READERS AND WRITERS

by

John H. Howard

February 1976 TR~

The University of Texas at Austin
Department of Computer Sciences
Austin, Texas 78731

54

Howard READERS AND WRITERS Pare 1

INTRODUCTIOM

This note presents a proof of a monitor (1) for the readers and
writers problem (2). The scheduling discinline used is that pro-
posed by Hoare (1), namely FCFS (First=Come-First-Served) excent
that whenever one reader is started they all are. The proof is
based on Howard's method for proving monitors (3) with extensions
described below, Both the extensions and the flavor of the re-
sults proven may be of some interest.

METHODOLNGY

The proof is given in the appendix. |t uses a notation suggest-
ed by Owicki (&), in which the assertions are interleaved with the
code as comments, in the form*

/* precondition */ statement /% postcondition */

This provides a felicitous presentation of the relation of the
proof to the program, as well as defining the program itself.

The proof schema for monitors in its simplest form is as fol-
lows. Let INVAR (main invariant for the monitor) and C(q)
(signaling criterion for condition gq) be any assertions about the
monitor's data. Then if from the assumptions

/* INVAR =/ g.wait /* C(q) =/
/* C(q) */ a.signal /* IMVAR %/

it is possible to prove

/* true */ initialization /* INVAR %/
/* INVAR */ code for procedure k /* INVAR */

then these theorems are unconditionally true of the monitor, and
I[MVAR is satisfied whenever the monitor is inactive.

The following extensions are used here. First, as discussed in
(3), it is allowable to "look into" the condition aqueues with ex-
pressions such as a.length and aqa.first, provided that the proof
rule for q.wait 1is modified to reflect enqueueing and dequeueing

+ The following typographical conventions are used here,
Comment (assertion) delimiters: /* */
nelational operators: < > £ 2> = F
Logical connectives: & | =%

Howard READERS AND WRITERS Page 2

Sccond, more specific entry and exit conditions than INVAR may
be used. The theorems to be proved may be written

/* INVAR & PRE(K) =*/ procedure k /* INVAR & POST(k) «/

provided that PRE(k) and POST(k) are in a certain sense "ocal" to
the calling process, that is, they cannot be falsified by other
calls to the monitor. The notion of what is Mocal™ will be left
informal here. :

Third, the postcondition of the gq.signal operation may bhe
strengthened to be the disjunction of the exit conditions of all
the monitor procedures which perform q.wait operations. This may
be justified by requiring that signalers be stacked while waiting
for their signalees to finish; the signaler regains control of the
monitor immediately after his signalee exits. Thus the proof rule
for g.signal becomes

/* C(q) */ q.signal /+* INVAR & (POST(k1) | ... | POST(kn)) =/

where kl...kn are the monitor procedures which contain g.wait op-
erations.

Finally, there is one case in which it is necessary to assume
that something "local" to a signaler s preserved across the sig-
nal operation (ew=min(ew'+1l,sw'+wg'.len) in startread.) There
seems to be no great harm in this.

PROPERTIES

The monitor subjected to proof is essentially Hoare's. |t has
been modified to use history variables directly rather than the
differences between them. Thus the number of active readers is
(sr-er), the difference between counts of (successful) startread
and endread operations. Similarly, (sw-ew) counts active writers.
Such use of explicit operation counts aids both in giving calling
processes access to the values of such variables and in simplify-
ing the form of the assertions proved. The main properties proved
are:

1) Reading and writing are mutually exclusive. This comes from
INVAR, which asserts that either sr=er (no readers) or sw=ew (no
writers) or both., Furthermore, swlew+1l implies mutual exclusion
among writers.

2) No internal deadlocks occur. Again from IMVAR, if there is
neither an active reader nor an active writer then IDLE holds, in
which case all the queues are empty. This was called "no unneces-
sary waiting" in (3). Note that external deadlocks (involving
several monitors) can be dealt with only by considering all called
monitors, and the structure of the calling processes, together.

3) When any reader starts, they all do. This comes from

Howard READERS AND WRITERS Page 3

POST(startread), which asserts that ra.len=0. Since a reader
starts exactly when he exits from startread, there can be no wait-
ing readers left after any one reader starts.

4) At most one writer precedes any waiting reader.
POST(startread) asserts that ew=min(ew'+1l,sw'+wg'.len),. The
primes refer to values at procedure entry (see Manna and Pneuli,
(5).) Thus ew<ew'+1l (at most one writer can finish before a wait-
ing reader starts.) Strict equality holds except for the case
that ew'=sw'+wq'.len (this means that there are no writers.)

5) Writers are served first-come-first-served. POST(startwrite)
asserts that sw=sw'+wq'.len+1. This means that a waiting writer
waits for exactly as many writers as are already in the queue when
he requests writing. The +1 term accounts for the waiting
writer's own startwrite. Although this does not exactly imply
FCFS service, it does imply waiting times equivalent to those of
FCES. Since readers operate in parallel, no attempt is made to
derive similar results bounding the number of reads performed whi-
le a writer waits.

6) Dropping internal information from the procedures' pre- and
post-conditions, but retaining reference to the history variables
sr, er, sw, and ew, the functional properties derived for the mon-
itor are:

/* true */ startread /* srd>er & sw=ew */

/* sr>er */ endread /* true */

/* true */ startwrite /* sw=ew+l & sr=er */
/* sw=ew+l */ endwrite /* true */

It is up to the callers to satisfy the preconditions, using their
knowlege of the postconditions.

REFERENCES

1. Hoare, C.A.R., Monitors: an operating system structuring
concept. Comm ACM 17,10 (October 1974), 549-557.

2. Courtois, P.J., Heymans, F., and Parnas, D.L., Concurrent
control with readers and writers. Comm ACM 14,10 (Octoher
1971), 667-668.

3. Howard, J.H., Proving monitors. Comm ACM 19,4 (May 1976),
' forthcoming.

L. Owicki, S. and Gries, D., Verifying properties of interactive
programs: an axiomatic approach. Comm ACM 19,4 (May 1976),
forthcoming.

5. Manna, Z. and Pneuli, A., Axiomatic approaches to total
correctness of programs. Acta Informatica 3 (1974),
243-263.

Howard READERS AND WRITERS ‘ Page 4

APPENDI X

readers and writers: monitor

begin

sr,sw: integer; /* starts */
er,ew: integer; /* ends =*/
rq,wg: condition; /* queues */

/**

Main invariant:
INVAR: (IDLE | READING | WRITING) & RP(0) & WP(1)

Preconditions for signal operations:
C(rq): srer & sw=ew & rq.len>0 & RP(1) & WP(1)
C(wq): sr=er & sw=ew & wg.len>0 & RP(0) & WpP(1)

where common sub-assertions are defined by:
IDLE: sr=er & sw=ew & rq.len=0 & wa.len=0
READING: srYer & sw=ew & (rq.len=0 | wa.len>0)
WRITING: sr=er & sw=ew+l
RP(K=0..1): for all J=1..rq.len do with data(ra(J)) do
ew=ew'+K & ew'<{sw'+wq'.len od od
WP(K=0..1): for all J=1..wg.len do with data(wa(J)) do
sw=sw'+wq'.len-J+K od od
Primes refer to values at procedure entry. WP(0) will be used
later. RP and WP are satisfied vacuously for empty queues.

Preconditions of wait operations are INVAR modified to reflect the
caller entering at the tail of the queue:

PRE(rq.wait): (sr>er&sw=ew&wq.len>0 | sr=er&sw=ew+l) &
RP(O) & WP(1) & ew=ew'+0 & ew'<sw'+wq'.len
PRE(wq.wait): (sr>er&sw=ew | sr=er&sw=ew+1l) & RP(0) &

WP(1) & sw=sw'+wg'.len-(wq.len+l)+1

Postconditions of wait operations are the corresponding signal
preconditions, modified to reflect the caller leaving the head of
the queue and the remainder of the queue shifting up:

POST(rq.wait): srder & sw=ew & RP(1) & WP(1) & ew=ew'+l &
ew'<sw'+wq'.len
POST(wg.wait): sr=er & sw=ew & RP(0) & WP(0) &

sw=sw'+wqg'.len-1+1

Postconditions of signal operations are the exit conditions of the
procedures containing corresponding wait operations:
POST(rq.signal)=P0ST(startread):
READING & rq.len=0 & WP(1)
POST(wq.signal)=P0ST(startwrite):
WRITING & RP(0) & WP(1)

**/

Howard READERS AND WRITERS Page 5

procedure startread;
/% INVAR =/
begin /* (IDLE|READINGIWRITING) & RP(O) & WP(1) & ew=ew' & sw=sw'
& wg.len=wq'.len */
if sw+wqg.len>ew then
/* (sr>er&sw=ewdwq.len>0 | sr=er&sw=ew+1l) & RP(0) & WP(l) &
ew=ew' & ew'<sw'+wqg'.len */
rg.wait
/* sr>er & sw=ew & RP(1) & WP(1) & ew=ew'+1l & ew'<sw'+wq'.len
*/

sr>er & sw=ew & rq.len=0 & wa.len=0 & ew=ew' &
ew'=sw'+wg'.len */

~
%

/+ srder & sw=ew & RP(1) & WP(1) & ew=min(ew'+1,sw'+wa'.len) =/

sr:=sr+l;

/* srder & sw=ew & RP(1) & WP(1) & ew=min(ew'+1l,sw'+wq'.len) */

if rq.len>0 then

/* sr>er & sw=ew & rq.len>0 & RP(1) & WP(1) &
ew=min(ew'+1,sw'+wq'.len) */

rg.signal

/* READING & rq.len=0 & YWP(l) & ew=min(ew'+1,sw'+wag'.len) */

else

i ranalin

/% READING & rq.len=0 & WP(1) & ew=min(ew'+1,sw'+wg'.len) =/

fi;

/% READING & rq.len=0 & WP(1) & ew=min(ew'+1,sw'+wq'.len) */
_end startread;
/* INVAR & sr>er & ra.len=0 & ew=min(ew'+1,sw'+wq'.len) */

procedure endread;
/* INVAR & sr>er */
begin /* READING & RP(0) & WP(1l) */
er:=er+l;
/* srer & sw=ew & (rq.len=0]wq.len>0) & RP(0) & WP(1) */
if (sr=er)&(wg.len>0) then
/* sr=er & sw=ew & wq.len>0 & RP(O) & WP(1) =/
wg.signal
/* WRITING & RP(0) & WP(1) */
else
/* (IDLE | READING) & RP(0) & WP(1l) =/
fi;
/* (IDLE | READING | WRITING) & RP(0) & WP(1) =/
end endread;
/* INVAR */

Howard READERS AND WRITERS

procedure startwrite;
/% INVAR =/

Page 6

pegin /* (1DLE | READING | WRITING) & RP(0) & WP(1) & sw=sw' &

wq.len=wq'.len */
if sr+swyer+ew then
] * (READING | WRITING) & RP(0) & WP(1) & sw=sw' &
wg.len=wq'.len */
wg.wait
/* sr=er & sw=ew & RP(0) & WP(0) & sw=sw'+wq'.len */
else
/* IDLE & sw=sw'+wq'.len */
fi;
/* sr=er & sw=ew & RP(0) & WP(0) & sw=sw'+wg'.len */
swi=sw+l;
/* WRITING & RP(0) & WP(1) & sw=sw'+wg'.len+l */
end startwrite;
/* INVAR & sw=ew+1l & sw=sw'+wq'.len+l */

_procedure endwrite;
/* INVAR & sw>ew */
begin /* WRITING & RP(0) & WP(1) */
ew:=ew+l;
/* sr=er & sw=ew & RP(1) & WP(1l) */
if rg.len>0 then
/* sr=er & sw=ew & rq.len>0 & RP(1) & WP(1l) */
rq.signal
/* READING & rq.len=0 & WP(l) */
else if wa.len>0 then
/* sr=er & sw=ew & rq.len=0 & wag.len>0 & WP(1) */
wqg.signal
/+ WRITING & RP(0) & WP(1) */

else
/* IDLE =/
fi;
/* (IDLE | READING | WRITING) & RP(O) & WP(1l) =/

end endwrite;
/* INVAR */

sr:=swi:=er:=ew:=0;
/* INVAR */

end readers and writers;

S ——————

