SCHEMA AND OCCURRENCE STRUCTURE
TRANSFORMATIONS IN HIERARCHICAL SYSTEMS
by

A.G. Dale
N.B. Dale

TR-55 May, 1976

This paper is being presented at the ACM-SIGMOD 1976 Inter-
national Conference . Management of Data

Technical Report No.55
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Introduction

An investigation of transformations of schema and occurrence
structures that preserve data independence is of interest from
several viewpoints. In the context of data base restructuring,
it may be desirable to modify the main schema and its associated
occurrence structure from time to time to reflect a changing con-
ceptual view of the phenomena being modelled in the data base. In
the context of an application against a given data base, it may
be convenient for a user to invoke an external schema that differs
from the principal conceptual schema, in which case it is important
to ensure compatability between the external schema and the occurrence
structure. In the context of data base optimization it may be
desirable to map the occurrence structure (internal schema) to a
different state. In all cases it is important that the host system
exhibit data independence. That is, if the data base is restructured
in the sense that the main schema and the associated occurrence
structure are modified, it is desirable that processes defined
against the original data base will execute successfully without mod-
ification on the restructured data base. The present paper is
concerned with this restructuring problem, but considerations regarding
restructuring are applicable‘to other problems of conceptual schema -
external schema - internal schema interaction.

In a recent paper, Navathe and Fry [1] have characterized three
types of modification for tree-structured schemas, namely (1

renaming of schema constructs, (2) combining of source schema

constructs, and (3) rela;ing of schema constructs. Their paper
also explores the consequences of schema modification upon asso-
ciated logical instance structures, in terms of instance operations
and value operations. However, Navathe and Fry do not consider

in detail the reasons for imposing restrictions on schema rearrange-
ments, beyond noting that they must be confined to operations on
group schemas that lie along a continuous hierarchical path. This
notion is related to the observation that valid coverings for
accessing operations'in hierarchically structured data bases must
be confluent hierarchies (Collmeyer [2]; Lavalee, Ohayon and
Sauvain [3]).

The purpose of the present paper is to consider the rearrange-
ment rules for tree structured schema and the rules for mapping
occurrence structures such that the transformations are query
preserving, in the sense that query processes defined on the original
schema and occurrence structure will still be valid when executed
against a transformed schema and occurrence structure.

More precisely, we wish to consider the problem in the following
context:

A hierarchical data base, D, is a pair (S,0), where S is a

schema, and 0 is an instance network corresponding to S. S is a
tree of record (group) types, and each node in the tree corresponds
to a record (group) type. Nodes at a given level are unordered.

0 is a transitive hierarchical acyclic network of record

(group) occurrences. Nodes are partitioned by level and by type,

-

corresponding to the level and type partitioning defined on S.
The network is fully transitive, and no cycles are permitted, A
special case of such a network is a tree structure.

The data model, as noted in more detail later, incorporates

the notion of nodal equivalence. Two nodes, x. and X,s in the

1

instance network are data equivalent if Xy and x, are of the same

node type and have identical data values associated with them.

Consequently the data model is a network with (possibly) data
equivalent nodes.

A hierarchical predicate of P of D is a Boolean expression de-

fined on data element names and values, and for the binary operators
(AND,OR) is of the general form:

{data element name> {relational operator) <value) {Boolean operator)

. {data element name> <(relational operator}> <value) . For the unary oper-
ator (NOT) the expression is of the form {Boolean operatorp{data éle—
ment name> £relational operator) (value) .

A selection set, S(P,0) is defined to be the set of nodes of

0 selected by P.

Hardgrave [4] identified two systems for deriving selection
sets from tree structured data bases, which he characterized as set
algebraic and tree algebraic systems. The differences between the
two systems are noted by Parsons, Dale and Yurkanan [5,6]. Ray [7]
demonstrated that the two procedures could also be defined on data
bases organized as hierarchical acyclic digraphs.

In this paper we take the selection process to be a tree algebra.
In brief, in this algebra;

1. Predicates are definéble only if all the terms in the

-3—

expression are within the same family (see data model
definitions below).
2. Complementation is interpreted with respect to a local
universe consisting of nodes of a given type. If T is
a set of nodes of record (group) type R, and N ié a set
of nodes, N € T, selected by a term of a predicate, then
UN =T - N.
3. Intersection and union operations are realized by defining
the operation on normalized sets of nodes as follows:
if term 1 of P selects a set, Tl’ of nodes of record
(group) type R1 and term 2 of P selects a set, TZ’ of
nodes of record (group) type R2, and Level (Rl) < Level
(Rz), then the operation is defined with respect to Tl’
and a set of nodes, T3, such that T3 € Anc (TZ) and T3
contains nodes only of type Rl (see data model definitions
below).
We can now state the schema and occurrence structure trans-
formation problem formally:

Given two data bases:

Dy = (55,0,)

D1 is query homorphic to D2 if:

1. Every node in S1 is in 82

2. Every node in Ol is in O2

3. S(P,Ol) <€ S(P,Oz) for any P defined over Dl.

An allowable transformation of Dl is a transformation that
preserves query homomorphism.

The notion of a query homomorphism is of importance in a
number of application contexts, as noteﬁ previously. In the present
paper we consider specifically the case where 32 is a new conceptual
schema for a data base for which Sl is the current conceptual
schema, and we wish to preserve the integrity of hierarchical pre-
dicates defined on D, in the sense that the selection sets produced

1

in D1 are also produced in D

9
It is clear that a query homomorphism requires a mapping
between 01 and O2 such that the stated condition on the selection

sets is met. In particular, a mapping R must exist, such that
given Dl = (51’01)’ D1 is query homomorphic to D2 = (SZ’R(OI))'
The remainder of the paper will be devoted to a more formal

description of the data model and to a description of a mapping that

will preserve query homomorphism.

Data Model
Definitions
Level: Given a tree, T, if t0 is the root of T, Level (to) = 0.
If tl’ t2 € T, Level (tl) = k, and t2 is a child of tl’
then Level (tz) = k + 1. The level of a record (group)
occurrence is the level of the record (group) in
the schema tree.

Descendant set: Given a tree, T, and a node ti & T, Desc (ti) =

{tET|t is a mode in a tree with root e, }

-5

Given anacyclic digraph, (N,E), where N is the set
of nodes and E is the set of edges, a partitioning

by level on N, and a node n, € N, Desc (ni) =

i
{n€N n is a node of a subgraph with vertex n, and
Level (n) > Level (ni) for all n}.

Ancestor set: Given a tree, T, and a node tiélT, Anc (ti) =
{teT | t, € Desc t)yr - {ti}

Given an acyclic digraph, (N,E) partitioned by level,
and a node n, € N, Anc (Ni) = {n€N| niG.Desc (n) }- {ni}

Simple brooﬁ set: Given a tree, T, and a node ti € T, the
simple broom set of ti’ denoted B(ti) = Desc (ti)

U Anc (ti). Similarly, given an acyclic digraph,
(N,E) partitioned by level, and a node n, € N, B(ni) =
Desc (ni) U Anc (ni)

Data base: A data base D is a pair (5,0) where S is a tree
structured schema and O is an acyclic digraph such
that each node n € 0 represents a record (group)
occurrence.

Node type: 1If X is a record type in a schema S, a node
P € 0 which represents an instance (occurrence) of
X is said to be a node of type X.

Data equivalent set: If there exists a set of nodes MEO
such that each member of the set is of the same node

type and represents identical record (group)

instances, the set M is termed a data equivalent set.

Family: If S is a tree-structured schema, with a terminal
node s;s @ family Fi.E‘S, is B(Si)' If there are j

terminal nodes, there are j families in the schema.

Comment on the Data Model

The data model introduces a new basic construct, namely the
data equivalent set. The utility of the construct will be seen in
the discussion of occurrence structure mapping.

In brief, a network data model utilizing data equivalent sets,
offers two main advantages for implementation purposes. First, it
permits query homomorphic mappings that introduce less redundancy
in the occurrence structure representation than would be the case
if the occurrence structure were a tree. Secondly, it provides
for a representation that is more economical than a labeled
digraph, which otherwise would be necessary to indicate allowable

paths in the occurrence structure.

Allowable Restructuring Operations: Schema Level

In the present section we identify the conditions for an
allowable data base restructuring. We assume that a restructuring
operation involve; (1) a schema transformation and (2) a corresponding
transformation of the occurrence structure.

With respect to schema transformations, we restrict considera-

tion to the class of transformations that comprise rearrangements

of an existing schema at the record (group) level (no nodes are

added and none are deleted), and exclude the trivial case of
record (group) permutation at a given level of the schema.
As noted above, the selection processes invoked by hierarchical
predicates are defined over families. Consequently, an allowable
schema transformation must preserve family structure.
Let S1 be the initial state of a tree structured schema
82 be the schema in its rearranged state
(i s 4
Bl(si) be the simple broom set of ', in Sl
Bz(si) be the simple broom set of Si in S2
An allowable schema transformation must satisfy the condition:
< .
Bl(si) BZ(Si) for all s; in Sl,Sz.
Clearly, if the condition is satisfied, any family that
2 family.

We proceed now to investigate in more detail schema rearrange-

existed in Sl will exist in Sz, at least as a subset of an S

ment possibilities which satisfy the stated condition.

Any schema tree rearrangement can be decomposed into a series
of simple moves of a record type R. There are two types of such
simple moves: type (1) where record type R (level i) is inter-
changed with its parent, record type S (level i-1) and type (2)
where record type R (level i) is inserted as the parent of its own
parent, record type S (level i-1). The children of record type
R become the children of record type S in both cases. Although
these two steps appear similar, they have different consequences
in certain cases.

The nodes of any schema tree can be characterized as branching

(two or more children record types) and nonbranching (at most one
child record type). Therefore there are four possible cases when
applying simple moves: both nodes R and S are nonbranching; node
R (the child) is branching and S is not; node S (the parent) is
branching and R is not; or both R and S are branching.

The implications of applying the two types of simple moves
in each of the four cases to a schema tree are investigated below.
A is a record type which is the parent of S; C, D and E are
record types which are the children of S or R. Record types A,

C, D and E may be branching, nonbranching or null.

CASE I. Both R and S are nonbranching nodes.

Type (1) move. A ?
I

S R

(l):}l

R S
|

It is clear that interchanging two nonbranching nodes will
have no effect on the broom sets of either node and therefore is

an allowable transformation provided ome node is in the broom of

the other. This condition is ensured by the definition of the
simple moves: a child and its parent are by definition in the
same broom.

Type (2) move.

O—u— =

O—wn—x

As the diagram shows, a type (1) move and a type (2) move

are identical in the case where both R and S are nonbranching

nodes.
CASE II. Node R (the child) is branching and node S is nonbranching.
Type (1) move. ? A

l
N =
R S
/\ /\
C D

C D

The broom sets of each record type are identical in this case

and therefore the transformation is allowable. Note that our

definition of simple moves eliminates the possible alternative

mapping shown below:

Type (2) move.

Again the diagram shows that a type (1) move and a type (2)

move are identical in this case where the child is branching but

the parent is not.

CASE III. Node R (child) is nonbranching and node S (parent) is

branching.

-10-

Type (1) move. f ?
) R
//b\ /\
S C
This transformation is not allowable, because the broom set(s)
of the sibling(s) of R will be different in the transformed

schena.

Type (2) move. A A

Ao
A
D D//é
In this case the original broom set of the sibling of R

will be a subset of its broom in the new schema, and thus this

is an allowable schema rearrangement.
CASE IV. Both nodes R and S are branching.

‘? ?
‘—‘3/\

/\\ C/ \D

This is not allowable for the same reason the type (1)

Type (1) move

move is not allowable in Case III.

Type (2) move. 7?

|
/\ =3 Z
/\ /|

-11~

The broom of each record type has either been enlarged or
not changed. Therefore this transformation is allowable.

In summary, we have identified schema rearrangement operations
that satisfy a necessary condition for query homomorphism between
two data bases. Any composition of allowable simple rearrange-

ments will generate an allowable final schema state.

Occurrence Structure Mapping

Query homomorphism also requires a mapping from the original
occurrence structure to a new occurrence structure corresponding
to the new schema such that (a) all nodes in the original structure
occur in the new structure and (b) the selection sets produced

by a hierarchical predicate P in O, are also produced in 0O

1 2

(possibly as subsets of S(P,Oz)).

The following is a general algorithm for such a mapping.

Given schema 1 and schema 2 where schema 2 is the result of
an allowable type (1) or a type (2) move applied to schema 1.

Given the logical occurrence structure defined by schema 1.

Given record types R and S used in the transformation of
schema 1 into schema 2.

Assume that for each instance sj of record type S in the
logical occurrence structure defined by schema 1, there are k
instances of record type R (rl,rz, “ee rk).

STEP 1: Make k-1 copies of the descendant set of Sj less

the union of the descendant sets of all the r's, in

-12-

STEP

STEP

STEP

STEP

STEP

STEP

the logical occurrence structure defined by schema 1.
2: Join the descendant set of each r; (Z=2,k) as the right »
subtree of the 1-1 copy of sj made in step 1.

3: Remove from the original logical 6ceurrence structure
defined by schema 1 all descendant sets of r; (T=2,k).

4: Insert the k-1 trees created in step 2 into the

logical occurrence structure defined by schema 1 as
siblings of Sj’ i.e. as subtrees of the parent of Sj'

5: Change the parent/child relationship so that r, is

the parent of sg and the children of ry become the children
of s?, (= 1,k).

6 (optional): Remove redundancies (explained later).

7: Repeat steps 1-6 for all sj in the logical occurrence

structure of schema 1.

The logical data structure defined by schema 1 and amended

by the above 7 steps is now a logical occurrence structure de-

fined by schema 2. The original'plus the copies of a particular

node form a data equivalent set. In the following section, the

algorithm will be applied to each of the four cases defined

previously.

Application of the Algorithm.

Given: a as an instance of record type A in schema 1.

r as an instance of record type R in schema 1.
s as an instance of record type S in schema 1.
¢ as an instance of record type C in schema 1.

d as an instance of record type D in schema 1.

-13-

e as an instance of record type E in schema 1.
n as the number of instances of record type A in the
logical occurrence structure of schema 1.
m., as the number of instances of record type S per
instance of a; (i=1,n)
k as the number of instances of record type R per
instance of record type S.

Let ...(a,s,r,c,d,e)...represent zero or more occurrences of
the corresponding record type at that place in the
logical occurrence structure.

Let (rZ) represent the set of subtrees of r;. (ry) may be null.

To cover all the s's in the logical occurrence structure,

the algorithm should be applied in the following order:
((ai,sj) j=l,mi) i=1,n)

Logical Occurrence Structure

CASE I. Schema 1 Schema 2 i Schema 1
A A al seeBaee
| l /7
S R s1 eeeSees
IL l N
T’ 1 T2 Ty
b /
C C R S ..\c...‘\??.c...

Since the logic of the algorithm is not based on C being a
terminal record type, replace ...c... byCﬁ?. Table 1 shows the
logical occurrence structure under schema 1 and the step by step
transformation on the structure which turns it into a logical
occurrence structure under schema 2. Where new structure is created

it is shown in the right hand side of Table 1.

14—

Table 1

Algorithm applied to Case I

Occurrence Structure

Step 1:

/al\.. edeo

5! 2

|

(rl) | (rz) (rk)

/r/sl.\.rk. e eSeee

Step 2:
Same as step 1.
Step 3:
///,al ...a
Tl N
]]:l
(r))

~15-

Created Structure

2 S3 Sk
1 1 oo 1

where the superscript refers

to the (copy + 1)

Si Si ¢ s Sli
r2 r3 rk
) @y @)

Same as step 2.

Step 4:

Step 5:

Step 6a:

a, .e.a...
ll 71 71
x)) (1|~2) (r,)
a, ceea...
N
s, *

r4 T S
N
°1 Tl rl
(r4) (rk)

Merged into occurrence structure

%
-{This case only applies if all

(ri) are null

For ease of visual presenta-
tion the ri are numbered so
the termindl cases are
Tasl, & T.,.

172 3

In step 1 note that the descendant set of 81 less the de-

scendant sets of r, (1=1,k) is sl itself. This will always be
the case where record type S in nonbranching.

Step 6 is optional because the logical occurrence structure
produced without it is a logical occurrence structure defined by
schema 2. It is a tree structure and because of the way it was
constructed contains consistent redundancies. If the occurrence
structure is required to be a tree, then these redundancies are
necessary. However if we permit the occurrence structure to be
a network as assumed in our data model, then part of the redundancy
can be removed.

A procedure for removing this redundancy has two parts. One
is détermined by the schema 1 structure itself, and the other
depends on the logical occurrence structure under schema 1.

6a. If‘record type R is a terminal node in the schema 1

tree, steps 1-4 can be omitted and step 5 modified as
follows. Change the parent/child relationship so that
T.

[/

As can be seen in Table 1, this creates k in-branches to

(Z=1,k) is the parent of S5

node s,.

J

Even if record type R is nonterminal in the schema 1 structure,
any particular r in the occurrence structure may be terminal. If
there are two or more r's for any sj which are terminal, they need
point only to sj instead of as many separate copies as

there are terminal r's. This can be stated as follows:

-17-

6b. Scan the r, (1=1,k) for terminal r's. If none are

found, no redundancy exists for this s If one is

i
found, say rp, continue scanning the ry (I=p,k). For

A
each additional terminal r remove sj and make r; a parent

of s?
J
Examples of 6a and 6b are also in Table 1.

Logical Occurrence Structure

Case II. Schema 1 Schema 2 Schema 1
A A al eesd
| | / \
S R s eeSaes
1
| | —/ "\,
N\ N R R T
c D C D ...ci.. ...d... / \\\\\ .TEc... eesda..
eeeCive oo.d...

Since (rZ) is defined as the set of subtrees of Ty, and is not
limited to subtrees with instances of the same record type as
roots, (rZ) can be substituted for ...c... ...d... in the logical
occurrence structure of Case II. Hence the application of the
algorithm through step 5 is exactly the same for Case I and Case II.
However 6a can never be applicable in Case II because record
type R is defined as branching and can therefore not be a

terminal node in the schema tree. Step 6b is applicable as in

Case 1.
Logical Occurrence Structure
Case III. Schema 1 Schema 2 Schema 1
A A al R - D
S R sl e2eSaee
/ \\ | //i.l \\\\\
R D S r1 rk ceod...
| 7\ / \
C C D ...Ce0 ...C...

-18-

Table 2 shows the application of the algorithm to Case III.

Note that 6a and 6b are both applicable. (Note ...c... has
again been replaced by (rZ))
Logical Occurrence Structure

Case IV. Schema 1 Schema 2 Schema 1

A A ' a I TN

L
R(/ \\E
L eevr ow
C// \\D C//E\\E ;..ZTT\\\T\d...

Replace ...c... ...d... by (rz) and this case reduces to

Case III. Note however that 6a is not applicable to this case.

Composition of Operations

If a particular schema rearrangement requires more than one
simple move, the algorithm can be applied iteratively. Rather
than attempting to prove the correctness of the result in all
cases in this paper, a concrete example is given.

Example: Schema 1 Desired Schema

//A ‘ C
B\\ \\E L
C/)]‘3/\

D

E

This can be accomplished by 2 type (2) moves (both Case III).
((f
A

/N

1) A 2) A (3)
/ 2

A\

C D

E E

E

g—w—0
[Rt v

-19-

Table 2

Algorithm applied to Case III

Occurrence Structure 3 Created Structure
Step 1:
a a 32 s3 sk
///*{\\\... .o 1 §<\ 1
Sl\'s--- .d... cesden. \-d...
r r2 Tk cond...

Step 2:

Same as step 1. si si s?
r;(/f/?%... ég/\iffa... [;f\\f\d..
|
(r,) (r5) (r)

Step 3:
a I AN Same as step 2.
r;//\\fffd..
(r))

~20-

al ceeBaan (Merged into occurrence

////i;77§::\\\\\\\\\ structure (1)

a N - BN For ease of visual pre-

sentation the ri were
> numbered so the terminal
T T T T T3 S. .
4 k cases were Ir,, T, & Tq.

eeoden. (ra)

-2

In the terminology of the algorithm record type R is
record type C and record type S is record type B in schema 1.

Logical Occurrence Structure Logical Occurrence Structure
Schema 1 Intermediate Schema

1 21
1 °1 ‘1 /°2 °3\/°'4 ©1
clﬂcz\dl %2\% N b

In the second application of the algorithm, record type C

a

corresponds to R and record type A corresponds to S.

Logical Occurrence Structure

|°1 Fz ‘°3 ‘124

al al a1 Q{\
bl/\ e bl/\ & bz/ 1 b2/ e
| | ~ /\
d; d d, d, d, ‘4,

It is obvious that redundancy exists which can not be seen
until the algorithm has completed operating on all the Sj for
a particular a,. Therefore one additional step is needed on
all applications of the algorithm except the first.

6c. When j = m, in the iteration sequence, compare pair wise
the mi subtrees of ai. When a duplicate subtree is found, say

q’t

subtree of rp.*

rp and r_,remove the subtree of rq and make rq a parent of the

* Note the duplicate subtrees will occur where ever rP and rq were
the parent of the same child.

-2

Applying this step to the preceding example, the logical

occurrence structure becomes

Cl C2 (‘,3 C4
N N
al al
b//\\ b/'\\e
at °1 2“1
d; d, 4,

Comment on the Mapping Algorithm

The mapping preserves query homomorphism because the algorithm
preserves by construction the identity of original broom sets,
and therefore of selection sets, in the mapped structure. That
is, every broom set existing in the original structure exists at
least as a subset of a broom set in the mapped structure; moreover,

the algorithm ensures that no spurious relationships are intro-

P

duced into the mapped structure.

The utility of a network data model incorporating data equi-
valent sets is also demonstrated in the last example. A mapped
network structure exhibits substantially less redundancy than
the alternative mapping to a tree structure, by minimizing the

data equivalent sets.

Summary a h) ’ : - —

We have identified allowable rearrangements for tree structured
schemas and an occurrence structure mapping that preserves query

homomorphism, given a particular selection algebra.

-23~

It appears that the approach taken in this paper is appliéable
to the investigation of other types of permissible modifications
of tree structured schemas, including the analog to the domain
migration problem. These investigations will be reported in a

subsequent paper.

Further areas for productive investigation relate to the
problem of preserving the integrity of (structural) updating
processes on mapped structures, and, as noted eélsewhere in the
paper, to questions of conceptual schema ~ external schema

interaction, and to internal schema mapping problems.

Acknowledgment

The authors wish to thank E. I. Lowenthal, MRI Systems

Corporation, for constructive comments on earlier drafts of the paper.

-2l—

References

1.

B. Navathe and J. P. Fry, Restructuring for Large Data Bases:
Three Levels of Abstraction, Data Translation Project Technical
Report 8.1, The University of Michigan, September 1975.

A. J. Collmeyer, Implications of Data Independence on the

Architecture of Database Management Systems, Proc. 1972 ACM -

SIGFIDET Workshop.

P. Lavallee, S. Ohayon, and R. Sauvain, Non-Procedural Access

to DMS Data Bases, Proc. .19th International XDS Users'

Group Meeting, 1972.

W. T. Hardgrave, Theoretical Aspects of Boolean Operations on
Tree Structures and Implications for Generalized Data Manage-
ment, University of Texas at Austin Computation Center TSN-26,
August 1972.

R. G. Parsons, A. G. Dale, C. V. Yurkanan, Data Manipulation
Language Requirements for Data base Management Systems, The

Computer Journal, vol. 17 No. 2, May 1974, 99-103.

R. G. Parsons, A. G. Dale, C. V. Yurkanan, A Structure Pro-
cessing Sub~Language for Data Base Management, The University
of Texas at Austin Computation Center TSN-28, August 1972.

F. B. Ray, Directed Graph Structures for Data Base Management;
Theory, Storage Structures and Algorithms, The University of

Texas at Austin Computation Center TSN-31l, December 1972.

-2 5w

