MEMORY REQUEST SCHEDULING IN MULTIPROCESSOR
MULTI-MEMORY SYSTEMS

by

Yu-Huei Jea

August 1976 ~ TR-61

This research constituted a Master's Thesis presented to
the Faculty of the Graduate School of The University of
Texas at Austin.

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

10.

TABLE OF CONTENTS

INTRODUCTION

DEFINITIONS AND NOTATIONS

PROBLEM MODELING

OPTIMAL SOLUTION FOR TWO-PROCESSOR SYSTEM
AVERAGE BANDWIDTH IN TWO-PROCESSOR SYSTEM
THE TWO-PROCESSOR SOLUTIONS UNDER RESTRICTION
SOLUTIONS IN MULTIPROCESSOR SYSTEM

AVERAGE BANDWIDTH IN MULTIPROCESSOR SYSTEM
PHYSICAL IMPLEMENTATION AND DESIGN CRITERION
CONCLUSION

BIBLIOGRAPHY

iv

Page

10
14
25
39
44
53
60
64

65

1. INTRODUCTION

Memory access has always been a limiting factor to the execution
speed of high performance computers. The use of multiprocessor archi-
tecture (implicit as for independent 1/O channel operations or explicit as
for multiple processing units) has intensified the need for larger bandwidth
in memory system architecture. This péper defines a memory access
subsystem which maximizes (or nearly maximizes) the average bandwidth
of a multiple-module memory system (or multi-memory system for short).

There have been two principal approaches to obtaining large high
performance memory systems at a reasonable cost. The multi-level
hierarchy or vertical approach [1,2,3] uses a memory system with com-
ponents of different speeds. Typically there will be two or three levels
with access time increasing with relative size. Data and instructions will
be moved to the fast access level on first use and fetched from the fast
access level on subsequent uses (unless displaced). The effectiveness
of this organization depends upon the tendency of programs to operate in
restricted or local portions of their total address space for time periods
much longer than memory fetch and instruction execution times. When
fast memory is adequate to hold the "working sets " [4] of the active
processes, then the effective memory system bandwidth is close to that of
the fast component. The multiple-module or "horizontal" approach
decomposes the executable memory into a number, m, of independently

1

functioning modules. The bandwidth of the memory system is then poten-
tially much greater than the bandwidth of a single element and is upper
bounded by m times the bandwidth of a single module. The performance
of a multiple-module memory organization will be high when serial corre-
lation of references to each module is low.

There are several reasons for an increased interest in multiple-
module memory organizations. LSI fabrication is lowering the cost of
independent driving circuitry. The multiple-module organization can be
more effective at lowering the referencer conflict problem for multi-
processor organizatiohs . The memory organizations described here are
assigned to exploit the possibility of increased complexity in driving
circuitry to resolve the referencer conflict problem for multiprocessor
systems.

There are two modes of address assignment for multiple-module
memory systems. One is to assign the address space consecutively
within each module. Thé second is to assign the address consecutively
across all modules. The first is called a multiple independent memory
system and the second is called an interleaved memory system. TFigures
la and 1b illustrate the two assignment modes. Let m be the number of
memory modules and M the number of words in each module. Then the
address space in any one module of a multiple independent memory system

is a complete set of residues modulo M while all addresses in one module

addr. O addr. M addr. (m-1)M
addr., 1 addr. M+l addr. (m-1)M+1
addr. M-1 addr. 2M-1 addr. mM-1
Module #1 Module #2 " Module #m
" (a) Multiple independent memory system

| addr. -0 addr. 1 addr. m-1
addr. m addr. mt+l addr., 2m-1
addr. (M-1) addr (M-1)mt+]l] addr mM-1
Module #1 Module #2 Module #m

(b) Interleaved memory system

Figure 1. Multi-memory system addressing

of an interleaved memory system are all congruent modulo m.

There are a number of possible approaches to the reduction bf the
reference conflict problem. Kurtzberg [5] has analyzed the effects of
assignment of jobs to the memory modules of a multiprocessor system.
Coffman and Burnett [6,7] have analyzed the éffects of separate request
queues for single-processor interleaved memory systems. These two
approaches both attempt to prevent the occurrence of conflict by control-
ling the contents of the request queue for memory references.

The approach taken here is to optimize the performance of a multiple-
module memory system when the request queues for memory references are
given. Consider a multiple module memory system with a reference
request queue for each independent module. This research determined,
described, and tested algorithms for selecting, at each memory cycle,
references from these request queues which maximize or nearly maximize
total memory system bandwidth. There were found several straight-forward
algorithms which yield substantial bandwidth enhancement for random
reference workloads.

The measure employed to evaluate memory system performance is

average bandwidth, i.e. the average number of modules in operation per

memory cycle. The number of memory modules which can be in operation
in a given system is bounded either by the total number of memory
modules, m, or by p x n where p is the number of processors and n is

the ratio of memory cycle time to processor cycle time.

memory cycle time
processor cycle time

The two upper bounds are considered separately. The case of px n
bounds is referred ’go as bandwidth under restriction to indicate that the
memory system may separately have a greater bound for bandwidth.
Section 2 gives needed definitions and establishes the notation.
Section 3 defines the memory conflict problem which is to be analyzed.
Algorithms for the two-processor m-memory module case are described
in Section 4 and their performance evaluated in Section 5. Sectioh 6
considers the two processor case under restriction. Section 7 extends
the algorithms to numbers of processors greater than 2 and Section 8
evaluates the performance of these algorithms. A possible scheme for
physical implementation of the class of algorithms studied here is given
in Section 9. Section 10 summarizes the results obtained and suggests

related problems requiring further research.

2. DEFINITIONS AND NOTATIONS

Let there by p processors each with processor cycle time 'I'p and m
memory modules each with memory cycle time Tm. A request for memory
module access made by some processor is, for simplicity, represented
only by the module number. Thus a request r is an element of the set
{1,2,...,m}.

Consider the single processor case first. There is a request queue

Q generated by this processor. It is represented by a vector of requests
(r1 IEgreesilpsee .). When no confusion is possible, the parentheses and
commas can be ignored and written in more compact form as rlfz .. .r&. .o

Definition: A request sequence, denoted by I, of the given request

lrz. . .1"L such that

queue is a finite sequence of requests r
(@) i#j implies ri,;érj forall i,j, 1<i, j<&
= | i <i<
(b) r,,, =r for some i, 1<i<t

A request subsequence, denoted by I‘i, of request sequence T is

defined to be the sequence r ri with 0<i<4, For i=0, it means the

lrzoo-

null sequence, i.e., I‘O=ﬁ. Note that T, =T.

The length of a request sequence (or subsequence) is the total
number of elements in it. It is expressed by the notation £g (). The
length of a null sequence is zero.

The ground universe of a request sequence I' is the collection of

all its possible request subsequences. Thus the ground universe

G@) = {Ty:Tyre-- Tpds t=ta ()
Example. For m=8, request queue might be

Q =2714135...

Then its request sequence is

I'=2714

and the length of T" is

g () = 4

The ground universe of T" is

G = {ro,rl,rz,r T

3 4}
={¢,2,27,271,2714}
Let us now extend the preceding definitions to the multiprocessor
cases. Let Q1 , Qz sees Qp be the request queues for each processor, and
2 p

‘ 1
their corresponding request sequences beI" , T" ,... " .

Definition: The request sequence set A is the collection of all

request sequences for all processors. Thus

1
A={T ,rz,...,rp}

The request subsequence set of A is a set

{I-\il: ,I‘fl.l.'rip}
1 2 P

where

& sG(Fk), l<k<p.
'k

The length of a request sequence (or subsequence) set is defined

to be the sum of the individual lengths of each element in the set, i.e.,

P
2 k)
1

1
(T}) .eeeTD D= E 2glr
1 2 p k=1 -k
There exists memory conflict if more than one processor requests a
memory module during a given memory cycle time.

Definition: The request subsequence (or sequence) set

{I‘.l ,I"iz e ee ,I‘Ii) } is in conflict if there exists a request r such that

i, b

kl

rel’, ' k e{llzlootlp}
1k 1

1
and

kZ

reri 7 kze{llzl"'lp}l kl#kz'
kZ

A feasible solution S(A) of a request sequence set A is a request

subsequence set of A such that there exists no conflict.

An optimal solution S, (A) of a request sequence set A is the

feasible solution with maximal length.
Example: For p=2 and m=8, the request sequence set might be
A= {35841, 2714}.
There aré a number of feasible solutions, for example

S() = {35, 2}

or S(A) = {358, 271}
or S(A) = {358, 2714}
etc,

The optimal solution is

Sx(A) = {358, 2714}

Note that the optimal solution need not be unique. In the above

example, there are two other optimal solutions which are {35841, 27}

and {3584, 271}.

The optimal solution maximizes the average bandwidth.

The following mathematical notations are adopted in this paper:

]
X1

ma

i=i

The floor of x. For example, [2/=2, [2.99] =2.

The ceiling of x. For example, 1=2, 2.0171=3,

The sum of all a; for which the integer i satisfies il_<_i_<_12.

If no such integer i exists, the sum is defined to have the

value of zero.

The product of all a; for which the integer i satisfies

io<i<i

1 If no such integer i exists, the product is

20
defined to have the value unity.
The permutation function which is defined to be

n-(n-1).....(n-2+1) for 1<t <n and 1 otherwise.

The concatenation of two request sequences. Thus if

i i i i_ j ij_ i i
F~rl...r&iandr‘]-—rl...r%,thenI‘-I‘-—,rl...rLirJl...

r;/ . Note that T-@=@:T=T and #.0=4.
j

3. PROBLEM MODELING

The following four conditions define the problem domain of the
subsequent analyses.

a. All processors and memory modules are synchronized.

b. The requests in any request queue are independent, thus there
is no relationship between any two elements in one request
queue,

c. The processors make the requests independently. Thus there is
no relationship between any two requests, one from one request
queue and the other from any other request queue.

d. The system operates at full load such that the request queues
always contain sufficient requests to determine their request
sequences.

The goal is to find a procedure which selects requests to be
serviced from each request queue in such a way that the average band-
width will be maximal. This is in principle a global optimal problem,
i.e., overall execution time must be analyzed. Fortunately it can be
established that local optimization over every memory cycle generates
global optimality.

Optimality Principle: Local optimality implies global optimality.

Proof: Let the contents of all request queues characterize the

10

state of the system. Two states are said to be equivalent as long as
every request in all request queues are independent. Since the system
transits from one state into the next state after every memory cycle,
the system behavior can be represented by a sequence of transitiqns

Sg 781818 578y e

From the conditions of problem definition, it is easy to see that
SO’ S1 . S2 ,++.. should be equivalent states, that is

SO=SI=SZ='°'

Let BSi"Siﬂ be the bandwidth produced at transition §;=S,,,.

Also let BS -3 be the sum of all bandwidths at all transitions
0 i
i-1

"‘Si, i.e., B = ¥ B, - .

$,~S.,8,~8,,...,8,
50781 p=g Sk”Sps

0 "1'71 "2 i-1

Then B =B +B .
S0 Si+1 So Si Si Si+l

Now we are ready to prove that local optimality yields global
optimality. We use mathematical induction;

For i=0, the whole process is just SO-*Sl . It is trivial that local
optimality implies global optimality.

Next, we make the following induction hypothesis:

For i=n, BS -3 is optimal implies BS -3 is optimal.
n-1 °p 0 “n
Consider i =n + 1 case.
Since B, _ . is maximal (by hypothesis), B would not be

11

12

optimal unless B is optimal. Thus the case of {f = n + 1 is true.

Sn_’ Sn+1

Therefore it is always true that local optimal will imply global
optimal under our previous assumptions.

Q.E.D.

It is quite easy to see that the local optimal problem is to find an
optimal solution from the request sequence set of every memory cycle.
Figure 2 gives a schematic of our model.

The function of the scanner is to determine the request sequence
from its input request queue [7]. The outputs of all scanners form the
request sequence set A, which is the input to the selector. The selector
properly selects requests from each request sequence to give an optimal
solution as its output. We can, by this means, obtain maximal band-
width for every memory cycle; this fesults in maximal average bandwidth
for the system. |

Althodgh the queué léngths would be unbounded in our model, they
are always bounded in the real world. When some queues become full,
the memory system will issue some commands to halt the corresponding
processors. We also notice that in some computer systems the order which
the memory requests are awarded to the processors may be different from
the order in which they are generated.

We consider now algorithms for selecting optimal request sequences

for two processor m memory module systems.

13

2an3°Fd T°PON

.

10309788

*7 2an31g

Jauueds

< 2A3UuUBdS

Jo2Uuueds

d
¥ BEEEAY
d ° d d
nh
[A
&u o o o Nh Hu
[4 [4 A
NL
I |
¥ 4 T
J

4. OPTIMAL SOLUTION FOR TWO-PROCESSOR SYSTEM

Given a request sequence set of two elements

1
A= (1, T}
where
I‘1= 11 1
rlrz...rL
1
2_ 22 2
r —rlrz ’Lz

we want to determine algorithms which will yield at least one of the
optimal solutions.

Let us first consider exhaustive search. We construct all request
subsequence sets

1 2
A, ={r, 7}, 0<i <t ,0<i <4,
1112 i, 1 1 2—=2

Then the optimal solution is obtained by selecting the request subsequence

set which has longest length for which there exists no conflict. If there

is a tie, any arbitrarily chosen subsequence set will be all right.
Exhaustive search is very tedious and impractical because there are

a total of (Ll + 1) (LZ + 1) request subsequence sets to be considered.

Therefore it is used only to show theoretically that the optimal solution

of any given request sequence set does exist and can be found. There is

no value for practical implementation.

14

15

We now consider an iterative approach which just constructs an
approximate solution and defines an iterative improvement procedure.

Given a request sequence set of two elements A= {I‘l ,I‘z} , its
trivial approximate solution St(A) is defined by the following algorithm.

Algorithm 1: Algorithm to find trivial approximate solution of

11 1 2 _ 22 2
rlrz...rLl and T ~r1r2"°r£2'

Step 1 [initialize] Setj =1

A= {1“1,1‘2} where T =

Step 2 [check for conflict] If rjz e I‘1 , go to step 4.
Step 3 [set up next iteration] Setj =j +1. If jg&z, go to step 2.

2 3

Step 4 [answer] Set St(A) = {I‘l ,I“j_1

1
Example: Given A = {35841, 2714}

Then St(A) = {35841, 27}
which happens to be the optimal solution as has been shown in a previous
example.

Consider another example.

Example: Given A = {12345, 5678}

Then 8 (A) = {12345, 7}

It is clear that this result is not optimal since the optimal solution
is

S,) = {1234, 5678}
How can we start from the trivial approximate solution and promote step-

by-step to the optimal solution?

16

Let us consider the request subsequent set

A = {ril_l. riz},

i.e., look one request ahead from the end of first sequence (see Figure 3),
and get the corresponding trivial approximate solution in the first
iteration. For convenience, we call this iteration as lookahead = 1.
The solution after lookahead = 1 should be the longer of St(A) and St(Al) .
To be consistent, the trivial approximate solution of original request
sequence set A, written as A, will be called the solution after
lookahead = 0.

After lookahead = K, the request subsequence sets being consi-

dered are

A ={r .l,ri} . i=0,1, ..., K

The solution after lookahead = K, SK(A)’ is defined as

S, =8.(,), 0<k<K

where k is defined by
&J(St(/\k)) = max{ig(St(AO)),Lg(St(/\l)), cees

tg(s, (1))

The preceding definition depends upon how we assign the request
' 1
sequences to I and I‘2 . For example, let the two request sequences be
12345 and 5631, If we assign 1“1=12345 and I‘2=5631 , then

SO(A) = {12345,153,@(80(1\)) =5

Initialization: r

First Iteration:

zl—th Iteration:

Figure 3. Lookahead Process

17

18
and Sl(A) = {1234, 56}, Lg(sl(A))’ =6

If we assign I"l = 5631 and Iz = 12345, then
5, = {s631, g}, 1g(5,(1) = 4

and Sl(A) = {563, 12}, Lg(Sl(/\)) =5

Therefore, in order to unify our presentation, we always name the request
sequences in such a way that Ll _>_4,2.

The termination of iterations will naturally arrive after lookahead
= {’1 , the length of first request sequence.

We now proceed to establish that the solution after lookahead = &1
is optimal. We first introduce the following lemma.

Lemma l: The solution after lookahead = k cannot be worse than

the solution after lookahead = k - 1, Thus

g(8, _; (M) <tg(s, ()
Proof: 4g(S,_; () = max{4g(8 (), L9 A)]
1g9(5, (1) = max{£g(S,), ... Ag6, ()]

Since max{ao, cen ,ak_l}g_ max{ao, .o ,ak} for any agreeerdyy then

{g(Sk_l(/\))g_Lg(Sk(A)). Q.E.D.

Theorem 1: The solution after lookahead = Ll is optimal.

Proof: Assume there exists one feasible solution.

11 1 22 2
r

s() ={”1rz""ril'r1 T2 iz} 0si sty 0l <ty

19

which is better than SL @A), i.e.,
1

tg(() > tg(s, (M)
1

_ 1 1 2 2 ,
Let S,y) =1lrjeeery ,.rl...;rj}, 0<j<t,
171 1
Case 1 iz_<_j
This gives 1g(S, () <tg(S, (A))
t t 'f;l—il
Since Lg(S, .))<1g(S (n)) (by definition)
[PR L -
171 11
and tg(s, . (A))<tg(s,) (by Lemma 1)
4 4
then Lg(S(A))S_&g(SL)
1
which contradicts the assumption.
Case 2 i >j
According to Algorithm 1, r‘jz_'~1 should belong to 1‘: . Thus
1
{r rl ;rz rzrz r2 } is not a feasible solution which also
1'..‘1’ 1"0 j"j"*‘l..'i

1 2

contradicts the assumption.

Therefore no such feasible solution exists, i.e., SL (A) is an
1

optimal solution. Q.E.D.

We can, by this approach, cut our search space to {,1 +1, i.e.,

consider only the request subsequence sets AO' A1 reee 'AL .
1

We next further shrink our search space by introducing the following

lookahead principle.
Theorem 2: (Lookahead Principle) Optimal solution of A =

{I‘l ,1“2} ' {,13{,2 is equal to the solution after lookahead = {’2 -1,

Proof: By the construction of Algorithm 1

190 (AL))<£g(r) + 197), 0stst

L 2

or tg(s, (N, - 1) +1,
When Lz&z , it becomes

g8, ("))t
Also we have

t5(5, (1) 249 =4
Then max{1g (S (A), ... ,Lg(st(ALZ_l)), .. .Lg(st(ALl))}

= max{4g(S (/\0)), - ,«Lg(St(£,-1))}

That is S, =s, 0 Q.E.D.

2
The lookahead algorithm can be summarized as follows:

Algorithm 2: Lookahead method to find optimal solution or

approximate solution of A = {1"1 ,I‘z} where T "rir; r1 and I‘2 =
1
2 2 2 . -
r rz. sy Note that K is the value of lookahead. When K =
2

min(&g(I‘l),/(,g (1‘2))—1 , the algorithm gives optimal solution.

Step 1 [initialize] Set i = 0. If£1<{,2, rename I‘l to I‘z and

20

2

I to I‘l. (Thus 1,24, is always true in the following

2
steps.)
Step 2 [determine K] Assign the value of K. If K_>_L2, set
K= Lz—l .

Step 3 [solution after K = 0] Compute: St(A) . Set SK(/\) = St(A) .
If K= 0, return.
Step 4 [iteration begin] Seti=1i+ 1, Compute St(Al)'
Step 5 [compare] If Lg(SK(A))<&g(St(Ai)), set SK(A) = St(Ai)'
Step 6 [iteration end] If i<K, go to step 3, otherwise return.
Finally we introduce another method which requires no search.
This method is based on the lookahead principle, which guarantees that

i1 1
the requests rl rz e r&1-1,2+1

are always in the optimal solution if

1, >4

1245 Therefore we can first assign

1

rl rl r
. LI S I — +
1°2 &1 {'2 1

in the solution set, Then we construct the new request sequence set

1 11 21
AN ={r ", 1"}
where
11 1 1
r =r I
-+
1ttt Ty
21 _ 2 . 1 2 ,
and r=r, if {TL L +1 I‘L } exists no conflict.

2 1 "2 2

_ .2, 1 2
=T, if {I‘LI_LZH, Ty } exists no conflict but

22

2 1

r e
+
14+1 Ll-&z 1

A similar process can be applied again until the elements in the new
request sequence set are both null.

Algorithm 3: The method to find optimal solution of A = {I‘l ,I‘z}

0 10 20 2

without search. Assume that A" =A, T —I‘ , T=r", s, = {I‘i,l‘i} .

Also we adopt the convention r,r

L e 3 .= i .>"4
{Fi+1 r]ﬁlfL j

Step 1 [initialize] Set j=0, S, (A) = {#4.9}.

Step 2 [termination test] Set ‘?«%g(I‘I’“]), LL%Q(I‘ZJ).

For convenience, we let AJ={I‘1] ,I‘ZJ}-’-{ r1 A ;IJ, 1].

If £=0 and/or 44=0, then S, (A)= {I‘ T ,I‘2 I‘ZJ} and stop.

Step 3 [iteration begin] If £>44>0, then we have

1j 2
8, M=y T,y Te)

j+1_ »lj 11 2j
and A {Lu+z r}

2j 1j
where ‘ 0 if f €]."& LA+1

_ 2j 1j . .
k 14 if r, g,(l“& Lr41 1OF alli, 1<i<t4

2) 1j
Li 14 Ty g4 foralli, 1<i<L<td

2 ¢ ol
and 1y € D

If 44 >4 >0, then we have

1 2 _2j
8, (M={T,, T T} ;_M_l}

j+1 o 1j Zj 2j
and A {I‘ LL—&+2"'rLL}

23

: lje 2j
where 0 if ri r&&—lﬁl
I‘Zj

B 1.)
k=¢ tifr '#T; ., foralli, 1<i<t
2j

MU~-4+1 for all i, 1<i<L<4

1j e T 2j
L+1 L2-4+1

L if ril’/ér
and r

Step 4 [iteration end] Set j=j + 1 and go to step 2.
The preceding algorithm can be illustrated by the following example:
Example: Given A = {35841,2714}

Then at initialization (j = 0), we have

A9 = {35841,2714}
S, (A) = {35,)3}.
The iterative process gives
j=1: Al = {841, 2714}
S, (h) = {35-4,0-27}
= {35,27}
j=2: A% = (841,14}
S, (A) = {35-84,27-4}
= {3584,27}
j=3: A ={1,1)
S, (h) = {3584-1,27-§}

= {35841,27)

j=4: A4= (7,8} stop.

24

S, () = {35841,27}
stop.

Finally we want to emphasize that in this research we haven't done
the implementation analysis and timing analysis to show which algorithm
would be superior to the others. Also we don't know how close these
algorithms are to optimal with respect to the execution time and ease of

implementation.

5. AVERAGE BANDWIDTH IN TWO-PROCESSOR SYSTEM

We now derive the theoretic values of average bandwidth under
different values of lookahead, say lookahead = 0, 1, optimal. These
values will be verified by simulation experiments. Recall that m, p
represent the number of memory modules and processors respectively.

Theorem 3: The probability of finding a request sequence with
length £ is (see [8])

P

m-1 1
P (£)="a-1" forl<#4<m
L "““‘1—"—- -
m

= 0 otherwise

By Theorem 3, the average bandwidth in a single processor system
m
is & PL(L) - 1.
=1
We next prove the theorem for lookahead = 0.

Theorem 4: The average bandwidth in a two-processor system with

lookahead = 0 is

'(/

m 1 L
zf=1 fz—_-l(c PR 1 (P, (0)-2))
where C=1Iif »&lz&z and 2 otherwise.
L= min(&l + Lz, m)

PL(-) is defined in Theorem 3.

25

26

1-1)-1 m-t, -k ¢
P = (m

) |
k=0 m-k m-&+&1

) 1-1/1]

Proof: There are m x m mutually exclusive events for the outcome of

two request sequences, thus

E : &g(rl) = 4. and &g(l“z) =4
1.4, 1 2

for 1<4 <m

<m and l_<_L2

1

Considering the event E L the application of Algorithm 2 will give us

172

that the length of solution after lookahead = 0 will have the lower bound

4

max(&1 ,Lz)

generality, we assume &12{’2 because we need only rename them if this

and the upper bound min(L1+&2,m). Without loss of

assumption is not true.

The probability of different lengths 4 can be found as follows:

2 1 2 1 2 1
ForL—Ll, then rl-—rl or rl-rzor... or rl-—rL

£

1
s, Pr(&—JLl) ==

Fort =4, +6 where 1, <L<min(&1+&2,‘m)

2, 1 2 , 1 2,1
then rl;érl and rl¥r2 and ... and rl;‘fr&1

2 1 2 1 2 1
réiérl and rb?frz and ... andra?gr‘&l

27

2 _ 1l 2 _ 1. 2 _ 1
Fasl = 11 rr6+1—-rz r...orr6+l-— *’1
m-l,l ‘ m-l,l-l m—«Ll-—(é—l) Ll

. Pr(p=0+48) = m-1_ " Tm=(6-1) m-6

For 4 = min(«t1+{, m), there are two cases:

zl
Case 1: min(»{,l+&z,m) = L1+L2
2 1 2 1 2 1
we have rl;afrlancirl?fr2 ancil...andrl,%r)z,1
T, #ri and r?L #ré and ... and ri ;éri
2 2 2 1
m-4, m-4. -1 m-4. -(4,-1)
. _ _ 1 ., 1 o 1 2
SLPr (L=t) = — e Y
N— S et
&2 factors
Case 2: min(&l-%z,m) =m
2 1 2 1 2 1
we have ‘rl?frl andrl;ffr2 and ... and rl #rLl
r2 ;érlandr‘ #r . and and r £ r
m-4, 1 m-4 2 : -2 Z

m-&l m-4 . -1 1
Pr (t=m) = ’ m-1) 1,.+1
1
| — 4
——

(m-—&l) factors

Combining Case 1 and Case 2, we have

min(.tl+&2,m)-&l-—1 m-{,l-—k
Pr (4=min(4.+4,.,m)) = e

1 72 il m-k
k=0
Therefore the expected length in Event EL L is
172
L
I,ELIPO(U'L' L= mm(&lﬂ,z,m)
Pr (JCFLl)
where PD(&) = Pr(&=&1+6)
Pr(4=L)
or in compact form _
L-—Ll-l m—&l—k 4;1 1- /L]
P =0y T M]
k=0

Using the above results, we can compute the average bandwidth as

m m L
z T P)P (L)(z P (L)1)
PR A LA e/ AN 0
1,=12,=1 t=max(t;,4,)
Since the event E is equivalent to event E , then the preceding
&1&2 Lle ,

formula is equivalent to:

28

29

m 1 L
? Z (P ()P (1) = (Py(2):1))

=1 4,=1 Lo1Le t=t,
Q.E.D.
The theorem for lookahead = 1 can be similarly derived. To avoid
repetition, we state the theorem without including proof.

Theorem 5: The average bandwidth in two-processor system with

lookahead =1 is:
1 L

, (C P {4)) P (X,) _2_ (Py2)+4,(2)))
1 2 1=,

where C=11if {,1=L2 and 2 otherwise.

L= min(&lﬂ, m)

zl
PL(-) is defined in Theorem 3.

PO(‘) is defined in Theorem 4.

Ly
A () = 621 P (6)+5
in which
L, = min{m—l;,&lwcz-&—l}
-l -k, . 5 m-t-k, +1
B (o) = kl=r{13 m-k;) (m-&+£l) (k | M -’kz)
L -1 1-18/L,]

30

It is clear that the average bandwidth for lookahead = 1 is better
than that for lookahead = 0.,

It would be desirable to have a theorem which gives an explicit
expression for the average bandwidth of a two~-processor syste‘m with
optimal request sequence set. We have not been able to obtain this
result. We do present an algo;ithm which yields an optimal solution.

Let us examine an example for illustration.

Example: Find the average bandwidth of an optimal request sequence
set with m = 4.

There are 16 mutually exclusive events possible for the outcome
of two request sequences, thus

and Lg(l‘z)={,

1
E : Lg(l“)—4;1

4.4

172 2

1<1,<4, 1<1,<4

1 2

Consider Ell . Let I‘l = 1. Then we have the following two cases:

(1) r?e {11,

2
(2) T {2,3,4}
The probability for case (1) to occur is equal to 1/4 and its corresponding
bandwidth is 1. Also the probability for case (2) is equal to 3/4 and
its corresponding bandwidth is 2.
1 1 1 1
If T~ happens to be another value, thus I =2 or TV =3 or IV =4,

we get the same results. Therefore for each event, we need only to

1 .
consider one case for T°. This saves a great amount of effort.

The resulting average bandwidth for E11 is

1 3
B11_4 x1+ 4 X 2

Consider EZl’ Let I‘1 =12. We also have two cases:
2
(1) T7e{1,2}

(2) T26{3,4)

The probability for case (1) is ;21-, for case (2) is also%. The bandwidth
for case (1) is 2, for case (2) is 3. The resulting average bandwidth for
E21 is

2 2
BZl— 2 x2+4 x 3

With the same arguments, we find that the resulting average band-

width for E, , is equal to that for E

12 i.e.

21"
B2 =By

Consider E22' We let I‘1 = 12, Now we have three cases:
2
(1) 77¢{12,13,14,21}
2
(2) T°¢{23,24,31,32,41,42}

(3) Te(34,43)
The probabilities for cases (1), (2), and (3) to occur are equal to
—lﬁlz-, -l%' and -IZE; the corresponding bandwidth for each case is 2, 3, 4,

respectively. Therefore the resulting average bandwidth for Ezz is

31

32

Events E31, E13, E32, E23 can be analyzed in the same manner.

Next consider E33. Let 1"l = 123, We have only two cases

(1) T?e{123,124,132,134,142,143,213,214,231,241,312,
314,321)
(2) T?e{234,243,324,341,342,412,413,421,423,431,432)

The probabilities and bandwidths for cases (1) and (2) are 13 3,

24’
%—-‘li, 4, respectively. The resulting average bandwidth for E33 is
13 11
B33- 54 X 3+ 24 x 4
Finally consider events E41 ,E14,E42,E24,E34,E44. Slnce the

length of one request sequence is already equal to the number of memory

modules m, then it is trival that

Bgp1 =Byg =By =By =By3 =By =By, =4

Note that the probability for EL 2 to occur is equal to

172

PLul)'RLu?)

where PL(-) is defined in Theorem 1. Therefore the average bandwidth of

the optimal system with m = 4 is computed by

4 {’l
B= I T (C+P (4,)°P (¢,):B)
_ _ LYY "LY27 Tk
&1—1 /(2—1 172
where C=11if L.=4_ and 2 otherwise.

1 72

33

In the above approach, we need some systematic way to generate
all possible I‘z sequentiélly. This is a permutation problem, i.e. the

permutations of m different objects taken 4, at a time without repetition.

2

There are PJanz possibilities altogether. The natural approach to general all
possible 1‘2 is according to lexicographic order. For example, m=4 and
L2=3, then there are 24 possibilities which are generated in the following
order:

123, 124, 132, 134, 142, 143, 213, 214,

231, 234, 241, 243, 312, 314, 321, 324,

341, 342, 412, 413, 421, 423, 431, 432
For convenience, we define the function "next" to give the next one.
Thus

next (123) = 124

next (124) = 132

.
.

next (431) = 432
next (432) = undefined.
Now we are ready to introduce the following general algorithm.
Algorithm 4. Algorithm to compute average bandwidth of the two-
processor system with optimal solution. I‘l stores the first request

2
sequence with length 4.; I'” stores the second request sequence with

1

34

length 4 Note that 1 <4, <%. <m where m is total number of memory

2° 1
modules. For event E , we let I‘l =12,. .&1, and 1,2 could be any

SR

2

request sequence which is the permutation of Lz objects from set {1,2,...,

m}. Thus there are P™ cases in E . The length of the optimal
1’2 {,1&2

solution for each case is stored in the array N[1:m].

Step 1 [initialize] Set Ll =1, L, = 1, B=20
. . . 1 2
Step 2 [iteration begin] Set T =12 ... 2K r=12... {’2’ t=1,
m
tmax - PLZ' N[l:m] =0

Step 3 [inner loop begin] Apply Algorithm 3 to find the optimal

solution of {1“1,1‘2}. Set 4, = Lg(S*({Tllfz}))

0
Step 4 [inner loop end] Set N[{,O] = N[JLO] +1,t=t+ 1.
Ift<t . set I‘z = next (I‘Z) and then go to step 3.

Step 5 [compute average bandwidth] Set B=B + C - PL(J(,l)

m
'PL({,Z) (= %\I-B-]" - 1) where C =1 if L1=&2 and 2 otherwise.
=1 "max

Step 6 Sett, =4, +1. If 2

2 2 5&1, go to step 2.

2

Step 7 [iteration end] Set i, =1

1 1+1,1, =1. Iff,l_gm,

2
go to step 2, otherwise stop.

For each m, we notice from the above algorithm that the total number

of cases which must be considered to determine an optimal solution is

This figure grows very quickly. For example, for m = 4, it gives 124,
but for m = 16, it becomes 219192, which is more than four orders of
magnitude larger. Therefore we enumerate some rules which are helpful
in reducing the total number of cases which must be considered in the

application of the algorithm.

1 11 1 2 22 2
== = oo e ' >‘£
Let T rlrz...rL , rlrz r 4;1 2
1 2
2 1 . .
Rule 1 If r, = r., then the probability of B =4 is
—_— 1 1 {'lLZ 1
Pr(B =4.)=1
Lllpz 1
Rule 2 If 2_ .1 then Pr(B =4)=1ford, >4
Sde e B0 T Iy ’114.“1“‘“12
2
Ll-l
and Pr(B& L :L1)=-&:‘i—
172 for 4, =4
m-—;;l r 1 2
Pr(B =4 +1)=—
Ll&z 1 m-1
Rule 3 If 1= 1,< Ly<m, then
&1
PF(B{l&Z = 4"1.) “m
rn-&l
Pr(BL L =4L1+1)= -

172

35

36

Rule 4 If 2 =L2_<_ &1_<_ m, then

L, -1
r Pr(B =4.)=
g, 1 m-1
(m-&l)(&1+1)
{ Pr(BJLlLZ =4 DT T
(m—)Z,l)(m-Ll—l)
k Pr(B, , =4, +2) =~
1%2
Rule 5 If Ll =m, then
Pr(B =m)=1.
ity

The proofs of these rules are straightforward, so they are omitted.

=3, 4, etc. or rz == rl rl, etc., can be established but

Rules for 4 1 30 Ty

2
are more complicated and offer less gain.

Table 1 gives some representative computational results from
Theorems 3, 4, 5 and Algorithm 4. Optimal solutions are not presented
form = 16, 32, 64 because they take too much computer time in order to
compute them. Table 2 shows average bandwidths obtained by simulations.

We use the same random number generator with different seeds for
each processor. At every memory cycle, the request sequences for two
processors are determined and the corresponding optimal solution is
computed. The average bandwidth is obtained by averaging the lengths
of all optimal solutions over the entire experiment period. It is found

that 1000 memory cycles produce stable results. To be comparable,

same random number generator with the same seed for some processor is

37

used at different value of m, total number of memory modules. The
results in Tables 1 and 2 agree very well,

It is clear from Table 2 that the average bandwidth of two-processor
system is better than that of single processor system. Thus increasing
the processor number will improve average bandwidth of multi~memory
system. Also, as it should be, the result: of lookahead =1
is better than that of lookahead = 0; the result of optimal
solution is best. It is significant however, that their differences are
small., Therefore we may use lookahead = 0 in two~processor system to

get the reward of simplified hardware for the selector in Figure 1.

Table 1 Theoretic Results of Average Bandwidth
p=2

rh p=1 lbokahead =0 lookahead = 1 Optimal
2 1.5 1.875 1.875 1.875
4 2.219 3.068 3.115 3.125
6 2.775 3.981 4,046 4.075
8 3.245 4,751 4.827 4,872
16 4,704 7.134 7.230
32 6.774 10.510 10.619

64 9.706 15.287 15.406

Table 2 Simulated Results of Average Bandwidth
p=2

m p=1 lookahead = 0 lookahead = 1 Optimal
2 1.505 1,872 1.872 1.872
4 2.225 3.105 3.154 3.162
6 2.785 4,007 4,076 4.106
8 3.280 4,767 4.868 4,901
16 4,701 7.184 7.270 7.370
32 6.736 10.473 10.596 10.812
64 9.450 15.137 15.274 15.547

38

6. THE TWO-PROCESSOR SOLUTIONS UNDER RESTRICTION

Throughout the above discussion, we implicitly assume that each
prbcessor can handle up to m words per memory cycle, However, it is
not always true since this upperbound is decided not only by m, but also
by n, the number of processor cycles per memory cycle. In other words,

n is computed by

=3 ‘SH

where Tm is memory cycle time

and Tp is processor cycle time.

For example, Tm in CDC 7600 is 270 ns while its Tp is 27 ns, thenn =
270/27 = 10. But there can be as many as 32 memory modules in this
computer system. Therefore the results in above sections are true only
if m< n. For the case m>n, the feasible solution must be restricted in
such a manner that the length of each element in solutidn set should not
be greater than n. We call it the feasible solution under restriction and
use notation Sr(l\) to represent it. For general multiprocessor system,
the result is

r el 2 P
S (A)—{I‘i P Ty e T }

1 2 P

where F]i(is the request subsequence of Ik and
k
, &g(I‘f)s_nforlsksp
k

39

40

" r
The optimal solution under restriction S, (A) is the feasible solution which
has the greatest length under restriction.
Next we apply the same restriction to the definition of request

sequence set. The request sequence set under restriction is

IS I U L
where I‘kr = I‘k if Lg(I‘k) <n
= T‘i if Lg(]f‘k) >n
for l1<k<op.

If the optimal solution of the request sequence set under restriction
S*(Ar) is as good as the optimal solution of A under restriction Si([\) then
it shows the simplest way to handle restricted case. Fortunately this
circumstance does exist.

Theorem 6 4g(S, (A)) = £g(S., (1))
Proof: Assume £g(S, (A)) # 1g(S, (1))

then there are two cases to be considered.
Gase 1: £g(S, (A7) > 29(S, (1))

This says that there is another feasible solution under restriction
S*(Ar) whose length is greater than the length of Si(/\), the feasible
solution with greatest length by definition. This gives a contradiction.

Case 2: 4g(S, (A7) < 1a(SL(A))
By definition of S:(A), it must be a request subsequence set of

r

A°. Then SI;(A) should be a feasible solution of I\'r. But S*(Ar) is an

41

optimal solution of Ar, its length should not be less than the length of
any feasible solution. So a contradiction exists, too.
By the results of Case 1 and Case 2, we conclude that S*(/\r) is as

good as S, (A).
Q.E.D

Note that the above theorem holds for general multiprocessor system
(p>2). It enables us to find an optimal solution under restriction. We
need only first to construct /\r from the request queues of all processors,
then find its optimal solution. An approximate solution under restriction
may be obtained in a similar way.

Now we want to compute the average bandwidths under restriction
for two~processor system. It is necessary to modify the results in
Section 5.

Theorem 4r. The average bandwidth under restriction in two-

processor system with lookahead = 0 is

n " L
§1 , 5_3_1 C P ()P (&2)(&3& Pye):2))
4=t 4,7 r r 1
where C=1if 4. =4 and 2 otherwise.

1 72

L =min(t, +4,,m)

1 2!

PL (1) = PL(L) for 4 <n
r
m
= z PL(U) for 4=n
L=n"

42

PO(-) is defined in Theorem 4.
Theorem 5r. The average bandwidth under restriction in two-

processor system with lookahead =1 is

n 1 L
T T (C P, ()P (4,) T (P (2)-4+ 4 (2))
_ _ L "17L 72 _ 0 1
Ll-l «Lz-—l r r {,—Ll
where C=1Iif &1=&2 and 2 otherwise,

L= mm(&1 + &2, m)

PL (+) is defined in Theorem 4r.
.)

PO(-) is defined in Theorem 4.
Al(-) is defined in Theorem 5.

Algorithm 4r. Algorithm to compute average bandwidth under
restriction of two-processor system with optimal solution. The notations
used are the same as that in Algorithm 4.

Step 1 [initialize] Set 4, =1, 4_ =1, B= 0. Readn.

1 2
, . 1 2
Step 2 [iteration begin] Set I =12,. .Ll, " = 12...4’,2, t=1
m
tmax —PLZ' N[l.m] - 0

Step 3 [inner loop begin] Construct Ar. Apply Algorithm 3 to

find the optimal solution of Ar . Sett, = Lg(S*(Ar').

0

Step 4 [inner loop end] Set N[LO] = N[LO] +1,t=t+1, If

Step 5

Step 6

Step 7

43

t< tmax’ set I‘2 = next (I‘z) and then go to step 3.

[compute average bandwidth] Set B=B + C - PL()Ll)
o NI
*P_(4.)-(% « %) where C =1 if 4. =4, and 2
LWt &g 17"
4=1 "max

otherwise.

Set Lz =«Lz +1, I:H,zs_&l, go to step 2.

[iteration end] Set 4, =4.+1,4_ =1, If4 <m,

1 1 2 1

go to step 2, otherwise stop.

7. SOLUTIONS IN MULTIPROCESSOR SYSTEM

In multiprocessor systems with p > 2, there are more than two

request sequences in request sequence set. Thus

p={rt, T2, ... TR

where I‘k, 1 < k< p, is the request sequence of processor k. We first
try to obtain algorithms which can give its optimal solution S, (7).
Let us consider exhaustive search. Thus we first construct all

request subsequence sets

A eeey ={r§,...r§’},o_<_il_<_)cl,...,051 <1
Ty 1 o P~ "D

Then the optimal solution is obtained by selecting the request subsequence
set which has greatest length and in which exists no conflict, If there
is a tie, any request sequence set arbitrarily chosen will be all right.

p
There are a total of = (£ +1) request subsequence sets needed to

k=1 X

be considered. We attempt now to generalize the algorithms determined
for the two-processor system to obtain an optimal solution for three~
processor system, and then from three to four, and so on.

First of all, let us consider the case p=3. Without loss of

generality, assume that £ =min{&l,4§2,&3}. Using I‘3 as reference, it

3
can be decomposed into L3+l mutually exclusive events:
E.: No request in 1‘3 is included in the solution

0

44

45

E1' '] is included in the solution.

: .o r3 is included in the solution.
3 t3

Tor any event Ei , 0 < 13 < 1(,3, we can construct a new request sequence
3

set

lci <2

<t =iy =4,

1 2
| — .
A —{ri T 1, I<i, <

1 72

in such a way that

(1) I‘.l contains no request in 1“3 , and rl e T.3 if
i i i, +1 i
1 3 1 3
11 < &1 .
2) . 3 2 3 .
(2) T, contains norequestin T, , andr, eI, if
i, Cig 1z+l i

Now Algorithm 3 may be applied to compute the optimal solution of A,
which in turn can give the solution for this event. Then the optimal
solution of A will be that solution for one of the events which gives the
greatest length. Although the optimal solution can still be obtained if
T or 1‘2 is chosen as reference, the search space would increase which

is not desirable.

The preceding approach can be summarized into the following

algorithm,
Algorithm 5. Find the optimal solution of A = {I‘l,I‘z,I‘s}
where I‘l=r1...r1 ' I‘2=r2.'..r2 , and I‘3=r3...r3 .
1)Ll 1 {,2 1 L3

Step 1 [initialize] Check to see whether 1= min {Ll ,LZ,JL3 }.

If not, just rename them., Set 13 =0,

Step 2 [iteration begin] Construct A' as defined above and find

S4(A') using Algorithm 3. Let S (A') = {I‘il ,Fiz }.
1 2
. 1 2 3
Step 3 [solution for E,] Set S, (A) = {I, ,T, ,T, }.
i3 i3 Iy

Step 4 [iteration end] Set i, =i_+l1. Ifi, <4

371, 3 . go to step 2.

3
Step 5 [answer] Set S, (A) = one with greatest length among

8; (M), 0<i
3

3=t

30
Example: Given A= {123, 27, 18}
There are three mutual exclusive events.

3
E ro—ff

O:
A = {123, 27}
S,(A) = {123, £}

8o(0) = {123, &, 4]

47

A= (g, 27}
S, (A) = {#, 27}
s, (A) = {4, 27, 1}

3
E,: I‘2—18

A ={F, 27}
s, (M) = {#, 27}

S,(h) = (g, 27, 18}

Therefore the optimal solution of A is SZ(A)’ i.e.
S.(n) = {#, 27, 18}
By applying the preceding algorithm, the search space has been
greatly reduced. For given m, the average number of events to be consi~-
dered in the above algorithm is

m
E X PL(&I)PL(LZ)P (4)(min({l,f,z,&B)H)

= L3
1 =l 4571

while that in exhaustive search is
m m
E_ X PL(Ll)PL(&Z)PL(La)(&lﬂ)(L2+l)(&3+1)

1 9 1 &3=1

For comparison, the number of events considered are shown in Table 3

for several values of m.

48

Table 3 Comparison of Algorithm 5 with
Exhaustive Search for p=3

m 2 4 6 8 16 42 64

Algorithm 5 2.13 2.48 2,77 3.03 3.85 5.03 6.71

Exhaustive search 15.63 33.35 53.78 76,50 185.61 469.83 1227.03

Next we want to apply Algorithm 5 to find the optimal solution for

p=4. In the same manner, we assume &4 = min{&l,Lz,L3,L4}. Then 1‘4

is used as reference and we get &4+1 mutual exhaustive events:

EO: No request in I‘4 is included in the solution.
Elz rti is included in the solution.
4 4 , . ,
E, : Fyee.l is included in the solution.
L4 1 1,4

For any event Ei , 0< 14 < L4, we can construct a new request sequence
4
set
3
/Ty 1, 1<i, <4

1 Y2 '3 1" ="2=

1

in such a way that

(1) 1“.21 contains no request in 1‘4 , and r.l € 1‘4 ifi, <4..
J.1 14 11+1 14 1 1

49

<4i,.

2 , , 4 2 4 ._ .
(2) I‘i contains no request in I‘i , and L I‘i if i 2

2 4 2 4

(3) I‘? contains no request in I‘4 , and r3 ¢ 1‘4 ifi_ <4,
13 14 13+1 i4 3 3

Now Algorithm 5 can be applied to compute the optimal solution of A’,
which in turn can give the solution for this event. Then the optimal
solution of A will be the solution for that one of the events which gives
the greatest length. The preceding approach can be summarized into an
algorithm which is quite similar to Algorithm 5.

Although the same approach can be used to obtain the optimal
solution for p=5,6, ..., the search effort would soon grow out of
control. We have not been successful at obtaining optimal solutions
for larger values of p. We can however get an algorithm to compute
approximate solutions. It is quite practical and easy to implement.

The concept is to use a hierarchical method. All request sequences
are first grouped two by two, say {1‘1 ,I‘z}, {I‘S,I‘4}, ... The last set
may contain only one element if p is odd. Then the optimal (or approxi-
mate) solution of each set can be found by sdme algorithm in Section 3.
Call the results the level 1 request sequences and represent them by
I‘l' 1, 1“1'2, ... Now the same process can be applied again and again
until there is only one request sequence remaining in the next high level.

2 p}

This gives the approximate solution of A = {1“l T ,..., T }. Forgiven

p, the solution will be found exactly at level Flogzp'l . To be consistent,

the original request sequences are also denoted by I‘O’ 1 , I‘O' 2 foee ,I‘O' p’

50

that is, they are at level 0.

The whole process is best viewed as a tree. For example, the

solution tree for p=6 is shown in Figure 4. Note that 1‘3' 1 is the

obtained solution.

The following algorithm summarizes the preceding approach.

1 2

Algorithm 6. Find an approximation solution of A = {r,r°,... ,I‘p}

by the hierarchical method. 4 denotes current level, &max is the level
where the solution is located, N is the number of request sequences in
current level.

Step 1 [initialize] Set 4 =0, L ax = rlogzp'l , N=P.

Step 2 [set up request sequences for next level] For k=1,2,...,

LN/2], set I‘{"Jrl kK the optimal (or approximate) solution

£ -
of 72! and 1% ¥ by applying some algorithm in

Section 4. If N is odd, set IT1 N/2T N
Step 3 ' [termination test] Setdt=4+1. Ifd <t ., set N = IN/27
and go to step 2.
, R A |
Step 4 [answer] The solution is I .

Example: Given A = {12345, 3784, 67, 7824, 452}

We use Algorithm 3 in step 2 of the above algorithm.

At level 1: : 1"1'l = S*({I‘O'I,I‘O'Z})
= 5, ({12345, 3784}) = 123784
1,2 0,3 _0,
r?og (0. 0y

level O

level 1

level 2

level 3

I,0,1 1_‘0,2 I,0,3 I‘O'4 1,‘0,5 TO'G
I‘l'l FI,Z T1'3
\21/ p

\/
1‘3'1 (solution)

Figure 4. Solution Tree for p = 6

51

At level 2:

At level 3:

s, ({67, 7824}) = 78246

I

rted 05 24
2,1 1,1 1,2
™' T=8 (T, Ty
= 5,({123784, 78246}) = 123784
1"2.'2 = 1"1'3 = 452
3,1 ,
T = 1237845 (solution)

52

8. AVERAGE BANDWIDTH IN MULTIPROCESSOR SYSTEM

In order to evaluate how much performance improvement can be
obtained for multi-processor multi-memory systems, it is necessary
to derive some algorithms to compute average bandwidth., We first
consider optimal case for p = 3.

The algorithm to be used is similar to Algorithm 4. Now that there
are three request sequences, the total number of events we need to

enumerate is m3, thus from E to E . This number can be reduced
111 mmm

by noticing that Eijk’ Eikj Ejik’ Ejki’ Ekij’ Ekji are six events which

. are three events

give the same average bandwidth and Eii ' Eiji' Ejil

j

which give the same average bandwidth for i # j # k. Therefore the

average bandwidth of the optimal system for given m is computed by

£ kA
m 1 2
B= T z = (C-PL(Ll)PL(LZ)PL(L3)B

{,1=l L2=l L3=l

)
14,2,

where C

6ﬁLl¢£2#L3

!

BH&1¥{2=&3m%q=&2%L3

lif&l=&2=&3

The modified Algorithm 4 is given as follows.
Algorithm 4. Algorithm to compute average bandwidth for p = 3

with optimal solution. 1“1 stores the first request sequence with length

53

54

L. 1‘2 stores the second request sequence with length £ _; I‘3 stores the

1 2

third request sequence with length &3 . Note that m > Ll 24, 2 &3 >1

and m is total number of memory modules. For event E«L oLt we let

17273

I‘l =12,. .&1 , 1,2 could be any request sequence which is the permutation

of Lz objects from set {1,2,...,m}, and I‘3 could be any request sequence

which is the permutation of 4, objects from set {1,2,...,m}. Thus there

3
m _m ,
are P& PL cases in E& L1 stored in array N[1l:m].
2 3 17273
Step 1 [initialize] Set Ll =1, Lz =1, LB =1, B=0.
. , 1 2 3
Step 2 [iteration begin] Set I = lZ...aLl, " = lZ...Lz, ™ =
(- = m m ' -
12.00&3, t_l, t "‘1, tmax P& P& ,tmax PIL 7
2 3 3
N[l:m] =0

Step 3 [inner loop begin] Apply Algorithm 5 to find the optimal

2 2

solution of {1“1,1‘ ,1‘3})),

1
,To). set 2,=2a(8,({r",T

N[&O]=N[/¢D]+l, t=t+1, t'=t"+1.
3 v 3 3
Step 4 [change T fast] Ift' <t max’ then set T° = next(I")

and go to step 3.
Step 5 [inner loop end] Ift < thax: then set I‘z = next(I‘z),

1“3 = 12...L3, t' =1, and go to step 3.

Step 6 [compute average bandwidth] Set B=B + C-PL(Ll) .

Step 7

Step 8

Step 9

55

N[4]

t
max

m ,
PL(&Z)PL(L3) (= . 1) where C=6 if LI#Z#L3,

L=1

=1if4 =L =0,.

= 3 if {,194&2=/L 174574,

or 4

3 1=&2?‘&3,

=4 +1. If4

Set &3 3 3

5&2, go to step 2.

=4 +l,£3=l. If&zg&l, go to step 2.

Set 4;2 9

=4

1 1 =1, 4

=1,

+1, 42 3

[iteration end] Set 4 9

If Ll < m, go to step 2, otherwise stop.

Since there are a total of

m m
P
Ly g

cases which must be examined in order to find an optimal solution by

the preceding algorithm, the computational effort grows more rapidly than

for the two-processor system,

We can only introduce some rules, as

previously, to cut the number of events enumerations. For example.

Rule 1.

Let 1“l = rir;...ri ' I‘z =rfr§...ri ' 1‘3 =r?r§...fi '
1 2 3
and leizzft:s
Ifmz&lsz =&3 =1, then
1
Pr(B&l&2L3=Ll)=("r‘n*l‘)2
Pr (B =1, +1) = M4

I ! =7

56

Pr(B =/,
Yty 1 m

Rule 2. If{1=m, then Pr(BLL L =m)=1
17273

In the same manner, we can further modify Algorithm 4 to compute
the average bandwidth for p = 4. It is necessary to add one more level

of iteration for /(,4 and change the formula in Step 6 to be

m
_) N[t]
B=B+C PL(J;l)PL(LZ)PL(L3)PL(L4) (.2 : . 1)
4=1 "max

where C 241f&1;££,2;£&3#&4

12 1f{,1=L2#&3#&40r&19‘1&2=&3#&4or

LI#LZ#JL3=&4

i

61fL1=L2;4L =4

41f&1¢/¢2=4, =4, ord, =4 =&3;4L4

=11le=L2=L3=L4

The process is quite similar and therefore not presented. Note that the
whole procedure can be extended to p = 5, 6, etc.

Table 4 summarizes typical computational results for small p and m.
Two interesting points are worthy of mention. First, for given p, the
larger the number of memory modules, the larger the average bandwidth.

This coincides with our intuition since theoretically the average bandwidth

57

should be maximal when m is equal to the total number of words in a

system, although the hardware cost would then be catastrophic also.

Table 4 Average Bandwidth for System with Optimal Solution

p 2 4 6
1 1.5 2.219 2.775
2 - 1.875 3.125 4.075
3 1.969 3.576 4.828
4 1.992 3.802

Second, for given m, the larger the number of processors, the
larger the average bandwidth. In addition, it becomes saturated when p
is large. This also coincides with our intuition since the limit value for
average bandwidth is m.

For large values of p and m it takes too much computation time to
determine the theoretic average bandwidth. We turn now to another
important topic--finding the average bandwidth for Algorithm 6.

As shown before, there are ﬂogzpﬂ levels in the solution tree of
Algorithm 6. At level 0, the length distribution function of request

sequences is given in Theorem 3, i.e.,

-

P

m
O
PL(L) =

- 4

e

m

58

Let us first consider the system using the lookahead = 0 algorithm
to find all approximate solutions at all levels. At level 1, for a given
node, its ancestors in level 0 may be one or two. When it is one, the
probability to find a request sequence with length 4, PL, 1 (), is equal
to PL(L) . When it is two, that probability, PL,Z(L)' can be found by
the following algorithm.

Algorithm 7. Algorithm to find PL,Z @), 1 <4 <m, which uses
lookahead = 0 algorithm. PL(-) is defined in Theorem 3; PO(-) is defined
in Theorem 4.

Step 1 [initialize] Set 4

1= 1,4, =1, PL'Z[lzm] =0

2
Step 2 [accumulate] For 4 = 1, to min(L1 + {'2' m) do

PL'Z[L] = PL'Z[L] + C-PL(LI)PL(LZ)PO(L)

where C =1 if Ll = 4’/2, and 2 otherwise.

=4, + 1. Ifd

Step 3 [inner loop end] Set &2 2 9

g_l,l, go to step 2.

Step 4 [outer loop end] Set &1 = Ll +1, Lz =1, If 4, <m,

go to step 2, otherwise stop.
Then consider a given node in level 2. All its ancestors in level 0
may be three or four. The same algorithm can be used to give PL 3(ft) and

PL 4(JL) except the formula in step 2 should be changed to

PL,3[£] = PLIBEL] + C-PL’Z[LI]‘P ELZ]PO(L)

L,1

and [4] =P ,[{1+C-P [t P ,IL,1P4(t)

PL.4 L4

59

Generally there are ZN“1 possible cases for given node in level N,
The corresponding PL i[{’] , ZN“1 +1l<i< ZN can be found in Algorithm 7
except the formula in step 2 is changed to be

= -+ . . -
PLli[L] PL,i[f,] C PLIZN_I[LIJ PLIi_ZN,;[LZ]pO(L)

Applying the above results, the average bandwidth for given P is
m
Z P [£]+1
=1 LP

Table 5 summarizes typical computational results for small p and m.

The agreement with the exact results in Table 4 is excellent.

Table 5 Average Bandwidth for System with Lookahead = 0

p 2 4 6 8 16 32 64

1 1.5 2.219 2.775 3.245 4.704 6.774 9.706

2 1.875 3.068 3.981 4.751 7.134 10.510 15.287

3 1.969 3.435 4.565 5.521 8,489 12.700 18.666

4 1.992 3.611 4.858 5,914 9,197 13.861 20.472

Next, consider the system using Algorithm 3. The procedure to find

average bandwidth for p=3 is complete the same as Algorithm 4' except

the first part in Step 3 should be changed into "Apply Algorithm 6 to find

2

the approximate solution of {I‘l T ,1‘3} , and set its length to be &0" .

A similar approach can be applied to p=4, 5, etc.

9. PHYSICAL IMPLEMENTATION AND DESIGN CRITERION

Algorithms which claim practicality should consider the implemen-
tation problem. Let us focus on Algorithm 6.

The basic problem is to design the selector, which is shown in
Figure 2. A modular approach is adopted because of its many advantages.
Let the selector module, or SM for short, be a functional unit which can
find the optimal (or approximate) solution of the request sequence set
with two elements according to some one of the algorithms given in
Section 4. Then completing the detailed implementation of the selector
part of Figure 2 gives Figure 5. Note that SCN stands for Scanner which
is used to determine the request sequence I‘o 2 from the request queue

Q]. BF, j stands for buffer which stores the request I“l'J .

' |
Since the final solution T" max

consists of one request subsequence
from each original request sequence I‘Q’j 1 <i<p, ahd each original
request sequance is determined from its corresponding request queue, it

is sufficient to attach to each request queue a pointer to this answer.

This means that no buffer is necessary. The solutions obtained at each
level are indicated by the contents of related pointers- The process of
finding solutions results in the change of pointer contents. This approach

saves not only the hardware cost of buffers but also the time to load each

request sequence r ') into BF, i

60

61

*9 wyjpiobie jo suorjeoridwy [eoibo °g ebig
Qa
O.mm &1 NOS
94 < WS .
;
Al L]
e ag L] ws [
< .
: y
plan] [
1 ¥l ws € L 7039 | & wos
< o
xew y ¢ Tag [€ WS
¥ 1epe J ¢
" ¢ chm <— NOS
p - _
A!'I.m Nmm & HS
zo
¢ Toas 49 | €&— NOS
[
||H ﬂ.mm ¢ WS
T°0
JOLOATES - 1 ToA®q a9} €«——— NIS

0 Tone7

()

62

From the results of Section 8, the average bandwidth will increase
when the number of processors increases. The number of levels in the
selectors will also increase as the number of processors increases. The
more the total levels, the more the delay from the input request queues to
the output solution. Therefore there should exist some limit beyond which
no gain could be obtained by increasing the number of processors. It is
desirable to derive such upper bounds to serve as a design criterion.

Let the delay in scanner be T, and the delay in selector module be

k
'I'S. The total delay in this system is

+
'I‘k NTs

where N is the number of levels which is equal to rlogzpﬂ . The memory

cycles required to supply this delay is equal to

+
Tk NTS

T
m

where Tm is the memory cycle time.
Since delay should not exceed one memory cycle, then the design

criterion would be

+
Tk NTS -
T —
m
or N < 'l‘m__Tk
- T
s
or (Tm-Tk)
T

For example, the memory cycle time of a large computer system
might be 600 ns. If the delays in scanner and selector modules could be
designed not to exceed 100 ns, then total number of processors could be
as great as 25 or 32. (Remark: According to the result from our primary
stage of logic design, the delay in selector modules could be made as

small as 67.5 ns for m=16.)

63

10. CONCLUSION

The above discussions demonstrate a practical means to improve
the memory system performance by properly scheduling memory requests in
multi-processor multi-memory system. The entire approach concentrates
in th'e‘optimization problem after memory requests have been queued.
Therefore these schemes can be applied to any kind of configuration in
multi-memory system, including multiple independent memory system and
interleaved memory system.

It is well known that memory requests are not independent. It
should be the case, however, that an interleaved memory with a sizeable
number of modules would alow reasonably random patterns to each module.
Even if the independence criteria fails severely, the techniques presented
herein determine locally optimal request sequence sets for each memory
cycle. Substantial performance improvement should be expected even if
global optimality is not attained. |

There are still many interesting questions to be explored. Examples
are the effect of patterned reference requests on actual performance and

the algorithm for optimal request sequences for large m and p.

64

+ ¥

[1]

[2]

[3]

[4]

[s]

(6]

(7]

(8l

BIBLIO®%RAPHY

C.J. Conti, "Concepts for buffer storage", IEEE Computer Group
News, vol. 2, no. 8, pp. 9-13, March 1969.

R. M. Meade, "On memory system design", in 1970 Fall Joint
Computer Conf., AFIPS Conf. Proc., vol. 37, pp. 33-43.

C. V. Ramamoorthy and K. M. Chandy, "Optimization of memory
hierarchies in multiprogrammed systems," J. ACM, vol. 17, no. 3,
pp. 426-445, July 1970,

P. J. Denning, "The working set model for program behavior, "
Comm. ACM, vol. 11, no. 5, pp. 323-333, May 1968.

J. M. Kurtzberg, "On the memory conflict problem in multiprocessor
systems", IEEE Trans. Comp., vol. C-23, no. 3, pp. 286-293,
March 1874,

G.J. Burnett and E. G. Coffman, Jr., "A study of interleaved
memory systems", in 1970 Spring Joint Comp. Conf., AFIPS Conf.
Proc., vol. 36, pp. 467-474,

G. J. Burnett and E. G. Coffman, Jr., "Analysis of interleaved
memory systems using blockage buffers", Comm. ACM, vol. 18,
no. 2, pp. 91-95, Feb., 1975,

H. Hellerman, Digital Computer System Principles, New York:
McGraw-Hill, 1973, 2nd Ed., pp. 244-245.

65

