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Absttact

In computer systems or networks of computers, processors or quantities

of processing power are often shared among the processes within the sys-
tem, on the basis of customer demand for those processes. Also, customers
are often directed toward one of several processing statioms, depending on
the load at the stations. Here, both of these system features are modeled
by queueing networks that have the local balance property, or whose state
probabilities can be expressed as the product of state probabilities of
the individual queues. First, the conditions for maximum throughput are
derived under the constraint that the processing power allocated any queue
is a functioh of the state of that queue only. Then the conditions are
derived under which series and parallel subnetworks of queues may have

the local balance property, if the processing power allocated each queue
is a function of the state of the subnetwork local to the queue. Then
processing power allocations of this form that yield maximum throughput

are derived.

The results show that throughput in locally balanced networks or subnet-
works is maximized only if all available processing power is always utilized
to serve the customers at queues, and that any processing power allocation
within this constraint provides maximum throughput. Ancillary theorems
relating processing power to throughput in locally balanced networks are
proven. It is shown that if the processing rate at each queue is a nonde~
creasing function of the number of customers in the queue, then the through-
put of the network is a nondecreasing functién of the number of customers

in the network. Conditions for which the local balance property holds in

networks with load-dependent branching probabilities are also derived.



1. Introduction

Queueing networks that have the product form solution are easily analyzed,
whereas queueing networks without such solutions are generally intractable.
It is therefore of considerable interest to determine whether queues or
queueing networks with features representing certain realistic constraints
yield the product-form solution. For example, one feature that has been
found to be amenable to product-form solution is the queue-state dependency
of service rates at queues. Gordon and Newell's classical paper (Gl) con=-
sidered queues that are served by a finite number of processors. The effec-
tive processing rate of each queue increases linearly with the number of
customers at the queue until all processors are utilized, and then remains
constant. More recently, it has been shown that the local balance (Cl) or
Poisson departure (M2) conditions, which give rise to the product-form so-
lution, are possible for queues at which the total service rate is a general

function of the number of customers at the queue. (C2, N1)

In this work, we first investigate the solution of networks of queues in
which the service rate at each queue is a function of the state of a subnet-
work local to the queue. These processing rates will be termed subnetwork-

state dependent rates. They are characterized by the possibility of a change

in the processing rate at one queue due to a change in the number of custo-
mers at another queue. In practice, such rate assignments occur when there

are processing power tradeoffs between queues.



Processing power tradeoffs occur in several contexts within computing system
and network design. For example, consider a multiprocessor system dedicated
to several different programs or process types. The system may be represented
as several different queues with independent processing time distributions.
The queues might either be in series, representing serial execution of programs,
or they might be in parallel with independent arrival streams. A processor
allocation scheme without tradeoffs would assign a fixed number of processors
to each queue. But this technique is inefficient, since processors of one
queue may be idle while customers are waiting for service at other queues. An
efficient algorithm will allocate an available processor to any queue that

has a customer waiting. But the processor allocation at one queue must then
change in response to the load at another queue. Hence, processing rates that
depend on the state of all the queues with which processor exchanges may take

place must be considered.

A second topic to be investigateéd is the analogous case in which the branch-
ing probabilities within the network are functions of the state of a subnet-
work local to the branch point. Such branching probabilities, which will be

termed state dependent branching probabilities, will allow the mean arrival

rate of customers to one subnetwork to vary with the number of customers in
a parallel subnetwork. In practice, the arrival rates to subnetworks are

traded off on a load dependent basis. If two quees or subnetworks of queues
are capable of handling the processing requirements of a customer, an effi-
cient scheduling algorithm will direct that customer to the queue or subnet-—

work with the smallest load.



Sections 2 and 3 of this paper contain general theorems concerning the through-
put of locally balanced queueing networks. Norton's theorem for queueing net-
works (C3) shows that it is possible to represent the throughput in any branch
of any closed locally balanced queueing network as the throughput of an equiva-
lent two queue network. It is important therefore to understand the through-
put characteristics of the two queue network. In Section 2, the relationship
between the processing rates at the queues and throughput is explored. In
Section 3, it is shown that if the processing rate at every queue of an arbi-
trary closed network is a nondecreasing function of the number of customers at
the queue, then the throughput of each subnetwork is a nondecreasing function

of the number of customers in the subnetwork.

In Section 4, throughput in a closed queueing network with processing power
tradeoffs and queue state dependent processing rates is considered. It is
shown that any processor allocation algorithm that maximizes ;hroughput must
fully utilize all processors at all times. Furthermore, in all networks of
more than two queues, the constraint of queue state dependent processing rates

determines uniquely the processor allocation algorithm for maximum throughput.

In Sections 5 and 6, the constraints necessary for the product-form solution
for processing rate tradeoffs in parallel subnetworks and in two queue series
subnetworks, respectively, are derived. For two queue subnetworks, the con-

straint is seen to be the same in both the series and parallel cases.

In Section 8, the maximization of throughput in two queue subnetworks with

processing power tradeoffs is demonstrated. It is shown that if the maxi-



mum processing power available to the subnetwork is always utilized in proces-
sing the customers in the subnetwork, the maximum throughput 1s achieved.
Furthermore, the maximum throughput is independent of the number of customers
in the subnetwork, or the actual distribution of processing power to the

queues.

In Section 9, the case of state dependent branching probabilities is consid-
ered. The conditions for a subnetwork with state dependent branching pro-
babilities to have a product form solution is derived. It is seen to be

strongly analogous to the constraint for load dependent processing rates.



2. Throughput Related to Processing Rates

Norton's theorem for queueing networks makes it possible to obtain an equi-
valent two queue representation of any closed queuing network with locally
balanced queues. The two queues of the equivalent network will be locally
balanced. They will represent the queues within a particular branch of the
network, and the queues outside the branch, respectively. The two queue
representation ié useful for analyzing the throughput in the selected branch
of the original network. This will be done in the latter sections of this
paper. But first, it will be useful to determine some general properties

of the throughput in a two queue network. First, the relationship between
the throughput and the individual processing rates at the queues, assumed

independent of each other, will be described in the following theorem.

Theorem 2.1

Let U(m) and u(n) be the processing rates at the queues of a locally bal-
anced two queue network, when the queues contain m and n customers, respec-
tively, and suppose the U(n) and the u(m) are independent of each other.
for O<m,nsN. Let t(N) be the throughput in some branch of the network
when the network contains N customers. Then

a) 1(N), as a function of U(n) 0O<ngN, has no extrema.

b) t(N) is a nondecreasing function of U(n) if u(i) 2 u(j) for all

Nzi>N-n and j<N-n.

c) If t(N) is a nonincreasing function of Uf{), then it is a strictly

increasing function of u(¥-n).



Proof

n 1 n 1 N
Let Z{(n) =']—['ﬁ?I) and X(n) = ]—I'E?T) for O<ngN, Let G(N)= Z(1)X(N-1)
i=1 {=1 i=0

be the normalization constant for the state probabilities of the two queue

network with N customers. Then for all N>O,

G(N-1)

T(N) = O (2-1)

For 0<n<N let G:(N) be all of the terms of G(N) that have the factor U-l(n)

N
¢ =y Z(DHXN-1), (2-2)

i=n
- +
and G (N)=G(N)-G_(N).
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Then, differentiating G(N) with respect to U(n),
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And differentiating t(N) with respect U(n).
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The derivative will be nonnegative if
G;(N—l)G:(N) 2 G;(N) G::(N—l)- (2-4)

But each term of this inequality has exactly one factor U_l(n).Hence it may
be cancelled out of the inequality. As a function of U(n), t(N) is therefore
either always increasing, always decreasing, or is constant. This proves

part a) of the theorem.



The terms on the right of the inequality (2-4) have factors Z(k)Z(i), O<k<n,

n<i<N, and the terms on the left have factors Z(k)Z(i), O<k<n, ngigN. The
coefficient of each Z(k)Z(i) that appears on the right is X(N-k)X(N-1l-i), and

the coefficient of that term on the left is X(N-1-k)X(N-i). Hence if
X(N-1-k)X(N-i) 2 X(N-k)X(N-1-i), the inequality holds. But since i>k,X(N-1-1)X(N-1-k)

can be factored out of this inequality, leaving u(é—i) 2 u%N—k)' Therefore,

if H(N-k) 2 #(N-i) for all 0<k<ns$isN, T(N) is a nondecreasing function of U(n).

This proves part b) of the theorem.

In particular, it should be noted that if u(d) 2 u(j) for all i>j, which is

the usual case, then T(N)is anondecreasing function of U(n), for all n.

Now let H;(N) be the sum of all of the terms of G(N) that have the factor

1 m).
N
atm) = E 7 (N-1)X(1) (2-5)
m i=m
and
- _ ot
H () = 6OD-H' @)

Then, from the definition of H;(N), the following relationships are noted

+ —
By M =6 4,1 (2-6)

and
-+ —
By (N-1) = G (N-1) (2-7)

By the steps leading to (2-4) the condition for 8t (M)

> 0.is determined

to be H_ (N-DH (W) >HE_(WH__(N-1). (2-8)



(2-9)
. + - + -
Using (2-6) and (2-7) this can be expressed as Gh(N”l)Gn+1(N)>Gn+1(N)Gn(N'1)'

And then G:+1(N) can be related to G:(N),
G;(N—l)[G;(N)+Z(N—n)x(n)] >[G;+1(N)—Z(N—n)x(n)]G;(N—l), (2-10)

which can be written

[G:(N—l)G;(N)—G:(N)G;(N—l)]+Z(N—n)X(n)G(N—1)> 0. (2-11)

The inequality (2-11) must be satisfied if the term in brackets is nonnegative.
But this term expresses the condition (2-4); it will be nonnegative if T(N) is a

nonincreasing function of U(n).This proves part c) .of the theorem.



3. The Increase in Throughput with Load

If R(n) is the number of processors available to a queue or subnetwork when the
queue or subnetwork contains n customers, R(n) will usually be a non-decreasing
function of n. For example, if there are k processors.at a queue, then R{(n)=n
for ngk and R(n)=k for ngk. The processing rate at a queue is proportional to
the number of processors in use, hence it is also a nondecreasing function of n.
For the theorems that follow, it must be shown that the effect of nondecreasing
throughput as load is increased holds for networks as well as queues. This

is expressed in the following theorem.
Theorem 3.1

Let u(n) and U(n) be the processing rates of two locally balanced queues in a
closed two queue network, when each queue contains n customers. Let t(N) be
the mean throughput in a branch of the closed network when the network contains

N customers. Then if p(n+l)zu(n) and U(n+l)2U(n) for all O<n<N, then T(N+1)> T ().
Proof

The throughput T(N) of the locally balanced two queue network can be expressed
as the ratio of the normalization constants with N-1 and N customers in the

network. Hence, the theorem is proved if

G(N) N G(N-1)
G(N+1) ~ G(N)

T(N+1) = = 1(N), (3-1)

where
N n

G(N) = E{:Z Z(N-1)X(1i), and Z(n) = L ana X(n) = (e
=6 ’ ]T— u(i) 7T~ U(1)



The inequality (3-1) can be written
2
2 + -
GT(N) 2 G(N+1)G(N-1) (3-2)
The terms of GZ(N) contain the factors X(i)X(j) for 0¢i,jSN. The terms
of G(N+1)G(N-1) contain the factors X(i)X(j) for 0%¢i&N-1, 0£j<N+l. 1In both
cases 0%i+j<¢2N. The inequality is demonstrated by grouping the terms into

2N+1 inequalities. Inequality k will have all the terms with factors X(1)X(3j)

such that i+j=k.

First, consider the case 0¢k<N. Collecting terms from (3-2),

[T=

Z(N-1)X(1i)Z(N~-k+i)X(k-1i) (3~3)

e
i
(=)
~

> % Z(H1-1)X (1) Z(N-1-kti) X (k=1) .
i=0

Grouping coefficients of X(i)X(k-1i),

Kk
S [Z(N-1)Z(N-k+) 2 (N+1-1) Z (N-1-k+1) IX(1) X(k-1) 2 0. (3-4)
=0

: , , , . k
This sum can be rewritten as two summations; first for index i=0 to {E], and

then for i=k-{§]v+l to k. If k is even, these two ranges obviously cover the

2

the summation for this value of 1 is zero. Hence, (3~-4) can be written as

range 0 to k. If k is odd, the term for i=[g]+l is missing. But the term in

follows, when j=k+l-i replacesi as the index of the second summation.
4]
2
E [Z(W-1)Z (N-k+1i)-Z (N+1-1)Z (N-1-k+1) IX(1) X (k~-1)

Ty

+ Z [Z(N-k-1+5)Z (N+1~3) ~Z (N-k+3) Z(N-3) 1X(k+1-7)X(j-1) 2 O. (3-5)
j=1
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Note that for each Z(m)Z(n) in (3-5), m+n=ZN-k. Also,

Note that for any m,n with mdn and any j€n,
Z(m)Z(n)-Z(m+j)Z(n-3)

I

mt
=2 (m) Z(n-3) 1 Tf 112 o, (3-6)

_ u@)” w(d)
i=n-j+1 i=mt+l

since all of the indicesi, and hence rates u(i)in the second product are
greater than those of the first product. Therefore, the products Z(m)Z(n)
for all min=2N~-k are ordered inversely as |m—q , or directly as min(m,n).
If i=min(m,n) let Z(i)=Z(m)Z(n) and let X(i)=X(m)X(n). Then the inequality
(3~5) can be rewritten by selecting the smaller index of each product.

]

TZ? (Z (N-k+1)-Z (N-k+i-1) ) X(i)

i=0
Tk
B
+Z (Z (N-k+j-1)-Z (N-k+3) ) X(3-1Y2 0 (3-7)
j= :
Rearranging terms, [5}
2
(Z (N-k)-Z (N-k-1))X(0) + Z[ (Z (N-k+1)-Z (N=k+i-1) )X(1)
i=1

+(Z (N-k+i-1)~Z (N-k+1) ) X(i-1) 12 0

o B

(Z(N-k)-Z (§-k-1) )X(0) + : [Z (N-k+1)-Z (N-k+i-1) ] [X(1)-X(1i-1) ] 2 0. (3-8)

l=

It is seen that each factor of every term of the summation is nonnegative. Hence,

o

the inequality is demonstrated. g

Now consider the case k=N. 1In collecting all terms of (3-2) with factors
X(i)X(j) where i+j=N, G(N-1) contributes terms with factors X(i) for Og¢igN-1.

Hence, G(N+1) contributes terms with factors X(j) for
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1¢j$N. The inequality corresponding to (3-3) is

N
S 7 Z(N-1)X(1)Z(1)X(N-1)
=0
2 g:fZ(i+l)X(N—i)Z(N—1—i)X(i) (3-9)
=0

Collecting terms, and then adjusting the index of the summation to range from 1

to N, this inequality is written as follows:

N
7.(0)Z (N) X(0) X (N) +E "Z(N+1-1) Z (i-1)-Z (1) Z (N-1)] X(N-i+1)X(1-1)20. (3-10)
=1

2

The summation can be expressed as two summations, first with index i=1 to Fﬁi, then

with i=N+1- ﬁgﬁ to N, noting that if N is odd, the term for i= (gq +1 disappears.
L -

Then rewriting the second summation with index j=N+1-i one obtains
N
2
Z(0)Z(N)X(0)X(N)+ 2 |Z(N+1-1)Z (1~-1)-Z (1) Z(N-1)] X (N+1~-1) X (1-1)
i=1

|

+
J‘le

Z(HNZW-1)-Z(W1-3)Z (3-1)Z(3-1)] X(F)X(N-3) >0 (3-11)

i
st

i
Then, if i=min(m,n), let Z(i)=Z(m)Z(n), and i(i)mx(m)x(n), (3-11) is rewritten

3]

Z(0)X(0)+ ; " (Z(i-1)-Z (k) )X(i-1)+(Z(i)-Z(i-1))X(i)] =0.
SN
i=



i3

Rearranging terms,

H
Z(0)X(0) + z ’ [(ZW)-z(E-D] [ X@)-X(1-1)] 3 0. (3-12)
i=1

Since each term in the summation is (3-12) positive, the inequality is dem-

onstrated.

Last, the case for N¢k<f2N+1l must be considered. But from the symmetry of 2
and X in the definition of the function G, inequality k is exactly inequality
2N+1-k with the roles of Z and X exchanged. Hence, it has been demonstrated

in the first case. The theorem is proved.
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Theorem 3.2

Let 1(n) be the mean throughput in any branch of a closed network of locally
balanced queues that contains n customers. If the processing power available

to every queue is always fully utilized, then for all n>0, t(n+l):z 1(n).

Proof
The proof is by induction M, the number of queues in the network. Let TM(n)
be the mean throughput in some branch b of a network of M queues that contains

n customers.

Let u be the mean processing rate of ansingle queue when one processor is used.

If there are R processors available to the queue, then R(n)=n for nsR and R(n)=R
for n>R. If u(n) is the processing rate at the queue when it contains n customers,
then p(n)=R(n)y, and p(n+l) zp(n). For M=1, then Tl(n+l)=pu(n+l);pu(n)=rl(n),
where p is the probability that a customer takes branch b in returning to the

queue.

Let U(n) be the processing rate of the equivalent queue for anM-1 queue network
with respect to branch b. Then by Norton's Theorem and the inductive hypothesis,
U(n+1)=TM-1(n+l)>TMr1(n)=U(n)' And if the equivalent queue is placed in series
with a queue with processing rate u(n+l)2u(n), and there are N customers in this
network, then the throughput of the closed two queue network is TM(N). But then

TM(N+l);TM(N) by Theorem 3.1. The theorem is proved.



4. Processing Power Tradeoffs in Networks with Queue-State Dependent
Processing Rates

Gordon and Newell's work (Gl) has been generalized (C2, Bl, N1) to show that
product—-form state probabilities are possible for networks in which the
processing rate at each queue is a general function of the number of customers
in the queue. But in queueing networks of this form, processing rates at

each queue must remain constant while the number of customers in the queue re-
mains constant. Such assignments of processing power to queues will be termed

queue-state dependent. The opportunities for effectively applying processing

power that may be switched among the queues of such a network are limited,
because when the network state changes by means of a customer moving from

one queue to another, processing power exchanges may take place only between
the two queues involved in the transitionm. Here the maximization of through-
put via processing power tradeoffs in networks with queue-state dependent

processing rates is shown.
Theorenm 4.1

Let R(N) be the processing power available to be allocated to the queues
of a closed network of M locally balanced queues when the network contains
N>0 customers. Let ri(n) be the processing power allocated queue i, when
there are n customers at queue 1, for 1<i<M. Let TM(N) be the mean through-
put at some branch of the network.

a) Then for maximum TM(N), thﬁ available processing pﬁyer must always be

fully utilized; that is E r.(n,)=R(N) for all Z n,=N, and
=1 ° =1

15
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ri(0)=0 for 1sigM.
b) And any processing power distribution meeting the above constraints
provides the maximum throughput, and when TM(N) is maximum, TM(N)=kR(N),

where k is a constant.
Proof

The proof is by induction on M. First, consider all networks with only one
locally balanced queue. A network with only one queue may have several
paths from the output of the queueto the imput. Let p be tﬁe probability
that a customer leaving the queue uses a particular branch b in returning
to the queue. Let the processing rate at the queue be y when a single pro-
cessor is assigned the queue. If r(N) processors are assigned the queue
when the network contains N customers, the throughput in branch b is
Tl(N)==pr(N)u. The throughput is maximum when r(N)=R(N). Then Tl(N)=PUR(N),

which satisfies the theorem.

Suppose the theorem holds for all networks of M-1 queues. Let TM_l(n) be
the throughput at some branch b of the M-1 queue network when there are

n customers in the M-1 queue network.

Then by Norton's theorem, the M-1 queue network may be represented by an
equivalent queue with respect to branch b. If U(n) is the processing rate

of the equivalent queue when the queue contains n customers, then U(n)=TMF1(N).
By the inductive hypothesis, if processing power Rl(n) is available to the M-1
queue network, the maximum throughput at branch b is %Mﬁl(n)=URl(n)’ where

U is a constant, and is achiéved when processing power Rl(n) is maximally
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utilized. This is also the maximum processing rate of the equivalent queue

when it contains n customers and has available processing power Rl(n).

Let TM(U) be the throughput in the two queue network consisting of the equi-
valent queue in series with queue M. Then TM(n) is equal to the throughput
in branch b.of the M-1 queue network with queue M inserted in branch b.
Suppose the processing rate at queue M, when it contains n customers and has
processing power r(n), is p(n)=r(n)p. The throughput of the two queue net-

work is determined as follows.

Let X(n) = ﬁ' u%i) and let Z(n) = fr—%;)
i=1l i=1
Let G(N) = ZN::X(i)Z(N—i). (4-1)
=1
Then 1, (N) = _g.g_;_;.z. (4-2)

Let R(N) be the processing power available to the M queue network when it

contains N customers. And let p(n) ='—%%§%—-be the optimum fraction of the

available processing power to be used by queue M when it contains n<N customers,
in order to maximize Eﬁ(N)° Then up(n)=p(n)R(N)u are the processing rates at

queue M that maximize TM(n).

Let p (n)=1-p (n). Then, for maximum TM(N), processing power p (n)R(N) is avail-

able to be allocated to the equivalent queue when it contains N-n customers.

Examining (4-2) shows that for maximum TM(N), U(N) and u(N) are to be max-

imized. Clearly, all available processing power is used for these rates, so
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that p(N)=5(0)=l.

Note that p(n)>0 for all n>0 may be assumed. For if this is not the case,
let m be the largest integer for whicﬁ o {m)=0. Then at least m customers
will always be at queue M. Let N'=N-m and u'(n)=u(n=m). Maximization of
TM(N) is accomplished in this case by considering only the rates U(N'-n) and
u'(n), for ngN'. The result will be same as maximization with o (n)»0 for
n<N, if it is shown that processing power is fully utilized when there are
m customers in queue M. But note that p(m)=0 only if TM(N) is a nonincreas-—
ing function of 1'(0). By Theorem 2.1c, then TM(m) is an increasing func-

tion of U(N'). Therefore, p(0)=1.

With the rates p(n)R(N) for queue M fixed at the values required for maxi-
mum TM(n), the rates U(n) may be selected within the range 0<U(n)<Up (N-n) R(N)

to maximize TM(N).

Suppose TM(N) is not an increasing function of U(n), for some n<N. Then,

by Theorem 2.lc, it must be an increasing function of p(N-n). Then p (N-m)=1,
and therefore U(m)=0. If m is the largest integer for which rM(N) is not an
increasing function of U(m), then there will never be less than m customers

at the equivalent queue. Hence, letting N'=N-m and U'(n)=U(n-m), only rates
U'(n) for Osng<N' must be considered in maximizing TM(N). And this maximization
will yield the same result as maximization with TM(n) an increasing function

of U(n) for all n>0. Therefore, the maximum value U(h)=U o (N-n)R(N) must

be chosen for U(n), nsN in order to maximize TM(n). This proves part a) of

the theorem. Then each term X(j)Z(k) of G(N-1), where j+k=N-1, can be written



A k

-1

x(1)2 @)= | wIokriRs ?.[ o (1) o (N-1) |,
1

i=1 i=

The terms of G(N) have the same form, but j+k=N,

with j,k>0 contains the product

(4=3)

Each term X(3)Z(k) of G(N)

1 1. 1, _1
0 (1) )] FI&)) e(3) ?
Hence, it can be written
i j-1 k T1-1
XDZW = e | WOUR T e || pen
i i=1 i= |
[ k-1 T-1
+ ey | TR o(1) || B(w1)
i i=1 =1 |
= I X(-DZE) + iX(§)Z (k1) (4-4)
HR(N) UR(N) g
G(N) also includes the terms
| i - T-1
Xz =] B il 6(1) = —1 _ X(N-1)Z(0) (4-52)
UR(N) a
i i=1
and i _ -1
X(0)ZM) =] TR(N) (N-1) - ﬁﬁ%ﬁy X(0)Z (N-1). (4-5b)
- i=1

G(N) may then be expressed as follows:

G(N) = X(3)Z(k)
k=N
= X(N)Z(0) + E :X(j)Z(k) + X(0)z(N)
j+k=N
i,k»0
1
TJ_R—(T\]T X(N-1)Z(0) + \

j+k=N
i,k»0

ey XG-DZ®



1 1
+ ﬁiIETX(O)Z(N) + E::z Eﬁfﬁ?x(j)z(k‘l)

J+k=N
j,k»0
1 E 1 !
— X(HZ2(k)  + =7 E ; X(3)Z(k)
MRON) 5 N1 RO re
-1 A _ -
= (U + T > R G(N-1). (4-6)
Therefore, when TM(N) is maximum,
Tty = SN (L1, lyl R(N) (4=7)
M G(N) u U ’

Then part b) of the theorem is proved.

Since maximum throughput is achieved when all processing power is fully
utilized, strategies for optimizing throughput by holding processing power
in reserve are excluded. TFor queue state dependent processing rate assign-
ments, not only are processing power changes restricted to queues i and j
when a customer transits from queue i to queue j, but the increment added
to one queue must be that subtracted from the other. It is now shown that
for closed networks with -more than two queues, queue state dependent pro-
cessing rates determine uniquely the processing power distribution for

maximum throughput.
Theorem 4.2

Consider any network of M»2 locally balanced queues, containing N customers,
in which any fraction of the processing power of R(N) processors may be
assigned to any queue. If ri(n) is the processing power assigned queue i
when it contains n customers, for 14i{M, then throughput is maximized by

the assignment ri(n)= %-R(N).
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Proof

From Theorem 4.1, for maximum throughput, one must consider processing power

allocations such that
Efz ri(ni)=R(N) for each network state (nl...nn). When there are N~k
i=

customers at queue one, the processing rate at queue one remains constant

and independent of the distribution of the remaining k customers. Therefore, for
1¢iln, ri(k)=R(N)—rl(N—k).

Similarly, when there are N-k customers at queue two for 2<igM,
rl(k)=ri(k)=R(N)—r2(N—k).

Hence,
ri(k)=rj(k) for 1si,j¥M, as long as M>2.

Consider the case k=2. With N-2 customers at queue one, the remaining two cus-

tomers may both be at queue i, or may be at queues i and j, 1<i<jsM, while the

processing rate at queue one remains constant. Hence,
ri(2)=ri(l)+rj(l)=2ri(l).

Similarly, considering k=3,4..N it is seen that ri(k)=kri(l).

And, since réN)=Nri(l), ri(k)= §~for 15i<M and 1<kgN.

The proof is complete.



5. Processing Power Tradeoffs in Parallel Subnetworks

It is generally not the case that the processors available to a network of
queues can be allocated to the queues in an unconstrained manner. The var-
ious queues may have processing requirements that are within the capabilities
of only some of the available processors, or else if several queues are sepa-
rated from the others by large distances or hardware constraints, they may

be served only by processors within their locality.

Therefore, processing power tradeoffs within subnetworks will be considered.
The queue-state dependencies considered in the previous section do not yield
an efficient solution. Maximum throughput requires full utilization of the
available processors. Since the number of customers in the subnetwork does
not remain constant, either processing power must be held in reserve when
the number of customers in the subnetwork is less than the maximum, or

else there is the possibility of an arrival to the subnetwork when all of
the processors are busy. The latter case precludes queue-state dependent

processing rates.

Therefore, processing rates at a queue that are functions of the state of

a subnetwork local to the queue, called subnetwork-state dependent processing

rates, will be considered. In particular, the constraints on the subnetwork
dependent rates that allow the local balance . property of the subnet-
work, will be determined for particular subnetwork types. First to be con-

sidered are parallel subnetworks.

22
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Theorem 5.1

Let ul(m,n) and uz(m,n) be the processing rates of two queues connected in
parallel, when the queues contain m and n customers, respectively. Then

the subnetwork consisting of the two parallel queues will have the . .

local balance property only if, for m,n>0.
uk(man-l) ) uz(mrl,n)
ul(m,n) uz(m,n)

Proof

Let ul(m,n) and uz(m,n) be the processing rates at parallel queues one and
two, respectively, when there are m customers at queue one and n customers
at queue two. Let Pm 0 be the probability of this state. Let Al and Az

b

be the mean rates of the input to each queue. If the combined output of

these queues is then to be a Poisson process when the inputs are Poisson
processes, the balance and local balance equations for the subnetwork must
be satisfied. The balance equations, with the local balance condition satis-

fied, will be called the departure independence equation. For all m,n30 they

are =
P ,n(A1+X2) P

" mhl, ot EFLAR g H,y (myntl) (5-1)

The local balance equations are,
for m>0, Pm,Oul(m’0)=Pm—l,0Al, (5-2a)

for n>0, (O,n)=P0 A

Po,n%2 n-1"2, (5-2b)

and for m,n>0 Pm,n(ul(m’n)ﬂlZ(m’-n»sz--l,n}‘l.F?m,n-l}\Z. (5-2¢)



Recursive solutions to equations (5-2a) and (5-2b) are

A AT
. Y po. -
m,0 ul(m,o, m-1,0 ]ﬁ_ul(i,o) 0,0 (5-3a)
i=1
and n
P = -—-——-3-\2—_—-—— P = )\2 P »
O,n uz(O,n) 0,n~1 0,0. (5-3b)

i=1
Using the value for P2 0 given by (5~3a) in the departure independence equa-
?

tion (5-1) for Pl o* Oone obtains
»

P1,012=Pl’1u2(l,l). (5-4a)
Hence, » ) kz v ] kz Al >
1,1 Uz(lal) 1,0 U2(191) UZ(Oyl) 0,0. (5-4b)

Equating (5-4a) and (5-4b), the following constraint is determined:

ul(l,O) H,(0,1)
= . (5-5)
Ul(l’l) Uz(lal)

The general solution to (5-1) and (5-2) is

A A
Pan T @ meel T i@ faela O R0 G0

(n+l) (min)
2

This is demonstrated by induction on K{m,n)= + n. The basis

and the inductive step for m=0 or n=0 are given by (5-3). Assume the solutioén

holds for all Pi i such that K(i,j)<K(m,n). In particular, K(m+l,n-1)<K(m,n),
b
hence,

Ay

Pl n-1" uy (mr+l,n-1) Pm,n—-l. (5-7)
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Equation (5-1), written for Pm,n~l is

P (xl+x2)=P

m,0-1 (m+1,n—l)+Pm’nu2(m,n). (5-8)

o+, n-1"1
Substituting (5~7) into (5-8) yields

Pm,n-—lA2=Pm,nu2(m’n)’ (5-9)

which provides the first equality of (5-6) for K(m,n).

The second equality may be shown by a similar induction on K'(m,n)=cﬂt§il%£2tgl +m.

By (5-6) it is seen that

A A A A
P o2 1 1 2

P = P
m,n uz(m,n) ul(m,n—l) m-1,n~1 ul(m,n) uz(nrl,n) m1,n-1

(5~10)

and hence

uz(mrl,n) B ul(m,n-l)

uz(m,n) - ul(m,n) for m,n>0. (5-11)

Since this relation is derived directly from the local balance equations, it
is a necessary condition for the parallel queue subnetwork to have the local

balance property. The theorem is proved.

The constraint of Theorem 5.1 is also a sufficient condition for a set of sub-
network state dependent rates to afford the subnetwork the local balance pro=-
perty.

Theorem 5.2

Any subnetwork state dependent processing rates of a two queue parallel sub-

network that satisfy the constraints
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ul(m,n—l) B uz(m—l,n)

= £
ul(m,n) uz(m,n) or all m,n>0,

afford the subnetwork the local balance property.
Proof

The proof is by induction N=mitn. It is shown that any selection of u,(m,n)
1

for 1<m<N satisfies (5-1) and (5-2), as long Pm— and Pm satisfy (5-12),

1,n yn-1
and uz(m,n) is determined by the constraint. The details of the proof are

omitted.

A complete expression for the state probability is obtained from (5-6) and

(5-3)
AR AR
P (m,n)= — 1 - 2 200 (5-12)
‘H‘ul(i,n) I l M, (0,1)
i=1 i=1

Note that from (5-6) the relations

=\
Pm,nul(m,n) le_

1,n
and

P nuz(m,n)=}\2Pm

m, ,n~1

express local balance conditions for queues one and two, respectively.

Generalization

The technique used to derive the constraint for the two queue case be gen-

eralized for any finite number of queues in parallel. If there are k parallel



queues, and the subnetwork state is represented as (nl...nk), then the

constraint corresponding to (5-11) is, for all ni,nj>0,

uj(nl...ni_l...nk) _ ui(nl"'ni—l"'nk)
(n,...n) BT ) . (5-13)
pj 10 M uy(myeeeny
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Theorem 5.3

1f a two queue parallel subnetwork with subnetwork dependent processing rates
is within a closed network containing N customers, then the departure indepen=
dence condition for the subnetwork may be satisfied for any choice of ul(N,O)

and uz(O,N), independent of all other rates.

Proof

If there are only N customers in the network, then the input rates Al and xz

are functions of the number n+m of customers in the subnetwork. In particular,
if the local balance, equations (5-2a) and (5-2b) are

(N,0)=P (N-1) (5-13a)

A
Py, oM N-1,0"1

and

(0,N)=P A, (N-1) (5-13b)

Po,n"2 0,N-1"2

It is evident that ul(N,O) and UZ(O,N) may be determined independently of all

other rates in satisfying these equatioms.

Constraints on processing rates occur because they must satisfy the departure
independence equation as well as the local balance equation. But the only
departure independence equation in which rates ul(N,O) appears is that of

equation (5-1), written for state P That is,

N-1,0°

A (N-1;0)4), (N-1,0)) =
( l(N 1,00+ Z(N 1,0))="P N—l,luz

(N,0)+P (N-1,1)

Py-1,0 N,0"1

But if (5-13) holds, ul(N,O) cancels out of this equation. Hence Ul(N,O) is

independent of all other processing rates.

The same argument holds for UZ(O,N). The theorem is proven.



6. Processing Rate Tradeoffs in Series Subnetworks

It is possible that processing power may be traded off between two queues in
series in a queueing network. We will consider constraints on this type of

processing power tradeoff in order that the series subnetwork as a whole has
the local balance property, without restricting thé queues to have the local

balance property.

Theorem 6.1

Let ul(m,n) and pz(m,n) be the processing rates of two queues connected in
series, when the queues contain m and n customers, respectively. Then the
subnetwork consisting of the series queues has the local balance.
property if and only if for all m,n>0,

ul(m,n-l) _ M, (m-1,n)

ul(m,n) - uz(m,n)

Proof

Let pl(m,n) and uz(m,n) be the processing rates at queues one and two, respec-
tively, when there are m customers in queue one and n customers at queue two.
All customers entering the series subnetwork receive service at queue one and
then queue two. Let A be the rate at which customers arrive at the subnetwork.
If the rate at which customers depart from the subnetwork is to be a Poisson
process whenever the input is Poisson, the local balance and departure inde-

pendence equations for the subnetwork must be satisfied.

29



30

The departure independence condition for the subnetwork for m,n>0, is

P A=P

m,n m,n+1“2(m’n+l) (6-1)

The local balance conditions are, for m>0,

P, ot 0=y o} (6-2a)
for n>0
and, for m,n>0

Pm’n(ul(m,n)+u2(m,n))=Pm+l’n_lul(m+l,n—1)+Pm~1’nA. (6-2¢)

For all m>0, the departure independence condition (6-1) for state (m,0),
together with the local balance condition (6-2a) for state (m+l,0) yields

Pm+1,o“1(m+l’°)=Pm,1“2(m’l)‘ (6-3)

This may be used as the basis for an induction on n, showing

Pm+l’n_lul(m+l,n~1)=Pm’nu2(m,n). (6-4)

Substituting (6-4) into (6-2c) produces

Pm,nul(m’n)=Pmr1,nk' (6-5)

Substituting (6-5) into the departure independence condition (6-1) written
for state (m-1,n) yields, for all m>0,

Pm,nul(mgn) =P (m_lsn+1) 3 (6—6)

mfl,n+lu2

which completes the inductive step.

Note that (6-4) expresses a local balance condition for queue two and (6-5)
is a local balance condition for queue omne.

From (6-1), written for state (m,n-1) one obtains

P = A

m,n uz(m,n)m Po,0-1" €7



And (6-6) written for state (m,n-1) is

Pm’n_lul(m,n—l)=l’m__l’nu2(m—l,n) . (6-8)

Substituting the value for Pm n-1 from (6-8) into (6-7)
3

A Uz(m—l!n)
Pm,n— pi(m,n) * ul(m,n—l) Pmrl,n' (6-9)
But from (4-5)
_ A -
Po,n” T @m Cw-ln’ (6-10)

hence, equating (6-9) and (6-10), one obtains

ul(m,n—l) uz(m-l,n)
ul(m,n) ”2(“"“) (6-11)

This is the same condition as (5-11), for parallel queues with processing

rate tradeoffs. The necessity of the constraint is proved.

It can also be shown, through induction on N=min, that any rates ul(m,n) and
uz(m,n) that are chosen to satisfy the constraint (6-11) satisfy the local

balance and departure independence conditions. The details will be omitted.

From (6-5) and (6-7) the solution for the state probabilities of the subnet-

work are obtained

m

T
m n
A A
Pm,n‘H TYEy H 5, @D 10,0 (6-12)

i=1 i=1
This is quite similar to the state probability for the parallel subnetwork,
given by (6-12). The relationship between the series and parallel two queue
tradeoff subnetworks will be elucidated in the next section. However, it is
not possible to generalize the processing rate tradeoff constraint for more

than two queues in series, as in (6-13) for extended parallel subnetworks.
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7. Processing Rates in Tradeoff Subnetworks

Subnetworks have the local balance property if the processing rates of
queues that exchange processing power are constrained by (6-11). We now con-
sider the possible assignments of processing power within this constraint that
allow maximizing the processing rates in the subnetwork, and maximizing through-
put of the network. The equivalent queue construction by Norton's theorem
for queueing networks will be used to determine network throughput.

Since Norton's theorem has been proven for all locally balanced queues, (cn)
it is unnecessary to prove it for queueing- .subnetworks with processing power
tradeoff that meet the local balance conditions. Instead, a sufficient con-
dition for the equivalent queue construction of Norton's theorem will be shown.
This condition provides some insight for the equivalent queue construction,
and elucidates relationships needed for the optimization of throughput.

Theoreﬁ 7.1

Let Pm be the conditional probability that a two queue tradeoff sub-

,n|N
network, which is part of a closed network of locally balanced queues contain-
ing MzN customers, is in state (m,n), given that there are N=min customers in
the subnetwork. Let Qm n be the probability of subnetwork state (m,n) when

3

the subnetwork is itself a closed network (with output connected to input}

containing N customers. Then Qm =Pm n|N
b E] .

Proof:
Let ul(m,n) and Uz(m,n) be the processing rates at the queues of a series

tradeoff subnetwork when the subnetwork state is (m,n).

m

1 F 1
Let Y(m,n) = ﬂ({ ul(i,n) TI- uz(O,i) (7-1)
i=1 i=1
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and let X(N)= ; Y(m,n). (7-2)
feed
m+n=N
min. .
Then from (6-12), P =\ Y(m,n)P . The term Y(m,n) is used in the
m,n 0,0

product form state probability for a network containing the tradeoff subnet-
work. Consider the three queue network consisting of the tradeoff subnetwork
in series with queue zero, an exponential server that has processing rate o)
when it contains N customers. Queue zero may represent the equivalent queue of
some network and hence the three queue netwérk represents the tradeoff subnet-
work in an arbitrary closed network of locally balanced queues.

Let Z(K)=
i=0

1 ' . .
IO Let Qk m.n be the probability of k customers in queue

E R4

zero, and tradeoff subnetwork state (m,n). It is straightforward to show that

1

Qk,m,n= E;TM‘)’ Z(k)Y(m,n)

satisfies the balance equation for the network when it contains M=k+m+n cus~—

tomers, and GB(M) = E Z(k)Y(m,n) is the normalization constant.

k+min=M
Q
k,m,n Y(m,n)
Then, P = e = . (7-3)
m,nlN Z Q(k,m' ,nl) X(N)
nﬁn;N

But the state probabilities for the network consisting of the tradeoff sub-

network alone, containing ﬁ customers, are the limiting values of the three-
queue network state probabilities with N customers, as the processing rates

at queue zero increase beyond all bounds. Let

GZ(N)= 1im GB(N)'
U(n)»e
n>0
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Since 1im Z(k)=0 for all k>0, and Z(0)=1, then GZ(N)= § Y(m,n)=X(N). Hence,

U(n)-—'dﬂ —
>0 m+n=N
- Y(m,n) , -0
= lim Q =¢ X(N) - _
m,n U(n) iy 0O ksm:n (7 4)
0 k#0

Comparing (7-3) and (7-4) shows that the proof is complete.

The interesting point with respect to this theorem is that the tradeoff
subnetwork state probabilities are expressed in terms of rates ui(m,n) for
m+n<N, but these rate obviously do not apply when the subnetwork stands alone
containing N customers. Of course, the local balance condition (5-11) can
be used to express these probabilities in terms of ui(m,n), min=N only.

The mean processing rate U(N) of the tradeoff subnetwork when it contains N
customers can be compute as

U= ; My (mamQ
n#0
Alternatively, U(N) is the throughput of the tradeoff subnetwork when its output

is connected to its input and it contains N customers.

G, (N-1)
vy = 2 _ X(N-1)

- G, (W) TX() (7-5)
-1
For N»1, each term Y(m,n) of GZ(N)\has exactly one factor ul (1,0) or

ﬁ_l(o,l). Hence, multiplying numerator and denominator of (7-5), N>1, by

Ul(o’l) Uz(lso)
Ul(l,l) = u2(1,1> shows that UN can be expressed in a form that is independent

of rates u(i,j), where i+j=1.

Similarly, multiplying numerator and denominator of (7-5) by the factor
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N-1
IT ) or its equivalent forms by the relation (6-11), shows that U
k=1 2 ?

can be expressed as a function of rates ui(j,k) where j+k=N only. In particular,

let
n

m
' _ 1 1 (7-6)

In the next sections, the maximization of throughput in tradeoff subnetworks
will be demonstrated. These results and those just shown are derived for series
subnetworks. But the results are applicable to parallel subnetworks as well, by
means of the transformation described in the following theorem.

Theorem 7.2 Let Py and P, = l—pl, be the probabilities that customers arriving
at a locally balanced two queue parallel tradeoff subnetwork receilve service

at queues one and two, respectively. Let ul(m,n) and uz(m,n) be the processing
rates of the queues when they contain m and n customers, respectively, and let

P , be the conditional probability of that state. Then the state probabilities
and the throughput of the parallel subnetwork are the same as those of a series
two queue tradeoff subnetwork whose queues have service rates ul(m,n)/pl and
1t(m,n)/p2, respectively.

Proof

The theorem is proved straightforwardly by noting that the state probability
for the parallel subnetwork, which is given by (5-12), with I&=pil, is the
same as that of the series subnetwork, (6-12) with each occurence of a ui(i,j)
multiplied by p;l.

But more insight into these relationships is provided by use of Norton's

theorem. By Norton's theorem, the total processing rate U'(N) of the parallel
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subnetwork when it contains N customers is the throughput in the link connect-
ing output to input of the subnetwork when there are N customers in the closed net-
work obtained by making this connection. (See Figure la). But at each departure
from queue i in this network, a customer returns to queue i with probability
P This is shown explicitly by redrawing the network as in Figure 1b. The
effective processing time of a customer at a queue is the sum of k processing
éeriods, the length of each described by an exponential distribution with mean
time p;l(m,n). But k is geometrically distributed with parameter P;- The
total effective processing time is then known to be exponential, with mean rate
(l~pi)pi. Replacing the parallel queues with the return loops by queues with
rate (l—pi)u:,L connected in series, does not alter the conditional probabilities

P N=mtn of the network. The network of Figure lc is equivalent to that of

m,n|N’
1b.

The mean throughput of the equivalent series network, U'(N) is the same as
the rate of flow from queue one to queue two in the parallel network . The flow

rate into queue one is plUN’ and so plszN is the flow rate between queues one
and two. Hence, U(N) = plszN . Therefore, dividing the processing rate of each

queue of this equivalent series network by plpz does not alter the conditional

probabilities Pm,n]N’ but does adjust the processing rate for N customers to

be the same as that of the parallel subnetwork. This is the network shown in
Figure 1d. Because both processing rates and conditional probabilities for the
series subnetwork with rates ui(m,n)/pi are the same as those of the parallel

subnetwork, the series subnetwork has the same state probabilities :as well -
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{(N) —> p, T(N)
N
Py AN _ @1 b Pyt
\v ¥ H
m: n: m: n:
ulﬁnJU. lt(myn) Ul(m,n) li(m,n]
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B . PlpzT(N) «(N)
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m n: m: (n:)

\ 1 m,n
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c) a)
Figure 1

The equivalence of series and
parallel two queue networks.
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8. Subnetwork Processing-Power Tradeoffs to Maximize Throughput

Network throughput: can be maximized by optimum subnetwork dependent pro-
cessing rate assignments. The process at queue i of the tradeoff subnetwork
will be considered to have mean rate uiwhen a single processor is assigned the
queue. The actual processing rate is proportional to the number of processors
assigned the queue. If ri(m,n) processors are assigned queue i when the sub-
network state is (m,n), then ui(m,n) = ri(m,n) My The total number of pro-
cessors available to the subnetwork when it contains N customers is R(N). Sub-
networks that have the local balance property will be considered.
Theorem 8.1
Let R(n) be the maximum processing power that may be distributed to the queues
of a locally balanced tradeoff subnetwork when the subnetwork contains n
customers, and let u(n) be the processing rate of the subnetwork when it con-
tains n customers. If the subnetwork is contained in a network of locally bal-
anced queues containing N customers, then U (N) is maximized within the local
balance constraint by full utilization of all the R(N) available processors;
that is, rl(m,n)+r2(m,n) = R(N) for all min=N, with rl(O,N) = rz(N,O)=O.
Further, the maximum processing rate is independent of the actual distribution

of processing power R(N) to the subnetwork queues.

Proof

By the Norton's theorem construction, the processing rate U(N) of the locally
balanced tradeoff subnetwork when it contains N customers is the throughput
in the link from output to input of the tradeoff subnetwork, when there are
N customers in the network formed by making this connection. But in a two
queue closed network, queue state dependent processing rates are the same as
subnetwork dependent rates. Hence, Theorem 2.1 applies, and W (N) is maximized

when the R(N) processors are fully utilized,and if H(N) is maximum,
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W) = (= 4 —=) ROD.

1 2
The proof is complete.
Theorem 8.2
Let R(N) be the total processing power available to the quewesof a tradeoff
subnetwork when it contains N customers, and is within a closed network of
locally balanced queues containing M)N customers. Let rl(m,n) and. rz(m,n)
be the processing rates assigned to each subnetwork queue when the subnetwork
state is (m,n), mtn=N. Then if the processing power available to each queue
of the network outside the tradeoff subnetwork is maximally utilized, the
throughput of the subnetwork is maximized by the processing power assignments

rl(m,n) = ——%} R and rz(m,n) = —%~R(N).

Proof

Let U(n) be the processing rate of the equivalent queue for the closed net-
work with respect to the branch containing the processing tradeoff subnetwork.
Then by Theorem 3.2, U(n+l) 3U(n).

Let y(n) be the processing rate of the equivalent queue for the tradeoff
subnetwork when it contains n customers. Then by Theorem 2.1b, p(n) is to be
maximized for each n, in order to maximize throughput in the network consisting
of the equivalent queues, if the u(n), l<n<N are independent of each other.

By Theorem 8.1, u(n) is maximized by the choice rl(N,O) = rz(O,N) = R(N)
and is independent of the choice ri(m,n) for m,n>0, as long as rlcm,n)+r2(m,n)=R(N).
Hence, by Theorem 4.3, the optimal processing power assignments for1&(m,n)
where mtn=N place no contraints on L&(m,n) for mn<N. Hence, u(N-1) can be max-
imized following the same procedure, resul;ing in the assignments rl(O,N—l) =

rZ(N-l,O) = 0 and rl(m,n) + rz(m,n) =R(N-1) or all m+n=N-1. Maximizing each

U(n), n-N,N-1 ... 1 by the same procedure,u1(1,0)=R(l)gL, and u2(0,1)=R(1)u2.



1 @O pay  ray WD
Then by (5-11), u (1,1) = r, (1,1) - r,(1,1) B uz(l,l)

and rl(l,l) = r2(1,1)=r2(1,1)=R(2). By (5-11) again,
2

v, (2,1) - r, (2,1) -, (2,1) H,(2,1)

and hence rl(2,1) =»2r2(2,1) = 2R(3) . Repeated application of 5-11
n
shows rl(m,n) = Eﬁ%{R@hm and rz(m,n) = ot R(m,n).

The proof is complete.
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9. Load Dependent Branching Probabilities

Closely analogus to the case in which processing rates may be traded off
due to load, is the case in which arrival rates at queues may be traded
off. In the usual model of subnetworks with parallel branches, arriving
customers are probabalistically directed toward one of the branches. For
maximizing throughput, the probability of a customer being directed to a
particular branch should increase as the number of customers in that
branch decreases relative to the other branches of the subnetwork. As
the number of customers in one branch of the subnetwork changes, the ar-
rival rate to all branches are modified. Thus, we must consider local

dependent branching probabilities, or subnetwork state dependent arrival

rates.

Theorem 9.1

Let pl(m,n) and pz(m,n)=1~pl(m,n) be the probabilities that a customer
arriving at a subnetwork of two locally balanced queues, is directed to
queue one or gqueue two, respectively, when there are m customers at queue
one and n customers at queue two. Then the subnetwork has the local hal~-
ance property if and only if, for all m,n 2 0,

p, (m,n) ~ py(mn)

Proof

Let A(N) be the mean rate of arrivals to the two queue subnetwork when there

are N customers in the subnetwork, and let Yy and Uy be the mean processing



rates of the queues. Let Xl(m,n)=pl(m,n)K(N) and Xz(m,n)=p2(m,n)l(N)

be the input rates to the respective queues when the subnetwork state is

(m,n) and mtn=N.

Then for the subnetwork to have the local bilance property, the local bal-

ance and balance equations for the subnetwork must be satisfied.

The local balance conditions are,

for all m>O’Pm,Oul = )\l(m--l,O)Pm__l’O

for all n>O,Pn’0u2 = )\Z(O,n--l)l’o,n___l

and for all m,n>0,Pm,n(ul+u2)=X2(m,n—l)Pm’n_l+A1(mrl,n)Pm_l

(9-1a)

(9-1b)

,n (9-1c)

The balance equations for the two queue subnetwork will be called the depar-

ture independence equations when the local balance conditions (9-1) are sa-

tisfied. For all m,n>0, the departure independence equations are

A A - )
Po,nPp(mm) + A mn)) =Py M, ntM2

Recursive solutions to (9~-1a) are, for m > 0,

Al(m-l,O) 1= Xl(i’o)
Po W Pr1,0 - o ®0,0
1

and, for n>0,

X .
A, (0,n-1) 12010
P T st P = ——"'—-———""""_’1—0 P .
0,n UZ 0,n-1 m 0,0
)

The solution to (9-1) and (9-2) is completed by the relation

Az(m,n—l) A, (m-1,n)
1
P el 2 _.l TH o manme——————— —1

My m,n My m—-1,n

(9-2)

(9-3a)

(9-3b)

(9-4)
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whenever m,n > 0. The complete solution is demonstrated by induction on

_ (mtntl) (urkn)
2

k(m,n) + n. The basis, and the inductive steps whenever

m=0 or n=0 are given by (9-3).' Assume the solution holds for all Pi 3
’

such that k(i,j) < k(m,n). In particular, k(mtl,n-1) < k(m,n) for n>0, hence

Al(m,n—l)

Pm+l,n—l B By Pm,n—l (9-5)
Equation (9-2), written for Pm,n—l is

Pm’n_l(Xl(m,n—l)+A2(m,n—l)) = Pm+l,n-lul+Pm,nu2' (9-6)
Substituting (9-5) into (9-6) yields

Pm,n—l Az(m,n—l) = Pm,n“Z’ -7
which provides the first equality of (9-4) for k(m,n).
The second equality of (9-4) may be shown by a similar induction on
k' (m,n) = (m+n+;)(m+n) + m.
By (9-4), it is seen that for m,n>0

A (my,n-1) A, (m~1,n-1) A, (m,n-1) A, (m-1,n-1)
- 2 1 _ 1 2
Pm n ! U Pm—l n-1 ' Pm.--l n-1 (9-8)
? 2 1 ? ul uz ’

Since Al(m,n) = pl(m,n)x and kz(m,n) = pz(m,n)x, the relation

P, (m,n-l)pl(m-l,n-l) =Py (m-l,n)pz(m—l,n-l)
is derived from (9-8). TFor all m,n > 0, this condition is written

P, (artl,n) Py (m,n+1) .

= (9_9)
p, (m,n) p, (m,n)

Since (9-9) was derived directly from the balance equations and local bal-

ance conditions, it is seen to be a necessary condition for local balance.



It can also be shown to be sufficient condition by induction on N=min.

If (9-1) and (9-2) are satisfied for Pm defined by pl(i,j) and pz(i,j)

for i+j<mtn, then they are satisfied for P defined by

m+l,n and pm,n+l
pl(i,j) and pz(i,j) for i+j=mtn, if these probabilities satisfy the con-

straint (9-9). The theorem is proved.

From (9-4) and (9-3), the state probabilities of a subnetwork with load-

dependent branching probabilities are seen to be

T T
j]"xl(i,n) 2,(0,1)

H

1 Yy

Generalization

The technique used to determine the constraints on the branching probabil-
ities for the two queue case is easily generalized to the case of any finite
number of queues in parallel. For load-dependent branching to any of k paral-

lel queues, the constraint corresponding to (9-9) is, for 1lsi,j<k.

pi(nl,...nj+l,...nk) pj(nl...ni+1,...nk)

pi(nl,---nk) pj(n,.-.nk)

(9-11)
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