro-
cessor communications that do not involve CMR, such as an RA+1 call requesting
a service function performéd by a PPU, MIR interrupts the CPU for a special
invocation of CMR.

The following typical sequence of interaction is given as an example of
the recording technique.

a) A user job places a request for service in its location RA+l. It is
recorded when MIR notices the request in its polling loop and invokes CMR.

b) MTIR assigns a PPU to Handle the request. This event is recorded as
the assigned PPU invokes CMR to locate the PP required for this
request.

c¢) The PP requires assistance from CMR. This event, as above, is
recorded after CMR is invoked by interrupt. The PP will wait in a busy idle
loop until the service is completed.

d) The peripheral processor requests and releases channels and devices
to effect I/O operations. These reservations are handled by MTR, hence MIR
invokes CMR to record ﬁhem.

e) The user job that requested the service issues the RA+1 call RCL, to in-
dicate that it will block until a signal to proceed is received. MIR invokes
CMR to record this RA+1 call, and removes this central program from the queue for

CPU service.



12

£f) The PP issues the 'awake' signal, called RCP, so that the central pro-
gram may proceed. This synchronization communication is an indication to MIR to
place the central program back on the queué for CPU service. The PP issues this sig-
nal by placing it into a main memory location that MTR polls during its main loop.
Upon finding the request, MIR invokes CMR to record it.

MTR also invokes CMR to record each swapping of the CPU in the round-robin
CPU scheduling cycle. Each time it is invoked, CMR records the CPU burst of the
last user of the CPU. Memory scheduling activities are effected by special PP's
that are not called by means of the RA+l call. Their activities are recorded
through their communications with MIR in the way described above.

The microscopic record of the processing activity provided by the trace
facility is amenable to many forms of processing. It is used as the record of
the system's activity from which the user program resource—-demand sequences are
obtained. This technique of recording resource-demand characteristics does involve
considerable overhead, but artifact of the additional interrupts due to the trace
does not appear in the user program traces extracted from the system trace. A
trace decomposiiton program scans the system trace and accumulates the events cor-
responding to each job. It also adjusts the times of the jobs' events to be rela-
tive to the processing time of the job, removing all delays due to the system such
as time in queue for the CPU or a PPU, and all system effects such as the memory
swap-in and swap-out sequences.

A simplified example of the output of the trace decomposition program is
shown in Figure Two. The elemgnts of the trace are (time, event) pairs. In
this example the Fortran RUN compiler is executed. It calls for an I/0 operation
after 3 milliseconds of processing, and then halts for I/0 completion after
15 milliseconds of processing. The PP sequence corresponding to the I/0 call
requests and uses device 3 or channel 2 and then, after 86 milliseconds, recalls

the central program. The central program requests a 50k block of memory in the



PPU TRACES

0

1pp CIO

10

REQ 1

12

RCH 3

81

DCH

84

DEQ

86

RCP

94

DPP

1pp RFL

15

RST 50

30

RCP

33

DPP

Figure 2

Example of Resource-Demand Sequences
Extracted from CDC 6400 System

CPU TRACE

RUN

Cio X

15

RCL X

. 30

RFL 50

b ¢




13

RFL (request field length) call after 30 milliseconds of its processing.

No claims are made for the uniqueness or practicality of this format for
the representation of the resource-demand sequence of a user program. The
representation has been shown to be stable, in that all the effects of the
multiprogramming environment of the user job have been filtered out. With
a few minor exceptions (which will be noted below) the job traces obtained

from several runs of a single job with constant data values are identical.

Resource—demand Variation in Compilation

It is of some interest to note a few aggregate data values showing the
consistency of this representation as the processing for a single job is
varied by modifying its input. Table Four shows the results of three compila-
tions of a Fortran program; first with 17 errors, then with five, and then
without error. The aggregate resource-requirements of these jobs remain quite

constant with this degree of variation of the input program.

The Measurement Precision

| The resource demand sequences for extracted multiple runs of a single
job with identical data have varied only in the timing of the.events in the
sequences, and this variation has been bounded. The variations in the CPU
burst times result from the following:

a) CPU burst times for the user jobs are summed from the processing
periods between interrupts for CMR service and preemptions due to the round-
robin scheduling. When the trace is in operation, a job remains on the pro-
cessor about two milliseconds between interrupts. The precision of the clock
used in the event recording is a quarter-millisecond.

b) Each job CPU burst is ended with an RA+1 call. There is an unpredict-
able delay of about a millisecond in the time at which the event is recorded,

due to MTR's polling cycle.



Table 4

Aggregate Resource Requirements for
Compilation of a Fortran Program

Total Total

o CPU Time Supervisor Calls
Run 1z17 erfors 6.31 152
Run 2¢5: errors 6.94 171

Run 3:no errors 6.74 163

Total
PPU Time

3.54
3.81
3.76



14

c) The time required for any computation varies with the degree of memory
interference from simultaneous I/0 operations.

CPU burst times for identical computations taking more than ten milli-
seconds do not vary by more than twenty percent due to the above reasons. The
channel queueing and holding times for repeated instances of a single I/0 oper-
‘ation have much greater variability due nbt only to the upredictable delay for
disk arm positioning, but to interference due to I/0 operations performed by an-
other processor that shares the system disk units. (The system disk units are
shared with the CDC 6600 system processing batch jobs.)

The algorithm used to search for duplicated processing sequences must al-
low for the limitations of the precision of measurement. Therefore, a resource-
allocation sequence is considered to be a duplicate of another if their CPU burst
lengths do not differ by more than twenty percent. The PP sequences must be the
same, but no limit is placed on the differences in the channel holding times in
order for one sequence to be considered a ddplicate of another.

Procedure for Searching for Repetition

In observing the resource-demand sequences resulting from several instances
of a single command, it has been found that they occasionally differ for some in-
itialization period, and then become identical. But the algorithm that could

discover these instances of repetition would be extremely complex, hence, se-

quences that differ in an initialization period do not represent repetition. On
the other hand, some pairs of sequences differ only in the length of one CPU burst,
or in one RA+1 call, or have oné more or one fewer RA+1 calls. The procedure for
searching for resource-demand repetition is as follows:

1) Given two resource~demand sequences that correspond to detailed repeti-
tions of a command, comparison for repetition is initiated with pointers to the first
processing bursts of each.

2) 1If the bursts are within twenty percent of each other, the pointers are



15

advanced. If the service requests are identical, the pointers are advanced. If
nonzero, the error flag for the comparison is decremented by one.

3) If a mismatch is found in step two, comparison continues, but forks
into three parallel comparison sequences. The error flag for each of these is set
to the current error flag plus two. The three parallel comparisons inﬁolve 1)
setting the pointer forward one step in each sequence (skipping the mismatch) and
2 & 3) setting the pointer in one sequence forward by three (skipping the mis-
match and one burst and RA+1 call) and by one in the other sequence (skipping the
mismatch).

4) 1f the error flag of a comparison ever exceeds three, use of that set
of pointers is abandoned. If no comparison possibilities remain, the sequences
are no longer repetitive.

This algorithm was designed to overcome obvious transients in sequences that
are indeed repetitive, under the constraint that its logic remain simple enough
to be used dynamically by a predictive scheduler that uses (and must verify the
validity of ) the previous resource-demand pattern. There is no theoretical
justification of it.

This procedure for determining whether two resource-allocation patterns are
duplicates was applied to each pair of processing sequences found during the trace
periods that resulted from detailed repetitions of a single command. The degree
of repetition is determined as tﬁe ratio of the total processing time (the sum
of central and peripheral processor times) of the second run that was a repeti-

tion of the first, to the total processing time of the second run.



16

5. Results: Resource~Demand Repetition

Resource-demand sequences of all the interactive jobs in the system
were collected by the means outlined in the last section from five trace
periods, taken on different days at various times. In all, 57 complete and
107 partial interactive sessions representing 133 different users were mea-
sured. The first column of Table Five contains the total number of instances
of detailed command repetitions found in the trace periods. Each of these
represent a potentially repetitive resource-demand sequence. The second column
of Table Five indicates the degree of resource-demand repetition found in the
instances of detailed command repetition. This is called the sequence repetition
factor. It is computed as the ratio of the total amount of processing time that
was repetitive to the total processing time that occurred in the repetitive uses
of the commands.

The results show a great degree of repetitiveness within each class of
commands except for Text Editor class. Repetition depends on a program being
run with essentially constant data. For all commands except the editors, the
input data is mostly in the files named as parameters of the commands, with
little data being supplied by interaction with the terminal. But examination of
a sample of traces of processing within EDIT shows an average of more than ten
interactions with the terminal on each EDIT call. Since ten percent of all
commands are EDIT calls, this indicates that more commands are directed to EDIT
than to the interactive system command interpreter. (Thisuagrees with data
shown in (1)). The interactiveness of the text editors causes them to take di-
vergent processing sequences in their various invocations.

The Utility commands show moderate degrees of repetitiveness in the mean,
although the repetitiveness factors for the various Utility commands were broadly

distributed.



Command

READPF

REWIND

RETURN

SAVEPF

SHOW

49 others
TOTALS

EDIT

BASIC

TEXEDIT
TOTALS

RUN

SPSS

BASIC

PASCAL

COBOL

24 others
TOTALS

Program
Files

Table 5

Degree of Repetitiveness

Sequence Normalized
Repetition Factor Repetitiveness
Instances (percent) (percent)
70 85. 21.3
44 99, 2.6
41 100. 1.9
42 78. 11.6
27 61. 1.6
223 63. 14.9
447 43.9
a) Utility Commands
129 5.2 4.3
2 3.1 .04
2 3.8 .16
131 4.5
b) Edit Commands
67 ' 86. 31.4
41 71. 1.6
33 75. 7.0
9 88. 7.6
"17 84. 6.2
20 80. 11.6
187 65.4
¢) Language Processor Commands
107 89. 80.1

d) User Programs




17

The most significant result is the high degree of sequence repetition
in the Language Processor and User Program classes. In both classes, over
ninety percent of the detailed repetitions of a command resulted in resource-
demand sequences that were duplicates of their predecessors for at least ninety-
five percent of the processing time of the run. For the remainder of the command
repetitions, the length of the resource-demand repetition was approximately
uniformly distributed in the range of zero to ninety-five percent of the pro-
cessor time of the runm.

The product of command repetition factor (Table 3) and sequence repetition
factor is the total repetition factor for the command. Weighting this product
by the fraction of processing of the class that the command represents (Table 1)
provides the command's contribution to the repetitiveness factor of the class.
This, called the normalized repetitiveness, is shown in the third column of
Table Five. The sum is the repetitiveness factor for the entire class.

Last, the degree of repetitiveness of all the command classes combined
is computed as the sum repetiveness for each class, (Table Five) weighted by
the percentage of total processing in the class (Table Two). This figure is
fifty~two percent.

6. Conclusions

A primary goal of this study was to determine whether the repetitiveness
present in the workload of an interactive system was fruitful source of pre-
dictive information for use by the system schedulers. Resource-demand repe-
titiveness was defined by an algorithm that emulates the operation of a scheduler
checking the pattern of resource requirements of a previous run against the
immediate requirements of a program, while it simultaneously schedules resources

on the basis of future requirements shown in the pattern. If the degree of



18

resource-demand repetitiveness were one hundred precent, the pattern of requests
by the previous run would be a perfect predictor, and the scheduler‘could operate
deterministically. But the degree of repetitiveness for all of the command
classes combined is only fifty-two percent. With an expenditure of greater
computational effort to find repetitive sequences, it may be possible to increase
this final figure by a few percent-and it will certainly vary somewhat with the
mix of job types on the system, and even more than somewhat if measured in a
different interactive system. Nevertheless, certain conclusions can be drawn
from even this imprecise result. The first question is that of predictive
scheduling.

Schedulers that operate on the basis of partially correct predictive informa-
tion have been examined in simulation (6). Although the hardware and software
assumptlons of the simulation model differed from the system of the present
study, the results provide evidence of the degree of repetitiveness f(or predic-
tability) that such schedulers require in order to be effective. Various straight-
forward predictive CPU and memory scheduling algorithms, such as shortest burst
time, shortest time~to-completion first, etc., were compared with standard
algorithms. Not surprisingly, the results showed that properly designed
predictive algorithms could achieve higher utilizations and throughputs than
standard algorithms. The margins, however, were not more than a few percent,
because under proper loading, the simulated system is capable of high CPU
utilization (9). When the correctness of the predictive data was degraded to
seventy percent, the predictive algorithms lost their advantage over the standard
nonpredictive algorithms.

Despite the differences in the assumptions of the two studies, the gap

between what seems to be required and what is apparently available is large



19

enough to make this approach to resource scheduling seem not very hopeful.

On the other hand, a positive result for computing systems design can be
drawn from this study. It is apparent that the language processors account for
a large part of the processing activity in this and most other computing systems.
These processors also show a large degree of resource-demand repetition, which
suggests that they are performing a great deal of logical repetition. If the
compilers were to be redesigned to interface with the text editors in an inter-
active system so that they might obtain records of the statements that have been
modified and recompile only those statements, a significant degree of processing
would be eliminated. Using the data for resource-demand repetition presented
here, eliminating only half of the repetitive processing of the RUN compiler
reduces the total processing workload of the system by over six percent.

The high degree of resource;demand repetition in the user-written programs
should motivate a study of their logical repetition. The elimination of logi-
cally-repetitive executions would require automatically recording, storing and
retrieving the data-transformations effected by various program paths. Compilers
could then be designed to position and insert checkpoints automatically. The
run—-time environment of the program may then monitor these checkpoints, and
shortcut execution paths that have already been performed. The practicability

of such a scheme cannot be quantified by the study of resource~demand repetition.



1)

2)

3)

4)

5)

6)

7)

8)

9)

REFERENCES

Boies, S.J. and Gould, J.D. "User Performance in an Interactive
Computer System", Fifth Princeton Conference on Information
Sciences and Systems, 1971.

Boies, S.J. '"User Behavior in an Interactive Computer System",
IBM Systems Journal, Vol.13, No.l, 1974.

Estrin, G., Muntz, R.R. and Uzgalls, R.C. 'Modelling Measurement
and Computer Power", Proceedings, §.J.C.C., 1972.

Howard, J. "A Large-Scale Dual Operating System', Proceedings,
ACM National Conference, 1973.

Johnson, D.S. "A Process-Oriented Model of Resource Demands in
Large Multiprocessing Computer Utilities", Ph.D. Dissertation, The
University of Texas, 1972.

Noetzel, A.S. '"Simulation Studies of Predictive Scheduling',
Technical Report No.37, Department of Computer Sciences,
The University of Texas, 1974.

Noetzel, A.S. and Haley, J.R. "The Decomposition of a Multiprocessor
Event Trace into User Program Resource Demand Patterns", Technical
Report No.49, Department of Computer Sciences, The University of
Texas, 1975.

Sherman, S.W. "Trace Driven Modelling Studies of the Performance of
Computer Systems'", Ph.D. Dissertation, The University of Texas,
1972.

Sherman, S.W., Browne, J.C. and Baskett, F. "Tyrace Driven Modelling and
Analysis of CPU Scheduling in a Multiprogramming System', " -
Proceedings, SIGOPS Workshop on System Performance and Evalu~
ation, Harvard University, 1971.



