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I. PLACEMENT PRDB}JMS

Given a set of objects R, ,R ,...,R.n with associated positive numbers Py

172
n
p2,...,pn, z Pi = 1, the problem is to place these objects at the points
i=1

0,+1,+2,... on the real line in such a way that

1i,] )

is minimized, where d(i,j) is the Euclidean distance between objects i
and 3.

This corresponds to the problem of positioning records in a storage
medium to minimize the expected access time when the medium can be modelled
as linear. (pi corresponds to the relative access frequency of record
Ri') For example, in the case of a disk when minimization of seek time is
of interest, it is useful to view the cylinders as forming a linear
store [7,12,22].

This problem was solved in a classical mathematical work by Hardy-
Littlewood-Pélya [8]. The solution is simply to palce the object with the
largest p and then reﬁetitively to place the object with the next iargest
p alternating between the position immediately to the left (right) of
those already placed and the position immediately to the right (left) [2,
7,8]. This will be referred to as the alternating algorithm or placement.

An immediate generalization of this problem is to consider a plane
with points (i,j) where 1i,j = 0,+1,+2,..., and d(i,j) corresponds to
different distance functions defined on the plane [10]. For example, let

£ = (xl,yl) n = (x2,y2) be two points in the plane, define



-

m (£ = (xg=xy|® + vy, IO Y%, 1ca < (2)
By Qa=® we Mean
m_(g,n) = max (lxl--x2 ' lyl—yzl). ‘ (3)

Then we can define d(i,3j) = ma(E,n), if objects i,j are located at
points &,n. o is a parameter depending on the application. For example,
a=» corresponds to the case of a recent archive storage where accessing
is done by an X-Y mechanism [23].

We consider the case o=2 first. This corresponds to the Euclidean
distance function.

We note that the optimal solution depends on the values of p rather
than on their rankings alone as in the l-dimensional case. The following

example illustrates this fact.

Py
Py |Pq

Py P2
Py P2

Pq

(pl,pz,p3,p4) = (0.33,0.32,0.31,0.04) (P1:P2:P3,p4) = (0.70,0.15,0.10,0.05)

Figure 1

These are optimal placements for the respective p-vectors.



We now propase a simple ranking-dependent heuristic which is
asymptotically optimal (as n tends to infinity). This heuristic is a
generalization of the alternating placement in the l-dimensional case,
namely, placing the object with largest p and then filling "shells" of
points which are equidistant from the center with a set of cbjects whose
p's are the next largest. This heuristic will be referred to as "she}l"
algorithm.

To prove this is asymptotically optimal, we assume plzpzzj...,zpn

and define

= - i<
Ay =Py 7 Pyyyr g
and
An = Pnl
so that
n n n
P, = LA and I xA = I p, = 1.
i i
r=1 r=1 i=1
D can be rewritten as
n n n n
D= 1L I A z I A a(i,3j)
R o . S
i=1 r=i j=1 s=j
n n

]
™
™
>
s
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where



X s
E = ® I dli,j)-.
TS 4=1 §=1

Thus, the effect of the placement algorithm is localized to a term, Ers’
which is independent of p.

Let D(opt), Ers(opt), D(shell), Ers(shell) be the values pro-
duced by the optimal and the "shell" algorithms respectively. If one can

show that
E_.(shell) < E  (opt) + crs, (4)

then

n n
X I A A E_ (shell)
r s rs
r=1 s=1

D(shell)

n n n n
z I A AS Ers(opt) +c I I rs Ar AS
“r=1 s=1 r=1 s=1

IA

= D(opt) + c.

To prove (4), we consider the continuous analogue of Ers for which it is
relatively easy to find the optimal solution. Recall that if we look at

the first r and s (r < s) points in the configuration resulting from

r S

the "shell" algorithm, then Ers(shell) = I r d(i,j). If we now replace
i=1 j=1

each point by a unit square with center at this point) then we have two

regions wo,ml with areas r,s, respectively, and wocwl. Let



ES®% (shell) = ff awm.
r,s
xew,"yeu,

t . .
gc" (opt) be defined in the same way, and let

Let
r,s

Eicsmt = min ff d(x,y) . (5
w0y xew ] “yewy
area w =r
area w,=s

If one can show that

E__(shell) < SO (shell) + B s, (6)

Econt(shell) f_EiZnt + vy rs, (7)

cont cont
E. ZE (opt) SE (opt) + 6 rs, (8)

(4) will follow immediately. (6), (8) are easy. To show (7), one has to

solve the problem (5). Fortunately, by geometric arguments, one can show

that the optimal solution is obtained when mo,wl are concentric disks.

Based on this, (7) can be proved [10].

However, when o#2, the argument does not go through.

In fact, we shall demonstrate the nonexistence of

asymptotically optimal ranking-dependent heuristics in general except in

the uniform case when P, ='% for all 1i. In this case, An = %- and



Ai = 0, 1<i<n. We hawe enly te consider Enn and the continuous optimiza-

tion problem

min  f mtem. (9)
w E,new
area wn

A necessary condition for an otpimal solution to (9) can be stated as fol-

lows: Let ® be an optimal region and a be a point on the boundary of

w. Then .r' ma(a,n) is independent of a [10]. This condition gives a
new ,

differentio-integral equation of the boundary curve of the optimal region.
For the cases of interest: o=1 and o=, let v=f(u) be the equation
of the boudnary curve of the optimal region in the first quadrant, then

the necessary condition reduces to the following differentio-integral

equations:

u u
£'(u) [% —f f(x)dx + uf(u)l] +f f(x)dx = 0, for o=1l. (10)
0 0

2 2 u
n + 2(E5(w)-u®)1 £'(u) + af £(x)dx - 4uf(u) = 0, for oa==.  (11)
. 0

‘ These equations are solved numerically in [10]. They turn out to be dif-
ferent from the unit circles in the respective distance functions, as
intuition might have suggested. The whole boundary may then be obtained

by reflecting the curve in the first quadrant with respect to the =x- and

y~ axes.



For the case @f arbixrary p, let us look at the following special

family of p-vecte¥e:

1-z .
Pl=zl pP. = "'l' 1=2,-.-'n.

Consider the continuous optimization problem

min JJ s@em n gm (12)
wocw2 E,newz
area wo=l

area w,=n
2

where

2, XEW 4

px) =

2TE ew —w
n-1 ' .

Then the difference between the optimal values of (1) and (12) is bounded

by a constant. We therefore have to consider (12) only. To compute

I= j.j- p(&)p(n) ma(g,n), we introduce the coordinate transformation
E/new,

1
E = (X,Y) lag E' = (X'JY') = (_ X, y)o N
Vn

n

33 |-

Then the area will be shrunk by a factor of %- and distance by a factor

. Define

31 |-



q€y =np® ana 1, = f [ a@)amn m e,

g' ,n'ewé

Then

I=vhiI.. (13)

Now wé has area %- and wé has area 1. One can show that

I, =2 z(1-2)a + (1-2)%8 + oD,
n

where A is the average distance between points in wé and wé-wé and

B is that between points in wé—wé. Thus,

I =7n [2 2(1-2)A + (1-2) %B] + O(1).

For a=1, if =z is very close to 1, the optimal solution to (12) is a
region which minimizes A. Hence, the optimal W is a unit disk in this

distance function. On the other hand, if 2z is , we have the uniform

1

n
case again, where the optimal solution to (12) is a region which minimizes
B and is not a unit disk. For these two cases, I differs by a quantity
proportional to /n. If there is a ranking-dependent heuristic, for our
family of p-vectors, the optimal region remains the same for all values
of z. Clearly, it cannot be asymptotically optimal.

Similar argument for o =«, In the case of 0=2, the unit disk

minimizes A, B simultaneously.



Open Problems

(1) Instead of an infinite plane, if we have an mxm square and m2
objects, how to place them so that (1) is minimized? Some‘experiments with
variations of the "shell" algorithm were performed [23]. They seemed to be
very good. But no analytic results were obtained.

{2) 1Instead of independent access probabilities Pl""'pn' if we
assume that they forﬁ a first order Markov chain, what will be the optimal
vplacement? Let Pij denote the conditional probability to access record
j if record i has just been accessed and ql,...,qn the stat;onary
probability. Then the counterpart of (1) will be D = .2. q Pij a(i,j).

1,]
Intuitively, one may want to arrange the records alternately according to
the ranking of ql,...,qn. However, it can easily be shown that it is not

always optimal. Then what is the performance of such a heuristic?

II. PARTITION AND PLACEMENT PROBLEMS

Another generalization of the original l-dimensional placement prcblem

is the following partition problem [22]:

Given a set of objects Rl'Rz""'Rmk with associated positive numbers
mk .
pl'pz""'Pmk' z p, = 1, we want to first partition them into m group
i=1

of k objects each. Each group is associated with a number qj which is
the sum of the k numbers in the group. Then we want to place the groups

such that

m
— - S 1
D = .Z' q qj adi,s) )
1i,]
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is minimized. Clearly, only the partition problem needs consideration
since the placement problem has been solved in Section I.

This problem corresponds to the situation of allocating recoxds to a
disk, which consists of m c¢ylinders, each with capacity of k records.
The solution to the problem is simple: Assume 'Py2Py2 - e 2Py Then group

“the first k numsers in one group, the second k nunmbers in another group
and so on. We then obtain a g-vector 9 = (ql,...,qm) such that
qli...zgm. To show this is optimal, we need the concept of vector majori-

zation and a powerful theorem by Schur [11,15,17,20,22].

Definition. If v = (vl,...,vm) and u = (ul,...,um) are such that

k k
V2o 2V U, 2. .20 and .Z v, 3_.2 ., k=1,2,...,m1,
i=1 i=1
m m
£ v, = I u,, v is said to majorize u, in symbol, V » u.
i=1 * oi=1 b T
Definition. A real-valued function of m real variables

¢ = ¢(xl,...,xm) is said to be a Schur function if

(x.-x.) (29—- - gﬁ—ﬁ >0 for all i,3J. (14)
i7j X, ax. -
i J
Theorem. {(Schur) I1f ¢(xl,...,xm) is a Schur function and if v r u,
then ¢(vl,...,vm) Z_¢(ul,...,um).
Note that given plzpzi...zpmk, among all possible partitions into m
groups, the vector 95 obtained by our algorithm majorizes all other re-

sulting vectors. It remains to show that =D is a Schur function of
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ql,...,qm. To demonétrate the approach, we shall assume m = 5, and

q4,q2,ql,q3,q5 is the placement. Then
D = 2(qyq, + 9393 + 29,9, + 29,95 * 29,93 *
+ 39,9 + 3959, * 9395 t 49,49:) -
Let i=1, j =2, then

%2~ - . 2(q, + 29, +q, + 3g. -~ g, - 49, - 29, - 29.) >0,
qQ, Bql 1 3 4 5 2 3 4 5" =
since q; Z_qz and q, 3.q4. This can be shown to be true for all i,j.
(14) is thus satisfied and -D is a Schur function. Hence, the original
optimization problem reduces to the verification of a given function being
Schur.

This powerful technique can also be applied in other cases. We shall
next discuss the case of improving program behavior in a paging environment
by improving locality. Given mk records Rl'Rz""’Rmk with request

mk

probabilities DpP.,P,reesrP o+ I p. = 1, which are to reside in m pages,
1772 mk i=1 i

each with capacity k records, the problem is to allocate them such that

the subsequent processing of paging requests will be optimal. We shall use

two optimality criteria. Let the set of pages be enumerated by {1,2,...,m}.

Let {rt}, t = 0,+1,+2,... be the sequence of page requests, i.e., I is

the page referenced at time t and it takes value in the set {1,2,...,m}.
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The first criterion is defined as follows. Let N be a fixed posi-

tive integer, and let Kéy)

{

be the number of distinct values of the set

eesX ,rt}, i.e., the cardinality of the set. Then Kéé) is a

TeN+1'" £-1

random variable. Since its distribution is independent of t, we write

N . . .
K( ). Its expectation CK(N) will be used as the objective func-

it as
tion to be minimized.

The second criterion is defined as follows. Suppose the request at
time t is i, and r. is the preceding request for the same page 1i.

Then the number of distinct values of the set {rT+l""'rt-l}' denoted

£ If this set

K, 1is defined as the distance at time t, designated P
is empty, K is definea as zero. Pt is a random variable with a distri-
bution independent of t. It will be written as P, and its expectation
£P will be the second objective function to be minimized.

The first criterion corresponds to the notion of working set size;
the second corresponds to that of LRU distance. Both are indicators of the
number of distinct pages referenced locally, where "locally"”" in the latter
case is defined by the interval between successive references to the same
page, while in the former case the interval is fixed but has arbitrary
length. By minimizing £P and CK(N), we are minimizing the amount of
pages which must reside in main memory in order to continue program execu-
tion efficiently.

Suppose plZPZZ"'mek’ as before, if we group the first k records

in one page, then the second k records in another page and so on, with

resulting page request probabilities qlzgzz:..zgm, then it turns out both
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(N) (N

£X and £P are minimized. The next step is to show =-é&K and ~&p
are Schur functions which can easily be done [22].
As a footnote, it should be pointed out that not only -&K(N) is a

Schur function, but also the distribution is a Schur function. In fact,

(_1)3-1 m-i-1 s.,

1 -1 ] *

[
LI S R

where Si' i 1,2,...,m, are the following symmetric functions:

N N
= +-.o+
Sl xl xm
N N N -
52 = (xl+x2) + (x1+x3) +ooat (xm_l+xm)
N
sm = (xl+...+xm) ’

and —Fj is a Schur function [20].

A family of preservation theorems in mathematical statistics can be
proved in exactly the same fashion [13,14,16].

So far, the algorithms we proposed are either optimal or asymptotically
optimal for all input. Next, we shall discuss a dynamic placement problem
and propose a heuristic which has asymptotically optimal average value.

As discussed before, given a set of objects and their associated

numbers, the alternating placement will minimize (1). We now consider the
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problem that not all objects (and their numbers) are known before hand,

but rather they come in ohe by one and they have to be placed as soon as
they come in. The objective is still the minimization of (1). This pro-
blem is motivated by the space allocation problem for the minidisks of
users of VM/370 [12]. As each user log§ on, space for his minidisk must

be obtained on the on-line disks. For each user it is possible to estimate
his activity based on accounting information from past usage of the system.
But since it is in general not possible to know exactly who will log on

at a given time, relative frequency of access is not known prior to the
allocation of individual disks. We assume that a sequence of users

{ut}, 1l<t<n, arrive at the system at distinct points in time. Associated
with each user, g, is a frequency of use, ft' The ft's are assumed
to be independent, identically distributed random variables. We furthex
assume that ft is uniformly distributed on the interval (0,1]. Each user
is allocated a vacant space, i, in a linear store where locations have

been numbered as follows:

Figure 2

After complete allocation of all users, user u will have relative

n £.£.
frequency ft/ I ft and the expected access time is D = I _—l_lf a(i,j).
=1 ij (Zfi)

where fi now corresponds to the user at location i.
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We propose the following dynamic allocation algorithm: Partition the

interval (0,1] into n subintervals: (O, iﬂ,(%y %],...,(Eii, 1]. 1If

the frequency fl of the first user uy belongs to the j-th subinterval,

allocate location 3j to him. We now partition the interval (0,1] into

* . 1 1 2 n-2
}n 1) subintervals: (0, n—l]'(n—l' n—ll""'(n-l’ 1]. If f2 of the

second user belongs to the k-th subinterval, allocate the k-th smallest
labelled location among the remaining (n-1l) 1locations to this user, and

so on. Let Dh donote the expected access time by this algorithm and

Do that by the alternating placement if all frequencies are known before

hand. Of course, Do S-Dh' But surprisingly, the average values B;, Dh
over all possible samples {ft}, 1<t<n, from the distribution are
asymptotically the same (as n tends to infinity). Thus, for n large,

the dynamic allocation algorithm is nearly optimal. In fact, computation

shows that
e 7
Do =35 P + 0O(1)
and
—5—=-?—-n+alnn+o(l).
h 30

where a is a small constant.
For comparison, if we do not use any allocation algorithm at all, but
rather assign space to the users randomly, then the average value of the

expected access time will be

— n
Dr—- 3-!- o(l).
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Thus, the dynamic allecation algorithm indeed brings forth some improve-

ment.

Open Problems

(1) The last problem is a variation of the original l1l-dimensional
placement problem. We now consider another variation, namely, batch pro-
cessing. Instead of processing the request one at a time, suppose we do
it for a batch of b requests at a time. What then are the optimal place-
ment of the records (with known access frequencies) and access algorithm
to minimize the expected access time per request? Note that in the previous
case when request is processed one at a time, no consideration of access
algorithm is needed. In the present case, however, it is necessary to
consider the way in which the b requests are processed. We therefore
have a two stage problem. An intuitively appealing solution is as follows:
Place the records by the alternating algorithm. Given b requests, find
out the locations of the requested records, move to the nearest extreme
location, and start processing the b requests in one pass. Let D be

the expected access time per record, then D < is obvious. But more

ol

detailed analysis of the algorithm is not known.

(2) Given mk records with known access frequencies, how to allocate
them in m linear stores, with capacity k each to minimize expected
access time, assuming inter-storage movement takes no time? One obvious
algorithm is as follows: Regard the storage system as a mxk matrix, fill

it column by column in an alternating fashion. Clearly, this is not optimal.
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For example, for m=2, k=3, the placement in Figure 3a has a smaller

0 .97 0

[Lor T .o1 J.o17j

Figgre 3a

expected access time than that in Figure 3b, which is obtained from the

[.ox [ .97 [ o]
[Lox [ .01 T 0]
Figure 3b

alternating algorithm. However, what is the performance of this algorithm?

III. PACKING PROBLEMS

Given cobjects Rl""’Rn with associated positiée numbers pl,...,pn,

n
X p; = 1 and sizes yl,...,yn, 0<yi<l, we want to partition them into

i=1
groups with total size less than or equal to 1 and if qj is the sum of

. . . N 2
the access frequencies in group Jj, We seek to maximize Q=1I4g..

j J

If Ry,...,R are data sets, Pp,,...sp, are their relative access

frequencies and yl,...,yn are their sizes and the capacity of a page is

1, then qj is the relative page access frequence for page jJ and
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C=1 qj(l—qj) =1~-131 q§ is the expected number of page boundary crossings.
J J

Thus, the minimization of C is equivalent to the maximization of Q [19].
Again, optimal or even near-optimal solution to the problem is dif-

ficult to obtain. However, we shall present a simple heuristic with worst-

case ratio of Q_ = to Q. equal to 2, where 'Qo, o are respectively

the values of Q by the optimal algorithm and the heuristic.

P1 P Py -
Heuristic: Assume — > —> ... >-— . Let k = max {i] = y, <1}

Then assign Rl"" 'Rk to the first page. (Break tie with random choice.)

Repeat the process for the remaining records. Let

Q

T = l.u.b. _62. .
(Plr~-°rPn) h

(¥yreee oY)

Then it can be proved that T1=2. By an application of Schur theorem, one
can show that t<2. To show T1>2, we construct the following example:

for 1<i<2t and p,; =¥, =%r for 1gic2t.

1
Let Poy 1 T Y51 =2 i

Then in the worst-case the heuristic may group Poi-1 and p‘?:.L together in

one page and Qh = 2t(%:— + %)2. But clearly, Qo > t. Thus
Qo 1 s .
5—- > ——-1-—-—-]?-—5 > 2 as t > ®, If we now consider a more general objective
h 2(3 + -g)

w 13
function Q(a) = (I qc;.)l/a’ 2<0<®, (Q( ) - max(ql,qz,...)) and define

’ 1
1- =
(o) (a) = 2

T in the same way, then it can be shown that T = for all «a.
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The above approach is typical of a worst-~case analysis. Let us con-
sider a somewhat dual problem in which Q is minimized instead of being
maximized.

This time we want to allocate the n records to the m sectors of a
drum to minimize expected latency time [3,4,5]. Let the relative access
frequency to sector j be qj after the allocation, then the objective

function to be minimized is similar to (1):

L= 1 q q; a(i,j), ()
i,j

except that d{(i,j) now is the rotational distance given'by

o deine < i < 4 <
dij j-i-1 l1<i j <m,
= m-j+i- < i <3<
dji m-j+i-1 1<i j < m,
d,. = m-1.

ii

L is the expected latency time to go from a sector to another. (1")

can now be rewritten as

L== % q, q, (d4,, +4d..)
2 . & i i
i3 J J J
m
m-2 m 2
== *t3 I 9
i=1

8
N

Thus the minimization of L is equivalent to that of Q =

L e ]
fie
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Again, we have a very good heuristic: Assume the given records
Rl”"'Rh have relative access frequencies PyressrPy and Py2-+ 2P,
Put them one by one into the m sectors. Each time the sector with the

smallest current sum of p's is chosen. Break tie with random choice.

Let

%
QO

g = l.u.b.
(pll L lpn)

Then it can be shown that {3]

37
36’ m even
83
81’

.22, modd and m25,

i.e., 1.04 > o > 1.03 for large m. Thus the heuristic is at most 4% off

optimum,
(o) mo 1/0
We can also generalize the objective function to Q = L q;
i=1
and define U(a) accordingly. For o=, this corresponds to the problem

of sequencing independent tasks on multiple processors with execution times

(=) 1

known considered by Graham [6]. He showed that o m We can

show [3] that c(a) - o(w) as o -+ < and that

=4
3
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Q
Q
Q
L}
e}

-2 a-1
2.3 =-3.2

d

E"J [(am' -1 % + (@'-1) Gn'=D*] + (m mod m") (3m")° 1/
o% (m) > max | B m m mod m m

’

m"* m(3m’)*
where mmod m' = m - m' EH— .
m

A much harder problem is when n = mk and each sector has capacity
k. A variation of the above heuristic has pretty good performance [5].
But complete analysis is not available yet.

sQ far, all the problems we have considered have objective functions
in analytic form. Next we shall consider a family of graph problems and
propose an asymptotically optimal heuristic [9].

Given a directed graph, let n be the number of nodes, e the number
of edges and k the diameter of the graph, i.e., the number of edges in
the longest path, we consider the following three problems:

(a) (n,k) problem: Given n,k, find a directed graph with n nodes,
whose diameter is at most k such that the number of edges is minimized.

(b) (n,e) problem: Given n,e, f£find a directed graph with n nodes
and at most e edges whose diameter is minimized.

(c) (e,k) problem: Given e,k, find a directed graph with at most
e edges and diameter at most k such that the number of nodes is maximized.

The first problem comes from the following allocation problem: Given

n pages of records, we want to assign page pointers to each page. These
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pointers point to other pages. On the one hand, we want to minimize the
total number of pointers since each pointer corresponds to a page fault.
On the other hand, in order to guarantee the performance of the system as
a whole, the following constraint is imposed: The number of pointers
traced when going from one page to another should not be larger than k.

The second problem was first posed as an open problem in Berge's
book [l1]. The third one is a natural complement to the first two.

We shall solve the (n,k) problem first. Note that for k =n-1, a
cycle with n nodes (and n edges) is the optimal solution. For k=1, a
complete graph with n nodes is the optimal solution.

We propose the following heuristic construction: Let there be a loop
having 'k/21 + 1 nodes. Pick one of the nodes and call it CENTER. As
long as there are at least (k/2] nodes that have not yet been picked,
pick k/2) of them and, together with CENTER, add edges to make a loop.
If there are less than |k/2] nodes unpicked, add edges so as to make a
loop using those nodes and CENTER. Finally, assign the same direction to
all edges in a loop. Such a graph will be called a flower graph. The

following example is for n = 15, k = 7.
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Figure 4

The number of edges is 19 in this case.

In general, the diameter of a flower graph is exactly k and the

H
n-1l-12

|

If e(n,k) denotes the minimum number of edges necessary to solve the

number of edges is n +

(n,k) problem, then

Gl

e(n,k) < n + —-—]?;T-—‘

2

Using a careful counting argument, it can be shown that [9]

e(n,k) > n-1 + {EL%:£L] .
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If k is even, the wupper and lower bounds coincide. If k is odd, they
are asymptotically the same as n tends to infinity. However, it is not
élways optimal. For example, for n = 15, k = 7 the following graph has

18 edges only:

Figure 5

In general, a graph of the following form is called a circular graph:
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A CIRCULAR GRAPH
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For such a graph it can easily be seen that n = ém+3, e = 6mt6,
k = 3m+l. If k is even, a flower graph and a circular graph with the
same n and k will have the same number of edges e. Furthermore, a
circular graph is always optimal.

The same kind of construction works for the other two problems.

Open Problem

Given pl,pz,...,pmk, how to partition them into m groups of k

m
each with sums Qyreee sy such that z qi is minimized? For k=2, an
i=1

optimal solution is available: Assume plzp2>...zp2m, then group p; and

Porn-i together to form m groups. There are obvious generalizations of

this algorithm but complete analysis is not known {5].

IV. DATA ARRANGEMENT IN MAGNETIC BUBBLE MEMORIES

We now turn to the problem of data arrangement and accessing in a new
kind of secondary memory, namely, magnetic bubble memory. It has high
density, fast access time (compared to disks), relatively low cost (com-
pared to main memory) and is non-volatile [18,21].

It can be regarded as a long loop of cells as far as data accessing is
concerned. Data items are stored in the cells. The only way to access
an item is through an I/O port, i.e., the item has to be in a specific

location before it can be accessed.
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LOCATION LABELS OF A LOOP OF SIZE 7

Figure 7

We shall assume the I/O port has location zero. The items can be
circulated along the loop, say, in a counter clockwise direction. Then
if the size of the loop is n, the average access time will be n/2. To
improve upon this, we notice that in general access frequencies of the
items are not the same. To take advantage of this, one would like to keep
the more frequently accessed items closer to the I/0 port. Furthermore,
one would like to achieve this automatically without prior knowledge of
the access frequencies. One way to approximate this is to keep the latest
accessed item at the I/O port and shift the other items accordingly. For
example, suppose item i is located at location i for all i, and we
want to access item k. Afterwards we would like to maintain the order of
jtems in the following way: k,0,1,...,k=-1, k+l,...,n-1 im a clockwise

direction.
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For example, when k=3, n=7:

0 3
é » 1 6 p O
5¢ &3 = S¢ b 4
4 3 . 2
BEFORE ACCESSING AFTER ACCESSING
Figure 8

In the long run, more frequently accessed items will tend to be
closer to location 0. To accomplish such an ordering, we introduce a new
operation to the momory. We therefore have the following two kinds of

operations:

OPERATION a OPERATION e

Figure 9
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Operation a means that in one unit of time, the item at each loca-
tion is moved to the next location in a counter clockwise direction. Opera-
tion e means that in one unit of time the item at location 6 remains
intact, but all other items are moved to their next locations in a clock-
wise direction as shown in the figure. To access item 3 and achieve the
subsequent ordering as shown in Figure 8, we have only to apply the
sequence of operations a3e3, i.e., 3 a's followed by 3 e's.

In general, to access an item at location k, we need k a's fol-
lowed by k e's. However, this is not optimal (in the total number of
operations) in general. For example, if n=7, and k=6, instead of 12
operations, one needs only 3, namely, eae. The optimal sequence is
given as follows:

6n-7
8

(1) For 1<k< j , apply ak ak. (Total = 2k).

(2) For l%g-7J <k<n-2, apply (eae)nmk_l ea(aea)n—k—z.

(Total 6(n-k)~-7).

]

(3) For k=n-l1, apply eae. (Total 3).

The next question is how to realize a general permutation of items in
memory. No optimal algorithm is known. But the following algorithm differs
from optimum by only a constant factor. To illustrate its operation, we

use a simple example. The following is the required permutation:
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Figure 10

We shall use the previous accessing algorithm to bring item 3 to loca-
tion O first. Then apply a, so that 3 is at location 6. (See
Figure 11). Then repeat the same process by bringing item 2 to location

O, and so on.

O 3 0
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It can be shown [18] that for both the worst-case and the average
case O(n2) operations are needed to realize an arbitrary permutation.
We shall next show that O(nz) is also a lower bound for both cases. Thus,
this algorithm differs from optimum by only a constant factor.

Let A be any algorithm which generates all permutations. Let tA(n)

be the number of operations to generate w. Then

(a) There exists m such that %M)i%f—%n.

(b) The expected value of tA(n) satisfies the inequality

< 1 2 3
LM 23 ~ 1™

To prove this, let items i,j be located at u(i), wu(3j). Define
a(i,3) = min{|u(i)-u(j)l, n - |u(i)—u(j)|} as the distance between items
i and j. For any given permutation of the items 7, define
n-1
I(wm) = I d(i, i+m),
i=0
where i+m means (i+m) mod n. n = 2m+l. For the identity permutation'no,

I(no) = nm. For the permutation w(i) = 2i mod n, I(m) = n.
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Figure 12

Note that application of a 'does not change the value of I, and
application of e can change the value of I by at most 4. This is
because e increases the distances between the item at O and those at
1,2,...,m1 by 1, while decreasing the distances between it and those
at mtl,...,n=2 by 1. Similarly, e increases the distances between
the item at n-1 and those at m+l,...,n-2 by 1, while decreasing the
distances between it and those at 1,2,...,m~1 by 1. In fact, after e
only distances involving the items at O or n-1 may change. Therefore,
I can be changed by at moét 4.

~

To generate permutation w, I has to be reduced from nm of “o

- 2
to n of w, thus %-(nm—n) = [%—-— %-n] operations are necessary.

&

For the average case, the mean value of d(i,j) for any given permu-

. . m+
tation is —Ei . Thus the expected value of I is n(gg?ﬁ and
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-1 m+1 1 2 3
ty 27 [m-n (531 = 720 - 7@ 0.

More recently, another set of simple operations has been implemented.

They are diagramatically as follows:

[ ¢ O [ e
OPERATION a OPERATION b OPERATION ¢ OPERATION d

Figure 13

Then the number of operations to access an item at location k and to
maintain the ordering‘as described before can be cut down. For example,
for n=7, k=5, the previous optimal algorithm (with only operations a
and e) takes 5 operations (eaeza) while here three operations are
sufficient (cad).

In general, the optimal sequence of operations can be described as

follows:

(1) For 1<k<m, apply a* L dab"!c. (Total = 2k).

(2) For m+l<k<n-2, apply c a k1l g p2K"2 (1otal = 2(n-k)-1).

(3) For k = n-l, apply cac. (Total = 3).
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To generate arbitrary permutations, one can devise an algorithm
utilizing this optimal sequence as done before. It takes O(nz) opera-
tions for both the worst and average cases. The previous lower bounds
hold here also.

Another important feature of magnetic bubble memory is its stop-
ability, i.e., we can stop the rotation of the loop and even reverse its
direction of rotation at any desirable moment without too much loss in
time. We can then consider the following simplified model: Loops are
stacked up to form a drum-like storage device, where the tracks are not
constrained to rotate in synchronism, i.e., some tracks can stop, while
others can go forward or backward. For simplicity, just consider the case
when stop and forward of individual tracks are available. Assume that
there are m tracks containing n records each. If we can have one step
look-ahead of the request string, i.e., if we know two consecutive re-
quests Ty r. at a time, then we can rotate the track containing r,

2
to the I/0 port, while shifting the track containing r, optimally. The
remaining tracks can either rotate with the track containing r, or
remain intact.
If we assume random access request, these two options are statistically

the same and the average access time per record is significantly reduced

in comparison to the uncontrolled case [21].
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Open Problem

(1) In the models used in the first part of this section, the access
time is basically linear. Is it possible to build some other simple
operations such that the access time can be cut down in an order-of-

magnitude manner?

(2) Parallel to drum scheduling problems, we have now a whole new

family of bubble memory scheduling problems to be solved.

(3) What is the role of queuing theory in all this?
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