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RANDOM  TNJIECTION CONTROL
OF MULTIPROGRAMMING IN VIRYUAL MEMORY

E. Gelenbe, A. Kurinckx

We proposs & new method for the control of a mul-
tiprogrammed virtual memory computer system. . A
mathemoatical model solved by decompasition per-
mits to Justify that the method avoids thrashing.
Simulation experiments are used to test the ro-
bustness of the predictions of the mathematical
model) when certain simplifying assumptions ars
relaxed and when a slightly sinmpler control tech-
nique bascd un the same principle is ‘used. Compa-
risons are given with the case where an "optimal®
control is used and with that with no control.

Nous proposons une nouvelle méthode de contrbdle de
la multiprogremmation d'un systéme & mémoire vir-
tuelle. Un nodéle mathématique d'un systéme péré
par celte méthode est résoluv & l'aide de la méthode
"de déconmposition. Des expériences de simulation
permettent de vérifier les prédictions du modele

et de comparer le méthode proposée avec le contrdle
"oplimal” et avec le comportement d'un systdme sans
contrdle.

I. INTRODUCTION

It 1s well-known that virtual memory computer systems ex-
hiblt an inherently unstable behaviour i1f processes are allowed inta
the common memory with no control : [2] is an early analysis of the
subject and (3] provides a theoretical explanation. This instability
translates itself in practice by a system throughput which becomes
close to zero and very high turnaround or response t{imes. The analy-
sis in [3]) provides an indicetion of how system control to avoid
this effect can be used : 1t suffices to limit the multipragramming
depree N (definced as the number of processes allowed Lo share main
memory) to e value below H' such that 6(H'), Lhe system throughput
for this valuo of N, 1s stlll at an accepteble level, where (1) is
predicted to have the form shown on Figure 1(b). Some of the results

in £33 have been summarized 1n [47.

Using o mathewmatical and simulation modal [6] davelopped to

predict the throughput O(N) of o virtual memory paged computer sys-
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‘tem, the problem of iis feedback regulation so as to (i) avoid
thrashing, and (i1) optimize its performance had been examined in
[7]. Since the parameters of active processes such as paging rates
for a given memory allocation, input-output rates, total CPU eaxecu-
tion times, are necessarily time-varying, the approach used was an
adaptive optimization algorithm. In view aof the fact that characte-
ristic of Figure 1(b) will vary with time, the algorithm in [7] to
maintain the depgrec of multiprogramming close to its optimal value
ND is & statistical moaximum searching technique. This approach
leads tou a relatively elaborate estimation procedura.

A comprehensive review of the lssues of virtual memoury per-
formance and control 1is given in (8], and [9,10) cuntain suggestions

and svaluations of houristic control policies,.

In this paoper we investigate a8 new techniquo for virtuol

memory sydtem mnanopnment which calls for lese faformation pathering



than that of L7) & it doeé not necessitate an instantaneous estimate
of NO' tho &ptimal degree of multiprogramming but only an ostimate

of “the throupghput. An alleviation of supervisor functions and a grea-
ter possibility for decentralized management are potential advanta-
ges. This method avoids thrashing and oporates the system close to
optimum; 1t is not "opiimal” however in the sense of the policy de-

velopaed in [?7].

In Section 2 a description of the method we propose and
an approximate onalysis are given. Section 3 is devated to the pre-
sentation of simulation experiments showing the effectiveness of

our approach and its comparison with the optimal control.

1.1. Random injection control.

Consider the idealized queueing network representation of
‘the virtual memory system of Figure 2(a). A set of terminals
I
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T1....,TL generate processes and these are 1mm9diately accepted into
the CPU quaue. Processes which are either in the CPU queue or in
that of one or mors of the peripheral or secondary memory unit
queues P1,,...Pn are ollowed to acquire main memory. Assuming & de-
mand~paging operation, main memory spece will bo acquired by an in-
coming process in an alternating sequence of page faults and CPU
axncutinné. Whan 1t hos acquirob a total of Q units of CPU execu-
tion time the process is placed in thoe sot I of impedod processes

and litcratos the maln memory space it occupled. For cach impeded



pracass o time intervol is drawn at the end of which Lhe process
will be injected back into the active set, i.e. into the set of pro-
cessos which share memory and other system resources. This time
interval of durstion 1 will be chosen as a function of system paro-~
meters, and more particularly as a function of the throughput rate
of the set of useful resocurces of the system (the "resource loop" of

Figure 2(al)). Thus, in a way, the impeded set of processes can he

viewed as being in an artificial "think” state which is analogous

to the "think” state of processes at terminals. Though this is

not neceésary, ve shall assume that v is & rendom variable so that

our control schems is cslled random injection control.,

figure 2(b)

Resource loop

2. DESCRIPTION AND ANALYSIS OF THE PROPOSED CONTROL POLICY

The aim of this section is to present and justify the

random injection control method for virtual memory computer systems.

We will first present a mathemotical model which is used
as a8 framework for justifying and evaluating the approach; this mo-
del is not new [6] and has alrcady been used in [7] to evaluate an
adaptive control policy for optimizing a virtual memory systiem.
Then, the random injection policy will be described. It will be
analyzed in two parts. We first use approximate asnalysis using the
decomposition method [3,5] to show huw random injection control
avoids thrashing. Then simulations will be used‘to confirm these
results and to show that it yieldssystem performance comparable
“to that of an "optimal” control policy.

2.1, The mathematical model

In'the systen of Figure 2(a) o total of L processecs ara



~either in think state at ono of the terminals, or they are in impe-
ded state (ot I in Figure 2(al))or in the CPU gqueue or at one of the
I/0 devices P1....,Pn « Wo shall model the system under the follo-

wing assumptionn @

- the time spenti in think state by a process bofore entering or re-
entering the CPU queue is exponentielly distributed of paraometer
- ' |

- sarvice at P1 is allocated on & first-come-first served basis ;
conspcutive service times are i.i.d. (independent and identicelly
disiributed) random variables, exponentially distributed of pare-
meter My '

- as in [6,7] the relotionship between allocated primary memory
space m and page-feulting behaviour of a process is established via
the Belady~-Kuehner l1ife-time function e(m)>[1]'shown in Figure 1(a)
and the following model. In procsess time, tha consecutive inter
pagé~fault intervals of a process sare i.i.d. exponential random

variables of parameter [e(m)]—1.

SimilarlQ the consecutive I/0 inter-request intervals to

device Pi(2 £ i < n, P, being the paging drum) is exponentially

distributed of expacta:ion éi. Furthermore the total CPU exegution
time of & process between two terminal interactions is exponential
of expectation C, and the total CPU execution time between two
consecutive epochs it spends in the impeded stete.ils exponential
of expactation Q. Under these assumptions it is casily shown (6]
thaf an unintarrﬁpted execution interval of a process al the CPU

is exponentially distributed of parameter

a = [(e(m))-1 + Eg(oi)"1 + 0—1 + 0-1]. At the end of such an epoch,
it cen be shown [6] that the process directs itself with probabili-
ty @
- X, = (ae(m)]~1 to P
1 ’ 4
-1
T (uai) ' io Pi , 2 5 41 £ n
X 41 (u0)~1 ' into the impeded seot
—.1 .
T Xouo ¢ (aC) ’ to its terminal

- total primary memory space is R
- the time v spont in impeded state by o proucess is ex-

ponentially distributed of parameter § .

Remark 1t 4 the terminals and the impeded sel wero non-existent in



Figure 2, and if N is the total number of processes in the system
circulating among the CPU and the poriphera) devices, then the curve
of Figure 1(b) is representative of the CPU utilization at statisti-

cal equilibrium as a function of N.

Remark 2 : as stated in Section 1.4, the voalue of N (the degree of
multiprogramming) is the sum of the number of processes which aere
either in the CPU queue or in the peripheral device queues P1....,
Pn. Thus the processes in think or impeded states do not share

memory. Also, in our mathematical model, all processes are statis-

tically identicael ond shaore mein memory equally; thus m = R/N.

Remark 3 : in the simulation results given in:Section 3 the service
times at the peripheral deviceé are not exponential, and neither is
the total CPU execution time of a process between two successive
visits to the impeded state. Comparison betwsen theoreticsl and si-
Fulation results will illustrate the robustness of the exponential

assumptions (see also [6,7] concerning this point).

~ for the life-time function el(m), we will use the usual
form e(m) = dmk whaere d and k are constants. This parti-
cular form does not affect the theorcticel enalysis but

simply the numerical results obtained.

2.2, The random injection pnlicy

The random injection policy for virtual memory management
operatoas on the following principles. Some of these principles
have already been given as assumptions of the model in previous sec-

tions; wo repeat them here for clarity.

P14 - Only the processes which ere either in the CPU queue or in the

———

queues of devices P .....Pn share memory. As soOh as a pProcess

1 .
‘enters the impeded set or leaves the CPU queuve in order to re-
turn to the think state at a terminal, its main memory pages

become aveilable for other processes.

P2 - A process entering the impeded state will remain there for a

random time duration, function of N, the degree of multiprogram-

ming and of {M~N), the number of processes in impoded state ; W
is the total number of processes which are not in think state.
At the end of this time the procoss joins the CPU quoue. This

. .



random time is exponentially distributed of parameter SN, L)

which is tima dependent. In our policy we set

8 constent » N = O
S(N,t) = (1)
hRIN.EY » N 9

whare h is a constant to be determined below, and é(N.t)At is
the probability that in (t,t + At) a process leaves the resource
loop to enter either tﬁe 3mpeded or the think state. The cons-
tont B in (1) will be taken to be Qary large (B = » , for all
prectical purposes) since when N = 0 there is no reason to re-
toin 8 process in the impeded set (i.e. its entry and exit are

simultaneous).

2.3. Analysis of the random injection policy

In this section we shall present the gequations governing
the mothematical model of the virtual memory system controlled by
the random injection policy. Only the equilibrium equations will
be solved. It will be noticed that the exact solution to thase
aquations 1s not known. Therefore an approximate solution based on
the docomposition method of COURTOIS[3,5] will be presented.

2.3.1. The_equations for the maodel

Consider the stochastic process {Vi)t€R+ representing the
number of processes at the CPU queue if i = 0, or at the queue of

Pi if 1 £ 4 € n, or in impeoded state if i = n + 1, and in think

- state (at the terminals) if { =n + 2. We sre interested in the

joint probability distribution, for t 2 0,

n+2

p 0
plv,t) Pr{Vt V1""'Vt

0 n+2
vmzlvo,...,v0 }

whaore v = (VO"’.‘VD"‘Z

cee,n+2 (L is the totel number of termipals and of user processes

) i{s o vector of integers 0 < vy <L, i =1,

in the model]; Under our assumptions the p{v,t) satisfy the follo-

wing system of differential difference equations .
Lop(uat) » -LIL-MA ¢ Bjuy ¢ o) ¢ DOVIIpLV.E) (2)

+ (L"N""”Xp(c(v.o.ﬂ‘?).t)
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"1p(0(V.0.i).t)

X?’z(ail‘1p(c(v.i.0).t)

»

D(clv,0,n+1))plelv,0,n+1),t)

whare I = Q . 8 .o " c, a, = e(m), and fqr any vector v we de-
fine

clv,1,3) = (vo,....v -1.....vj*1....,v },vi,3,3 = i C(3)

1 n+2

-

and in (2) any p(¥,t) such that ¥ contains an element which 1is ne-
gative or larger than L is set to p(V,t) = 0 for all t 2 0. Also
we Lake D(v) = 0 if the (n+1)-th component of .v is zero (i.e.

v = 0). These conditions, together with the assumption that

nt+1

Wy o= 0 in (2) if vy ® 0, suffice to define the boundary conditions

of (2). Finally, notice that :

n+2v M = zn#1v n

L=Ig vy » o Yi* " obo Vi

G(v) is the arrival rate of processes from the impeded set to the

CPU qusue : .
Div) = (M-N)&(N,t) (4)

This system of differential difference equations will
posess & unique solution p(v,t} > 0 such that va(v.t) = 1 ,
t = 0, if all the state transition rotes are positive and finite.
However the aveilable theory [11] does not provide the equilibrium
solution, In the following section we resort to an approximate so-

Jution method.

2.3.2., Approximate solution vie decomposition

- on . w e e e n e s e em e Sm we M MG e M W e B e G e AR S e Be e e e

The approximate onalysis technique for queueing networks
developed in [3,5] is suited to systems composed of*subsystiaoms where
the time constants. of inter-subsystem interactions are apprecisbly
larger then thoseo essociated with interaction within each subsystem.
This makes it possible to use equilibrium results for each subsys-

tem in the global system model.



In our analysis we epply the technigque several times to
our model. Theuwe successive simplificatiovons are shown on Figures

3(a) and 3(b), for the model of Figure 2(a).
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As.a first step we will approximate the system of Figure

2(a) by the model shown on Figure 3(a). Let BIN,t)At be the proba-

bility that o process jeaveos the resource loop to enter either the

impeded

or think state in the interval (t,t + At) when the number

of processces in the resource loop is N. We may write

BIN,E) = [x (N + x_ o (N)Ja(NIACN,t)

where A{N,t) is the probability that the CPU is not idle when there

are N processes in the resource loop at time t. Tho approximation
consists of replacing A(N,t]) by AO(N) :

.

- N
1

BIN,E) ¥ g(N) = [x_,,(N) + x_ o (N)Ja(N)AG(N) (5)

where A (N) is the stationary probability that the CPU queue in the

closed model of Figure 2(b) (i.e. the resource loop with N processes

ond with no interections with the terminals or with the impeded set)
is not smpty. This approximation will bs valid [3,5]) if for
1 €41 £ n,

and if

+

u(N?[xn 1(N] + xn42(N)J << uy
hBIN) << uy o hB{N) << u(N)xi(N] (6}

AL=M) << g, A(L=M) << u(N)xi(N)‘

xn*1(N) + xn*Z(N) << xi(N) , 1 £ 414 £ n. (7)

The second step is to opproximate ithe model of Figure 3(a)

by that of Figure 3(b) : the impeded sct and the resourcoc loop are

replaced by a single server of service rate y(M) where 11 is the

total number of processes in the system to the exception of those

present at the terminels. Dy arguments similar to those yielding

(5), we approximate y(M,t)At, the probebility that & process returns

to its terminal in (t,t + At), by y(MJAt where the approximation is

yalid

X (N)

A(L=M) €< B(N),x _,, (N) >> x_ ,(N),A(L-1) << n:l BN

n+1
xﬂ"“l(N)*xfl*?(H) (8)

10
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y(M) is given by

.

M n+7?
st an v BRINIPIN/M) (9)
N=1 xnM + xn42

y(M) = T

where p(N/M) 1s the stationary probability of having N processes
in the rasource loop given»that there are M processas in either the
impeded sot or in the resource loop supposing no interaction with

the terminols for the subsystem of Figure 3(c).

After some computations, given in the Appendix, we obtain

the oxprossion

M N-1 -1 M N-1
h
(M) = ( § —D ) r
N=1 AO(N)(N’N)I N=4 (M-N)1I

On Figure 4 we present some numerical values for y(M) as a
function of M, h and of k (the exponent in the Belady life-time
function’in {3)). Here n = 2 (there are two peripheral units), and

the parameter values used are given on the figure.

If k is small, i.e. when thg effectiveness of the control
is important, we see that for well-chosen values-of h, y(M) does
not vaery appreciably as M increases which is the property we desire.
However a more practical apprdach to understanding the effect of the
random injection policy is to compare y{M) to the throughput of the

resourcse loop B*(N) when the control is not applied where

* Y
BYIN) ¥ x L (N)a(NIAS(N)

“The comparison is given on Figure 5. However when k is re-
latively large (e.g.k = 2.5, on Figure 6) the system with no con-
trol has a better performance than the contraolled system. The in-
fluence of the parameter h will be seén in the simulation experi-
ments (Section 3) where 4t is evident that as long &8s h is suffi-
ciently small, it can vary by an order of magnitude without affec-

ting sensibly the behaviour of the controlled system.

Notice that in the theorestical model examined above the

value of Q has no effact.

3. THE SIMULATION EXPERIMENTS

The theorectical eanalysis using the decomposition tephnique

is a first-order approximation {5] when the incqualities (6) - (8)
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- are satisfied. Thus it has to be verified whether the approximation

is sufficiently good in the context of our model.

However the purpose of the simulation experiments we have
conducted is not restricted to this point. We also use them to

evaluate the following aspects

- 3f the random injection control is not based on a continuous esti-

mation of B(N,t) does its effect still remain velid ?

14



- If the maln distributions associoted with the model are not expo-
nantial, is ihe mathematicol model a robust predictor of system

perfaormance 7

Tho simulations will allow us to give affirmetive replies
to these two guestions and also to investigate the effect of cer-
tain model parameters such as h or . We shall also compare the
random injection control to the optimum control obtained by limi-

ting the degree of multiprogremming.

3.1, Deseription of the simulator

The simulation model has been programmed with the follo-

wing assumptions :

- the simulator corresponds to the system of Figure 3(a), where
the value of AD(N) necessary to the computation of B(N) is obtai-
ned by a separate simulator in which the service time at each
peripheral device [P1 and P2) is constant (rather then exponential

as in the mathematical model).

- in the simulation the total execution time of each process is
constant (rather than exponential) of value C, and so is the
execution time Q after which a process is pleaced into the impeded

set.

- the rendom injection control in the simulator differs from that
in the mathematical model. Since in practice it may be difficult
to set E(N.t) = hp(N,t) at all times t, we have chosen to take a
relatively unfavorable value for &§(N,t) in the simulator. If &
proceés enters the impeded set at a time t' when the vslue of the
degree of multiprogramming was NL' , we allow it t6 remain in thn'
impeded set for e random duration exponentially distributed of
parameter hB(Nt,); thus the parameter used is not fully "up-to-
date”.

3.2, Confidence interval computations

For the computation of confidence intervals assoclated
with the measurements made in the simulations we have used the
classical method [12,13) of subdivising the measurements into conti-
nuous blocks such that the average values over cach block of the
parameter value are very weakly correlated. The bloeck length chosen

{8 of 25 measurements. However we have also camputed confidoence in-



torvols without this scheme end the results are appreciably the

1)

same .

Although theo primary performance measure which wé are in-
terestaed in is the averape response time of a user, we do not give
thoese measurcments directly. In fact we observed that the confidance
intorvals assﬁciatpd with response time when directly measured were
very large because of tha.relutively~small number of samples. The-
refore we measure the averaﬁa number df processes which are not at
the terminals as well as thé related confidence interval, and the
arrival rate of processes from the terminals. We then use these
quantities in Little's formula W.A(L - E{M}) = E{M} in order to
compuie the estimated average response time Q = &/A(L - &). The con-
'fidencé interval of &, (w1,w2) is abtained‘as follows : w1 B
M1/A(L - M,) and W, My/alL - M,), where M is the estimated value
of E{M} é&nd (M1.m2) is the corresponding confidence interval.

o

3,3. The simulotion resultis

Comparison of the theoretical results developed ih Section

2 with the simulations is given in Figures 7, 6, 8..

We see that except for large values of L the agreement is
very good notwithstending the important differences between the
theoreticoal model and the simulation model. It is importaht to note
that the 95 % confidence intervals are much larger for small k (Fi~
guré 7) than for larger values of k (Figures 8, 9) and the sensiti-
vity of the confidence intervals to k is very large. Onbthe other

hand the sensitivity of the model to the distribution of the time

spent in the impeded set is very small : on Figure 8 & constant
time is compared with an exponentiselly distributed time spent in

impeded state.

4. ADAPTIVE PROCEDURES FOR RANDOM INJECTION CONTROL (RIC)

In the previous sectibns no effort has been made to indi-

1) Through the purpose of our paper is nol to comment on simulation
mothodology, we were not surprised by the identity of these re-
sults because of known propoerties of asymptotic normality.of cer-

tain functiuns essociaked with Merkov processes [14].
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cote specificolly how the RIC method might be implemented in prac-
tiéa. This soction is devoted to on avaluotion of some possible ap-
proaches which we propose. Clearly, an approach similor in spirit to
that developed in [7] may be applied. Thot is, an cstimator of AU(N)

may be used to determine N the degree of multiprogramming which

05
maximizes the throughput of the RL; one would then implement the
optimal RIC discussed in the previous section. Another approach

might be to use RIC with (1) giving the valus of §{(N,t}, but taking

BIN,t) = ADIN,t)(1/Q + 1/C)
_—
where AD(N.t) is the estimated value of CPU utilisation at time t.

These approaches will be discussed and evaeluated in [15].

The approach we sugpgest and evaluate here mahkes use of an
estimator of interdeparture times from the resource loop. Recall
%hat RIC requires that 6(N.§) = hB(N,t). However in the implemen-
tation the rate 6(N,t) will be replaced by the corresponding inter-
exit times from the impeded set; therefore wo shell estimate these

times directly.

Let 0 < t, < t, < u0 <t < +«+«. bo the sequence of ins~
tants at which & customer leaves the RL to enter the impedod set or

the terminals. Define the variable Et‘os follows
1 o

for some O s a < 1. For e-process entering the impeded set at time
t, wo draw an exponentially distributed random variable X of expce-
tation Et so that the process will be reintroduced into the RL at
time t + X. Notice that we nced not have knowlodge of N {the degree
of multiprogramming) in order to implement this policy.Several si-

mulation experiments have been conductod to evaluate this policye.

'fhe results are shown on Figures 12.

On Figure 12(a) we show the average rosponse time of the
nysinm»varsus the total number af customars L with this control po-
licy for k = 1.5 (the coefficient of locality in the Belady life-



time functions). For o wide range of values of «a(0.1 to 1) we sao
that the results remain very close to the thuorcticai re&ults for
RIC. The simple estimotor (14) yields a conirol which improves
considerably over system performance with no control. Similar re-

sults are obtained on Figure 12(b) With kK = 41.,8.

5. CONCLUSIONS

e S ot

In this paper we héve proposed a new mathod for the control
of multiprogramming in & virtual memory system. The method has been
justified using & mathematical model. A simulation model in which
most probability distributions ossociated with the mathematical mo-
del have been modified then used to test the control scheme and the

robustness of the model predictions.

s

'Dur results prove the interest of the rendom injection con-
trol policy for virtuel memory systems. Of course, adaptive control
procedures are valid only if the system overhead associated with
the control is not unacceptably high; In a follow-up paper [15] we
will examine the effect of overhead; we shall also introduce and

analyse an ohtimal random injection control.

The theory predicts that @, as we have chosen it, will have .

no effect on the everage response Lime of the systeh; the simulations
(see Figure 10} confirm that its effect is not significant on the
average response time. Of course it will have an aeffect, similar to
that of the quantum of a time-sharing dihcipline. on the response
time of processes having longer or sharfor exacution time. In prac-
tice, one would use a smaller value of Q for those processes which
have a high page fault rate and a larger § for thosc have fewer

page féultsz this point will be discussed in [14].

On Figure 11 we have used simulation experiments to evalu-
ate the effect of h. These rasulis confirm the numerical predictions
{sec Fipure 4}. The small values of h are worse when L is small,
since there we need little if any control of multiprogramming. The
best vaelue lies sround h = 0.01 for large values of L, as indicaled

by the simulations (Figure 10) and the numoricaf’studies (Figure 4).
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Outlined here are the detoils of the dorivation of the re-

sulting equivalent scrvaor (7). y{M) 1s given by

' M Xnea
y(nm) = 2N=1 v x BINIp{N/M) ‘ (A1)
Tn+1 n+2
Recall that p(N/M) is the steady state probability of having
N processes in the resource loop given that there are M processes in
either the impeded set or in the resource loop. We obtain this proba-
bility by solving the equilibrium equations for the system of Figure

3(c).

PINZMICRINY +. §(NI(M=N)] = p(N+1/M)IB(N+1)
¢ pIN=1/M)S(NI(M-N+1) , 1 S N <M

i : : ' : (A2)

pl(1/MIB(1) = p(O/M)&(0IN
p(M/M)IB(M) = p(M=1/MI§(M=-1)

The solution of these cquations is

n?' (i) (M-1)

p(N/M) = p(0/M)

1
g 0O&NsSM (A3)
n),,8(1) :

and we obtain p(0/M) by using the condition

M
ZyogP (N/M) = 1

This yields the rasult :

(i) tin-1) -1
plo/M) = [En e 0 s 1] | (A1)
IS »

Using this value, and (1), expressions (A2) and (A3) become

N~ 1 ' :
_ [ UL R,
p{N/I) = p(O/N) XCH) n1=0 (M #) 1 S NHNsSHM (AS)

20
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N-1 -1
A B N-1 s
p(0/1) (¥ .y o Mieo (M-1) f 1] (AS])

and reploce p(N/M) by its value in (A1) :

' x N-14
M n+1 h
(M) = Bp(Q/H)MI T
1 Nt X v % TR
(AB)
_ , N-1 -1
p(O/M) = (1 + BML I h )

N=1 B(N)(M-NJ}I
We know that

Xne1 1/C

Xie2 + X e 1/C + 1/Q

Let B tend to infinity. The limit of (AB) is

hN~1 -1

N~1
h
" )

Y
N=1 TeT

1im y(N) = 1/C % ‘N1 KSTNTTETETT

B'&m
which 1is the expreﬁsion given in (7).

Notice that we set B2« (as mentioned in the discussion
following equation (1)) to rupresent the fact thot when N=0, no

time is spent by processes in the impeded set.
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STABILITY AND CONTROL OF PACKET-SWITCHING
BROADCAST CHANNELS

G. Fayolle*, E. Gelenbe**, J. Labetoulle*

ABSTRACT

In this paper we consider the behaviour of the slotted broadcast
channel used by an ensemble of terminals for the ﬁransmission of
packets of data. A mathematical model is used to prove that the
channel is unstable, leading to zero effective throughput, if no
control is imposed on the channel behaviour. Two classes of control
policies, acting on the input and on retransmissions from blocked
terminals, are then analyzed and stability and optimality conditions
for the channel with these policies are derived. The theorem on
instability of the uncontrolled channel can in fact be considered as
being a corollary of the stability theorem for the retransmission
control policy. We show that e—l is a lower bound to the.maximum
achievable throughput with an input control policy. On the other
hand, an optimal retransmission control policy must regulate re-
transmissions so that the probability of retransmission of an
individual blocked terminal is of the form (l-k)n-] in each slot,

where n is the total number of blocked terminals. Some simulation

results are provided in order to illustrate the effect of this po-

licy.

IRIA-LABORIA
Chaire d’Informatique de I'Université de Liége et IRIA-LABORIA.



1. INTRODUCTION.

Computer networks using packet-switchihg techniques
have been implemented [1,2,3,4,5,10] in order to allow a large
community of communicating users to share and transmit data
and to utilize excess computing power which may be available
at remote locations in an efficient manner. In this paper, we
shall be concerned with packet switching networks using radio

channels similar to the ALOHA system [1].

We consider a large set of terminals communicating
over a single radio channél in such a way that a packet is
successfully transmitted only if its transmission does not
overlap in time with the transmission of another packet;
otherwise all packets being simultaneously transmitted are
lost. A terminal whose transmission is unsuccessful is said

to be blocked; it has to repeat the transmission until it

achieves success. A terminal which is not blocked is either active

or it is transmitting a packet. The operation of the system
is shown schématically in Figure 1| where the different state
transitions of a terminal are shown. Since the only means of
communication between terminals is the channel itself, it
is not easy to schedule transmissions so as to avoid colli-
sions between packets. ‘It is also abvious that a terminal

would in no case transmit more than one packet simultaneously.

Various methods for controlling the transmission
of packets have been suggested. The simplest is to ailow ter-
minals to transmit packets at any instant of time. The second

method, known as the slotted ALOHA scheme has been shown to

increase channel throughput over the first method [6]. Here
time is divided into "slots" of equal duration; each slot can
accomodate the transmission time of one packet and packets are
all of the same 1éngth. Packet transmission 1is synchrdnized

so as to be initiated at the beginning of a slot for any termi-
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nal and it terminates at the end of the same slot. Other

schemes have been suggested elsewhere [9].

KLEINROCK and LAM [8] have discussed the stability
problem of the slotted ALOHA channel. They give qualitative
arguments and results based on simulations indicating
that the channel becomes saturated if the set of terminals 1is
very large, independently of the arrival rate of packets to
the channel, saturation being the phenomenon whereby the num-
ber of blocked terminals becomes very (or arbitrarily) large.
They also compute the expected time to attain a given level

of saturation. In [11] policies designed to optimize the

‘throughput of the channel, defined as the expected number of

successful transmissions per slot, are presented.

The purpose of this paper is to give a theoretical
treatment of some control policies which can be applied to
the broadcast channel in order to stabilize it and to maxi-
mize its performance. We first récal} the proof of instabili-
ty in l}i} extending it to the finite source model taken in
the limit as the total number of terminals becomes very large,
and showing that channel instability implieé that the equili-
brium value of the throughput is zero. Two simple control po-
licies are then presented and necessary and sufficient condi-
tions for stability of the controlled channel are derived.
Bounds for the equilibrium value of the channel throughput
with these policies are obtained. Finally we give a simple
algorithm for the approximate implementation of this policy

and exhibit some simulation results showing its performance.



2. A MATHEMATICAL MODEL.

A precise definition of stability can only be
considered in the context of a model of the behaviour of the
broadcast channel. In this section we present a modél iden-
tical ot the one we have considered in an earlier paper ilﬁ
except that we shall take into account here both finite and

infinite source systems.

Assuming that the slot, and the time necessary
to transmit a packet, are of unit fength, consider N(k) the
number of blocked terminals at the instants k = 0,1,2,...
when a slot begins. Let Xk be the number of packets transmit-
ted by the set of active terminals during the k-th slot

and denote by Y, the number of blocked terminals transmitting

k
during the k-th slot. In the Znfinite source model (Xk) is
the sequence of independent and identically distributed ran-

dom variables with common distribution given by

(1) Pr(x, = i) = ¢, , i 20

In the finite source model assuming that the total number of
terminals in the system 1is M, we let the event (Xk=i/N(k)=j)
be independent of values of Xt for t < k; its probability is

given by

(2) ' qj(n) = Pr(xk=j/N(k)=n) = (Mgn)bj(l—b)M..n-j

for O < j < M~n, where b is the probability that any one

active terminal transmits a packet during a slot.

For both models we shall denote by f the probability

that any one blocked terminal transmits a packet during a

slot. We then define

(3) g; (n) = rr(Y, = i/N(k)=n)
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where we assume that the event (Yk/N(k)) is independent of

Yt for t < k. Therefore

(4) g, (m = (heta-pr

and more particularly

(5) g,(m) = (1-D" , g (1) = nf(1-H)""

Definition 1.

The infinite source broadcast channel is unstable
if for koo the probability Pr(N(k) < j) - O for all finite
values of jj otherwise it is stable. For the finite source
model, the system is unstable if the above condition is ve=-

rified as we let M+» , b»>0, M.b>d, where d is a constant.

The definition given here simply states that ins-
"tability is verified if (with probability one) the number of

blocked terminals becomes infinite as time tends to infinity.

Theorem 1.

The broadcast channel is unstable both for the

finite and infinite source model.

Proof.

Let us first consider the infinite source model.
The proof given here is identical to the one we presented in
[12]. Let pn(k) denote the probability that N(k) = n. The
following transition equation may be written for the infinite

(),

source model

(1) Equation (6) is valid for all n20 if we adopt the rule that
pi(k)zO,i<O.
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(6) p (k+1)

[}
[ e =]

Pn_j(k)cj+pn+l(k)g,(n+1)c0

j=2

+ p_(X) (1-g (n))cy+p_(K)gy(nde,

+ p__ () (1-g (a=1))c,

On the right-hand side of (6), the first term covers the

cases where two or more packets have been transmitted by the
active terminals during the k—th slot; the second term covers
the case in which exactly one blocked terminal has transmitted
while no active terminal has done so. Notice that {N(k);k=0,1,
...} is a Markov chain and that it is aperiodic and irreducible.
It is ergodic if an invariant probability measure {pn;n=0,l,...}
exists satisfying (6) such that pn)O for all n and where P, =
lim k- pn(k). To show that 1lim k=« Pr(N(k) < j) = 0 for

all finite values of j it suffices that the Markov chain re-
presenting the number of blocked terminals be not ergodic.

Substituting p for pn(k) and pn(k+l) in (6) we obtain

n
(7) p;jiopn_jcj**pnﬂg,(n+l)c0+pn(go(n)cl-gl(n)co)-pn_,go(n—l)cl
Let
N
(8) S, = I p
N n=0 D0

we then have for any N 2 O,

N
(9) Sy = Pya 8 (N*Deg + pyga(Nyey + nEO SN-n%a
or
N
(10) Syllmeg) = L Sy pcq ¥ Pyyy8 (N*Deg # Py8o(Me,
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or equivalently
(11) Py(17cg) S Pyy 8 (N#1D)eg + puga(N)ey

But then, from (5) and (11) we have

N
(12) PN+1 o - eq = (I=f) ¢,

7
Py (N+1)f(l—f)Nc0'

for any non-negative integer N. This implies that the ratio
(pN+l/pN)->°° as N»= , so that the sum S can only exist if
pN=0 for all finite values of N ; otherwise S_ 1s divergent
and this cannot be the case since the Py> N = O0,define a
probability distribution. Thus the Markov chain representing
the number of blocked terminals is not ergodic, and the
broadcast channel under the infinite source assumption is

unstable.

Now consider the finite source model. Using the

rule that pi(k)=0 for i < O, the transition equation for 0O=n<M

is
: n ' .
(13) p (k+l) = jiz pn_j(k)qj(n-j) + Py (Kg (a+D)gg(n+l)

+ p (k) (1-g,(n))qy(n) + p (K)gy(n)q, (n)
+ p__, (k) (1=gy(n=1))q, (a=1)

Defining, for 0 £ N < M, the sum SN as in (8) for the finite
source model we obtain from (13) and substituting the stationary

probability P,

N n



Now take limit ag in Definition | : M»e , b>0 , M.b>d; we

J -
obtain qj(n) = %T e d for any j and n. Therefore, in the
limit .
il d.e«(.1
(15) Sy = Py, 8, (N+1)qy(N+1) + peg (N)q (N) + JZJO TS Sx-j3

and an argument identical to the one for the infinite source

model can be now used to complete the proof of instability.

We note in passing that the finite source model in
the limit as we let the total number of terminals tend to
infinity, and the infinite source model are not identical;
in the infinite model there is a non-zero probability of a
transmission from active terminals in each slot even when
we let k»=, while for the finite source model in the limit

as M+® no active terminal will transmit as k==,

In- the context of this study, another measure of
interest is the throughput of the broadcast channel. Indeed
this may well be the primary performance measure for the sys-

tem under consideration.

Definition 2.

The conditional throughput Dn(k) of the broadcast
channel is the conditional probability that one packet is

successfully transmitted during the k~th slot given that N(k)=n.

Clearly, the conditional throughput cannot exceed
one; it can also be defined as the expected value of the number
of successful transmissions during the k-th slot conditional
on there being n blocked terminals at the beginning of that

slot.
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Definition 3.

The throughput of the brodcast channel is defined

as
- -]
D = lim k»= I D_(k)p (k)
n=0
The conditional throughput is
(17) D (k) = cog,(n) + c,8,(n)

for the infinite source model; for the finite source model
we replace cH and c, by qo(n) and q‘(n), respectively. This
quantity is obviously independent of k, therefore in the

following we shall simply write Dn instead of-Dn(k).

Theorem 2.

For £ > 0, the throughput of the broadcast channel
is zero for the infinite source model, and for the finite

source model as we let M»» , b0 , M.b->d.

The proof is straighforward and not presented here.

3. CERTAIN CHANNEL CONTROL POLICIES.

Various control policies for the broadcast channel
have been discussed-in [11] where these have been classified,
roughly speaking, into three groups : policies which regulate
access to the channel from the active terminals, those which
regulate access from the blocked terminals, and mixed policies.
In this section we discuss two policies in some detail and
give a definition of stability in each case. We see that this

definition will be a variant of (or identical to) the definition
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given above. The first control policy which we shall des-
cribe typifies the first group of policies and it may well
be impossible to implement; the second policy is of the

second group and has a better chance of being realizable.

3.1. A threshold control policy.

An input control policy as defined by LAM [11] is
one which limits access to the channel from the active termi-
nals depending on the present state and past history of the
channel. Borrowing the terminology of Markov decision theory
[13] , a policy is said to be stationary if it only depends

on the present state of the system.

The first policy we present is described in Figure '

2. If the number of blocked terminals exceeds 6 , the thres-
hold, an active terminal which wishes to initiate the trans-
missicn of a packet is not allowed to transmit and joins the
impedad set; if not the transmission takes place as in the

uncontrolled channel. As soon as the number of blocked ter-
minals decreases below © (this can only take place in steps

of one) an impeded terminal joins the blocked set; thus the
number of bloucked terminals can be less than © only if there
are no impeded terminals. The retransmission rate of blocked
terminals is constant. We shall refer of this scheme as the

threshold control policy.

In this context, stability must be defined in terms

of the number of impeded blus blocked terminals.

Definition 4.

Let U(k) be the number of blocked plus impeded ter-
minals at the beginning of the k-th slot for the threshold
control policy. The channel, with this control scheme, is uns-

table if the limit as k-« of Pr{U(k) < j} is zero for all
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finite values of j for the infinite source model; for the
finite source model the same definition is used as M-w,

b+0 , M.b+d. Otherwise the channel is stable.

The following equations, which must be satisfied
by the equilibrium probabilities P, for the number n of
blocked plus impeded terminals at the beginning of a slot,

may be derived.

n <0

n
(19)p = L p -Cj*PnHAI(n+1)c0+pn[clgo(n)-cogl(n)]‘Pn_lgo(n-l)cl

j=o "7J
n 2 0 + 1
n n-0-1
(20) P, = . I P.-;%; * .Z pn_ici[l—Al(n~1)]
‘1=n-6 i=1
n-0 :
vl PaoierCihy (roit) + p o jepd (n+1) + p [1-A (m)]c,

where
gl(e) ifn>09

A (n) =
gl(n) if 0 £ n <0

Equation (20) may be rewritten as :

n n-0-1 ,
(20 », = ZoPami®i T2 Proghy(amidley megdv Py qeohy (ntD)

We obtain the'following result concerning the sta-
bility of the treshold control policyQ For simplicity let
A =g (8).



Theorem 3.

o8 If the expected arrival rate of active packets
A= % ic, for the infinite source model is less than A,
then1=l the broadcast channel with a stationary threshold

control policy is stable; otherwise it is unstable.

The proof is given in Appendix 1.

The threshoid control policy may be quite difficult
to implement in practice. It has a major advantage, however,
with respect to the retransmission control policies we shall
study in Section 3,2 : the maximum achievable channel through-
put is not limited to e_l. In fact the throughput may be ar-
bitrarily close to one if © = 1 since it suffices to set f = 1
in this case. In general, for 0 2 1 , A is maximized by setting
'f equal to £° = 0 ). We then have ACE®) = (l--E)“I)e“1
kor 0>>1 1is A(f*) = exp(~1+e-l) > e"1

is a [ower bound to the maximum achievable throughput. This

which,

. We see here that e”l

does not depend on ‘the Poisson assumption of packet arrivals to

the channel.

3.2. A retransmission control policy.

A retransmission control policy is one which regu-
lates access to the channel from the set of blocked terminals
as a function of the past and present state of the system.

We consider such a policy which only uses information concer-
ning the present state (it is stationary) to regulate the retrans-
mission rate of the ensemble of blocked terminals. The ap-
propriate definition of stability (for this case) is then

that given in Definition | and the equations for the control-
led system are (6) for the infinite source model and (7) for
the finite source model with the following modification. The
parameter f which determines gi(n) (see (3) and (&))giving

the probability that a blocked terminal retransmits a packet

40



during a slot will be a function of n which we denote f(n)

so that
(22) g, () = (O £ -£() 1"

The following result can then be established :

Theorem 4.

A stationary retransmission control policy yields a

stable broadcast channel 1f

and an unstable one if A>d where d = 1im[clgo(n) + cog](n)]-

n->w

; The proof of this result is given in Appendix 2.
We do not have a proof of instability for A=d except for a
special case; the question is only of mathematical interest,

however.

Remark.

In fact Theorem | is a corollary of Theorem 4 since
if (as is the case for the uncontrolled broadcast channel) f

is independent of n we have d = 0.

Another consequence of Theorem 4 concerms the form

which the function f(n) must take to ensure stability.

Theorem 5.

For the broadcast channel under stationary retrans-

mission control to be stable it is necessary that

41



l1im f(n) = 0 and 1lim nf(n) > O

n-+o n->o

Proof.

Clearly if the first condition is not satisfied
we shall have d = O leading to the instability of the channel.
Now suppose that the second condition is not satisfied, that
is 1im n»+e nf(n) = O, but that the first'condition is satisfied.
Then d = ¢. and we cannot have X < d ; therefore by Theorem 4

1
the system will be unstable, which completes the proof.

We see therefore by this last result that a stationa-

ry retransmission control policy (with expected time between
attempts of a blocked terminal to retransmit given by [f(n)]-l)

may stabilize the channél only if f(n) decreases with n but

. 1
no faster then the function n .

3.3. An optimal retransmission control policy.

It is natural to seek retransmission control policies
which will maximize the output rate of the channel; for a
stabilizing policy the maximum value will be d of theorem 4
since the input rate will be identical to the output rate.
Consider

B e\ _eyn—l
Dn(f) = cl(l £) + conf(l f)

By deriving this expression with respect to f and setting the
result equal to zero we see that Dn(f) is maximized by setting
f equal to £ = (c0~cl)(nco-cl)—] for n 2 1, or £F = (I-a)
(n—an)-l if a= CI/CO’ where we are restricted to a < I (for
instance, with a Poisson arrival process a =\ ). The maximum
value of Dn(f) is then Dn(f*) = CO[(n---l)(rx—a)mlfln—.1
limit as n*® we will obtain the throughput d = exp(logc0+a-l).

. In the

42
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1f the arrival process is Poisson we obtain d = e ! as pre-
dicted by Abramson (1) and Kleinrock and Lam (8) for the

maximum throughput of the channel.

On figure 3 we present time series characterizing
channel beheviour obtained by Monte-Carlo simulation with a
Poiéson arrival process of packets from active terminals.
On Figure 3a we show the behaviour of the uncontrolled broad-
cast channel; we see that if the number of blocked terminals
is sufficiently high, the channel is unable to recover (i.e.
it is unstable) and the total number of blocked terminals
increases indefinitely while the channel throughput tends to
zero. On Figure 3b we see the channel behaviour under identi-
cal conditions, except for the retransmission probability
which is chosen to be £¥ . The channel is now able to recover
from an initial state with a large number of blocked terminals
and the throughput matches the input rate. The exact form of
£ chosen in the simulation results of Figure 3b is £ = (l—k)n—x,
where denominator term of £* has been simplified. There is .a
simple intuitive (but non-rigorous) explanation for the choice
of ¢¥ . when there are n blocked terminals and n is very large
the set of blocked terminals will behave as a Poisson source
of parameter f+.n = |-\ ; thus the total input rate of packets
to the channel wiil be A+ £'n = 1| which is the maximum rate it

can admit.

The control policy f‘ could be approximately imple-
mented by simple statistical estimation ot the number of blo-
cked terminals. The estimate could be obtained by a specialized
terminal (or by the data concentrator which receives packets
and sends back the acknowledgement packets) which would deduce
an instantaneous estimate of the number of blocked terminals
by measuring the throughput. It would then send once in a
while an updated value of f# on the frequency used for acknow-

ledgement packets.
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4, CONCLUSIONS.

In this paper we have given a theoretical treatment
of some basic problems related to the packet switching broad-
cast channel. Its inherent instability has motivated us to
look into stabilizing control policies. The first policy exa-
mined has been one in which access to the channel is control-
led by admitting active terminals which wish to transmit a
packet into an impeded set. Necess#ry and sufficient condi-
tions under which the number of impeded plus blocked terminals
remains bounded are derived, and it is shown that with this
policy it is theoretically possible 'to achieve a throughput

which is arbitrarily close to one.

We have then examined control schemes based only
on choosing the transmission probability of any blocked ter-
minal as a function of the total number of blocked terminals.
Sufficient conditions for stability and instability of the
chanrel and necessary conditions which must Be satisfied by
the retransmission probability are derived for this scheme.
We then obtain the optimal control policy for the channel
which maximizes the throughput. This policy appears promising

as a practical means of optimizing channel performance.
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Appendix 1 : Proof of Theorem 3

The theorem is easily established for 6 = 1. It suffices to notice
that in this case the system is equivalent to a single server queue with
binomial service (with parameter A = f) and mean service time 1/f ; the
arrival process is independent in each service interval. It is easily
shown t:iat the model has an equilibrium distribution of queue length
(corresponding to the numbers of impeded terminals) if and only if A «&£A.
Now consider the case 8 > 1. Let L denote the equilibrium probability
that the number of impeded terminals is n for n 2 1 ; qj will denote the
equilibrium probability that there are zero impeded terminals and j blocked

ones. The equilibrium probabilities satisfy for n 2:1’

n-1
@) n = % CA+ I m . [Ci(‘l-A) + CiHA]
i=0
e
+ I g. C . -q,.C A
=0 j n-j+6 6 n+l
oo
Define the generating function G(x) = I nnxn. Then
' n=1
, COA
Quy 6(x) = = (ax) - =) + o(@)[6(x)(1-2) + £ (E&x) - )]
_ Q) -c,
+ ¢ (x) - q.eA . x
where
co 5]
n
x)= I z R <
ot net geo 3 Be3ve
yielding

xQ (x) - qu(CI(x) - CO)"- COAn1
2s5) 6(x) = T xC(x) (1 -4) -aC(x)




Notice that ® = Py, » D =1, q = Py 0< j <6, of equations (20), (21).
By FOSTER's theoren [14] the Markov chain representing the number of blocked
plus impeded terminals will be ergodic (and the channel will be stable) if
there exists a positive solution to (23), of finite sum since the Markov

chain is irreducible and aperiodic.

Suppose q > 0 ; it can be easily shown that q:3 >0, 1< j<8, and
L < 0, n = 1. Denote by F(x) the numerator of (25) ; we first show that
if q >0, then F'(1) > 0. We have

F'(1)

il

b (1) +d (1) - qéA ; nC_
n~-1

o 8
z X g. C . (n+1)—Aan))>0
n=1(j=0 j n=j+@ en

i

since we have A < 1.

Now take lim G(x). After applying 1'HSpital's rule we remain with

x—1
‘ Fr(1) _orr(1)
lim G(X)"—A—c'(l) = A - A

x1

Clearly if A = A and gy > O then G(1) does not exist and the channel is
unstable. Similarly if A > A and 9 > 0, then G(‘I) < 0 which is.a contra-
diction so that again the channel is unstable. The case A < A however
remains to be considered ; taking any finite qo.> 0 we see that since
6(1) < due to the fact that F'(1) is bounded, the sum

6

c(1) + £ q, <=

j=0 °
and FOSTER's theorem is satisfied. Therefore if A < A the broadcast channel
with the threshold control policy is stable. |



anpeadix 2 : Proof of Theorem 4

Let us first determine that the channel is
unstable if A > d. If the limit defining d exists, then
for each ¢>0 there exists an integer ny such that for

alln 2n ,
o

Ig](n) - al < ¢ and lg.o(n) - b| < €

where a, b are constants such that
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d = c a+ c,b
o 1
0 (-4

Let P(z) = I pnzn , Q(z) = I Snzn . Then, from

n=n n=n

o °

(9) and the discussion above we have

n
@6 ) S, ~ jio Sn—jcj < (a+e)pn+lco + (b+e)pncl
and

n
(27) Sn ) jio sn“jcj 2 (a—e)pn+lco * (b—E)pncl
for all n 2 n_ . Thus, from (26), we derive

] n n (a+e)co n_
Q(z) - £ r § .c.z2 £ ~——————— (P(2z)~2z "p + (b+e)c P(2))
- . n=-j j z n 1
n=n_ j=o o

o
Notice that
o n n w n-n o n
) I S__.c.z” = I r®s__.e.2”+ 1 z S "
n=n_ j=o 1 n=n_ j=o 1 n=n_ j=n-n_+1
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Therefore, if we denote C(z) = I csz ,
j=o
(a+e)c° n P
(28) Q(z2)(1 - C(2)) § —F (P(z) - 2z n_

+ (b+e)c,P(z))

o n
+ I L Sn_.c.zn
n=n_ j=n-n_+I 33
o o
The following relationship may be verified :
’ n n_ n
Q(z)(1 - z) =z ° S, +P(z) -2z P, .7 P(z)+z S
n, n, no—l

yielding after substitution in (2R ) and combining terms

1¢ (z) (a+e)co n_ 1-C (z)
(29) P(z2) I - - (bt+e)e ls - 2z ( )S. o
1-2z z 1=z o
no—l
-z (a+e)c°pn
. o
© n
+ I P S .c.z©
n=-3 1]

However

© n © n

E E s _sciz €S ) I I c.z"
n= 33 o n=n_j=n-n_+I1

n j=n-n_+]
o o

et o el RN,
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and

© n ' o o

5 z c.z® < £ I c,2" = F(2)
n=n_ j=n-no+l J n=] j=n 1

where 1lim z »~ 1 F(z) = X .

Returning to (29) we obtain

1-C(z) (ate)c

(30) p(z) | - 2 - (b+€)c]]
1-2z z
n_ 1-c(z) i w
£ S [-2 O (—)+ = b c.zn]
n -1 tmry I
o 1=z n=1 j=n
no-l
-z (a+€)copn

(o]

Now take the limit as z = 1 of both sides in (30 ). Ve

obtain :

31) p(1) [x - (a+e)co - (b+e)cl] < - e Py (at+e)

Therefore if A > d,choosing n_ sufficiently large so
that A - d > e(c°+cl) , we have that eithear P, ~ 0

and P(1) =0 or  JS O and P(1) <O ; in ° both
cases it implies © +hat the balance equations satis-
fied by the equilibrium probability distribution,{pn}
do not possess a positive solution. Thus the Markov
chain representing the number of blocked terminals at
the beginning of each slot is not ergodic and the chan-

nel is unstable if A > d.



Starting with (27) and proceeding by argu-

ments similar to the ones used above we can obtain

(32) P(Y[x - (a-e)c°°(b—e)cl] 2 -Asno.l-(a-e)copno
n

L
n_ j=n-n_+1
o o

+
™8

S _.c.
n n-=3 J

The last term on the right-hand side of (32 ) cannot

exceed ASn » therefore assuming P, is positive

o

-1
.. 0
we may write

P(1)[Xx - (a—e)co~(b—e)c1] 2 - a(no)

where
® n
= + - - :C .
o < a(no) AS 4 (a e)copn z . L Sn~3c3
o o n=n_ J—n~no+l

since by choosing n sufficiently large we know that

a > €. Therefore if X < d , then

a(no)

d—A—e(c°+cl)

P(1) <

assuming that n_ is large enough so that d-X > e(c°+cl).

From (7) we notice that we may write for any n2o
(33) P, = k(n)p,
where k(n) > o ; thus

A . k(j)+(a-e)c°k(n0)

(34) P(1) =

d=-A- £(c0+ci)



Notice that p_ is positive if and only if P, is po-
sitive. We can® now invoke FOSTER's theorem [14] which
implies that the Markov chain is ergodic if there exists
a positive solution to the equilibrium equation (7)
such that P(1) < =«. Setting po=l (or any positive cons-
tant), (33) represents a positive solution of (7) 3

by (34) we will have P(1)< « therefore we have satis-
fied FOSTER's condition completing the proof that the
channel is stqble if » < d. We now have to consider the

case A=d.

For n 2 n  we may vrite

gl(n) =a+u go(n) = b + v

so that from (9) we obtain

aco )
Q(z) [1-C(2)1 = —= [P(2) - z °p 1 + be,P(2)
(o]
(:0 n

+ — [u(z) - zkoun p. 1]

o (o]

Lo n
+ clV(z) + I T S .c.z"
‘ n-j ]

n=n_ j=n-n _+1
o )

o«
u(z) = ) unpnz . vV(z) = T vnpnz
=n n=n

yielding
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(35) P(z) =
o 1-C(2z) n-1C, a
S, —— ~ €, (atu dp, z 4—- U(z)+C,V(z) + Z Z S0-3%52
[ I~z o o n=n_ J~n-n°+l

1-C(z) _ aC, - be

1-2z z 1

For A=d, the denominator of P(1) vanishes. Instability for A=d will be verified
if we can show that the numerator of P(1) does not, or that the numerator of
P(z) tends to zero more slowly than the denominator for A=d as z—1. If

c gl(n) + c8, (n) < 4 for all n‘>n (i.e. if D tends to d from below), then

c U(l) + c V(l)<~0 and clearly the numerator of P(13} is negative for P, >0 and
P(l) does not exist. Under this condition the channel is unstable for %o A=d.
In general however, even though we conjecture that the channel is unstable when

A=d, we have no proof of this.
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A NON-MARKOVIAN DIFFUSION MODEL AND ITS APPLICATION
TO THE APPROXIMATION OF QUEUEING SYSTEM BEHAVIOUR

E. Gelenbe

Résumé :

Par Vinclusion de temps d'arrét sur les frontiéres distribugées selon des lois générales, nous éten-
dons un modéle de diffusion au cas non-Markovien. Le modeéle est appliqué au calcul des perfor-
mances de modéles de systémes informatiques.

Abstract :

Wegeneralizea diffusion model of FELLER by the inclusion of holding times on the boundaries
which are distributed according to a general probabili ty distribution function. The stationary so-
lution associated with the model is shown to depend only on the first moments of the holding
time densities. The model is applied to the approximation of computer system behaviour.
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1, Introduction

Models of multiple resource computer systems [2] have proved to
be a good source of new problems and of general solution technigues
[3—5] applicable to the analysis of networks of queues [i]. The

research reported in this paper was motivated by this class of problems,

A promising method for the approximation of queueing systems with

general service time distributions has originated with the work of GAVER

[6] and NEWELL [7] who suggested the use of a diffusion process to

" approximate the number in queue. Consider for instance the GI/G/1

queue; basic to the diffusion approximation for this model is the assump-
tion that as soon as a busy period begins (i.e. a customer arrives to a
previously empty ;ystem) the stochastic process representing the number

in queue is adequately approxim;ted by the predictions of the central
limit theorem which in reality are only valid asymptotically (as the dura-
tion of the busy period tends to infinity). Thus the behaviour of the
number in the queue when it is non-empty is represented in [6], [7] by

a probability density function f£(x,t) satisfying the diffusion equation

5 3 o 9
(1) -3¢ £(x8) - b g7 £(x,8) + 5 = £(x,t) = 0

ax
where, {X(t), t > 0} being the stochastic process approximating the

number in queue,
(2) f(x,t)dx = Pr{x < X(t) < x+dx} .

Since the approach was intended for heavy traffic conditions it was also
assumed that the lower boundéry at x = 0 for the process {X(t), t 3_0}
should act as a reflecting boundary. This last assumption implies that
no probability mass can collect at x =.0, so that the model becomes

inadequate in predicting the probability of an empty queue. GAVER and
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SHEDLER [8] and KOBAYASHI [9], who generalized this approach to queueing
networks, have chosen the integration constants in the solution to (1)
with reflecting boundaries so that the model correctly predicts the sta-
tionary probability of an empty queue. In [10] some results predicted

by the diffusion approximation are compared with measurements obtained

from simulation experiments and with known mathematical results illustrat-

ing the excellent degree of accuracy obtainable by this new approach.

In a previous paper [iil we proposed the use of FELLER's
elementary return process [iﬂ instead of the diffusion process
with reflecting boundaries to approximate a queueing system,

This is a diffusion process with boundaries to which the process
adheres for epochs which are exponentially distributed whenever
the process attains a boundary ; at the end of the'epoch the process
is reinitialized according to a fixed probability density function,
This riodel proved to be self contained and capable of predicting

a number of results already known from gueueing theory (such as
the ergodicity condition or the probability of én empty queue in
stationary state) exactly. In approximating a gqueue, the epoch
during which the process adheres to the boundary at x=0 (queue
length is zero) is meant to represent an idle period, and this
period is not exponentially distributed in general. This motivated
the non-Markovian diffusion model studied in this paper,

In Sections 2 and 3 we develop a diffusion model which
generalizes the model of FELLER by the introduction of COXIAN
density functions for the holding times of the process at the
boundaries, i.e, density functions whose Laplace-Stielt jes
transform is a rational function [}@ . We then apply this model
to the approximation of the GI/G/1 gueue and to a computer system
model in Sections 4 and 5. In Section 6 we treat the case
where the holding times have arbitrary continuous and differentiable
density functions and prove an interesting and useful theorem :
it is shown that the stationary probability distribution in this

model depends only on the first moments of these densities,



2. A Non-Markovian Diffusion Process

The diffusion process we shall present in this section appears to
be new, though it is a generalization of standard diffusion processes
[12]. To simplify and motivate the description of our model we shall
imagine that the stochastic process {X(t), t > 0}, which will be used
later to approximate the numbe£.in queue, represents the position of a
particle moving on the closed interval [O0,M] of the real line. When
the particle is in the open interval ]O,M[ its motion is described by
a Wiener process with drift; b and o, thé instantaneous rate of
change of the mean and variance of X(t) in this region, are given by

CE{X(e+At) - X () }
At

(3) b = lim
At+0

4) o= 1im EUX(EHAD) - x(£)1%} - [E{X(e+At) - X(8) 1]
At

At>0

For our present purposes it is not necessary that b and o be functions
of x, t; this restriction can be relaxed however.

When the particle reaches the lower boundary of the interval [0,M]
it remains there for a period of time h which is a random variable, at
the end of which it "jumps" instantaneously back into the open interval
]0,M[ to a random point whose position is defined by the probability

density function fl(x). The probability distribution function of h is
(5) F, (r) = Pr{h < r}

and is assumed to be a COX or almost general distribution function [13].

Since we shall be dealing with such distributions it may be useful to

59
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recall here their definition and main properties; we shall do this by
visualizing what happens to the particle which attains the boundary

x = 0. We shall imagine that the particle hitting the lower boundary

and staying there for a random time h spends this time in traversing

the network of Figure 1 which it enters at point A and leaves from B.

This network is made up of a sequence of independent random delays each

of which is exponentially distributed; the parameters of these exponen-

tial distribution'functions are Al,...,An, respectively., After tra-

versing the i-th delay the particle enters the (i+1)-th delay with

fixed probability bi or leaves the network of delays via B with

probability (l—bi). Of course bn = 0. The departure of the particle

from the network of delays coincides with the end of h the holding time

at_the lower boundary and the instantaneous jump of the particle back

into the open interval ]0,M[. Let us denote by fh(r) the probability

density function of h.

the Laplace transform of fh(r) is given )by

(6) f;(s) = f e-srfh(r)dr
0
§ i A
= (1-b,)a I
i<1 1791 j=1 (s+Aj)
where
1 if i=1
(7) a, =
bl..'pi—l if 1 > 1

In fact (6) is the partial fraction expansion of the Laplace transform of

From the previous description we have that fﬁ(s)
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a probability density function where the transform is a rational function
of s 1f the bi and Xi, 1<1i<n, are allowed to be complex quantities.
Thus our only restriction on the random variable h 1s that the Laplace
transform of its probability density function be a rational function.
Such density functions have bFen introduced by COX [14]. Their interest
lies in the fact that they can be used to approximate a demsity function
by matching its firsf K moments, where K can be arbitrarily large.
Also it is useful to note that there is a large body of literature on
approximation by rational functions. Notice that the generality of (6)
is limited by the fact that a positive probability that h is zero is
not allowed; otherwise the expansion (6) would contain a constant term.
When the(particle hits the upper boundary at x = M it remains
there for a random holding time H whose probability density function
fH(r) is also almost general. The parameters in the network of delays
corresponding to H, and similar to those for h shown in Figure 1,

are ul,...,um and Bl""’Bm so that

(8) £1(s) = f:e‘s‘fucr)dr
} g
= (1-B,)A;, 1
i=1 i1 j=1 (s+uj)
where
1 if i=1
(9 A=

B+++By_, if 1>1 .

1)As long as fh(r) is real.

1)

e e 3P



At the end of the holding time at the upper boundary the particle jumps
back instantaneously to a random point in ]O,M[ whose position is
determined by the probability density function fz(x).

fl(x) and fz(x) may be taken to be functioﬁs of the instant at

which the jumps occur. Notice that -

n i 1
10) E{th} = ] (-b)a; ] + .
i=1 j=1 73
This may be rewritten as
n , n
Eth} = § 5= I (-b)a
i=1 i j=i

and it is easy to show that for 1 < i < n,

n
(11) a; = g(l—bj)aj .
j=i
Therefore
n ai
(12) E{h} = — -
i=1 i
Similarly
m Ai
13) E{H} = ] = -
i=1 "1

Let us introduce the notation

62



63

(14) v @b, ws e .

1f Var(h) denotes the variance of the random variable h, we see that

some simple algebra yields

™
o
>

(15) var(h) = , Var (i) = |

i ~8

i=1

>l
b o

That the procéss {X(t), t Z_O} defined in this section is non-
Markovian is easy to see: once the particle is at any one of the boun-
daries the additional time it will remain there is not independent of the
amount of time.it has fesided at the boundary up to the present instant.

Let {k(t), t 3_0} be the stéchastic process such that for all t >0,

k(t) € {"'ﬂ,"n“!'l,...,o,l,...,m}

and
-j, 1<3j<n, if the particle is in the Jj-th stage
J of the holding time h
(16) k(t) = ¢ 0, if the particle is in ]JO,M[

l i, 1<ifm if the particle is in the i-th stage’
of the holding time H.

Then the process {(X(t),k(t)), t > 0} has the Markov property.
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3. The Equations for the Model
Let f = f(x,t) denote the probability density function of the

stochastic process {X(t), t > 0} in the open interval ]O0,M[ and let

Ax,t and Cx,t be operators defined by
(17 A fe-lp-oRprel® o
X,t at 9x 2 5 2
X
1.9
(18) Cx,tf - bf + > Bn of .

Also let Pi(t), 1 <i<n, be the probability that the particle is
in the di-th stage of the holding time at the lower boundary at time t

while Q(t), 1<i<m, is the probability that it is in the i-th

stage of the holding time at the upper boundary at time t. The equations

describing the evolution of the particle are

n

(19) Ax,tf + Z

m
LA AP (08 0 iZl“i(l“Bi)Qi‘”fz"‘) =0

- AlPl(t) + Co,tf s if 1i=1

AP () +A b P (), if 1<i<nm.

]

(20) EEPi(t)

- ulQl(t) - CM,tf , if i=1

M Q) + 1y (B 1Q (8, if l<igm.

(21) +q, (0

where
' 1 3
Ch £ = lim [~ bf + = == af]
0,7 3o 2 3x
= - 13
,tf = 1lim [~ bf + 7 3% af ] .

x- M
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Define P(t) the probability that the particle is at the lower boundary
at time t, and let Q(t) be the corresponding quantity for the upper

boundary. We then have that

n m
P(t) = ] P.(t), Q(t) = ] Q(t)

i=1 =1
and
o .
(22) 3c P(O) = - izlxiu-bi)l’i(c) + Gy of
d m
(23) 76 U = - T u A-BQ(e) ~ Gy f .

i=1

Equations (19), (20), (21) are simple to interpret. Suppose § is a

subinterval of  ]O0,M[. Then (19) can be deduced from

2 n
) - | -2 129 -
(24) 3¢ jgf dx = JQ[— 2f t 3 g;iaf]dx + 'lei(l b )P, (t) fﬂfl(x)dx

+ izui(l-Bi)Qi(t) szz(X)dx
which states that the rate of change of the probébility mass in  is
equal to the rate of flow of the probability mass via the boundaries of
2 (the first term on the right-hand-side of (24)) plus the rate of flow
from x = 0 and from # = M (the second and third terms, respectively,
on the right-hand-side). 1In order to deduce (20), notice that for

1<41i<n we may write for any 't > 0,
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(25) Pi(t+At) = (1= )\iAt)Pi(t) + Ai__lbi_lAt Pi-—l(t)

since the time the particle spends in any one of the stages in Figure 1
is exponentially distributed; by collecting terms, dividing both sides
by At and taking At > 0, (25) yields (20) for 1 < i < n in the
usual way. For obtaining (20). with i = 1 a similar procedure is
applied if one notices that Co,tf is‘the flow of probability mass out
of ]O0,M[ from the lower boundary and, of course, into the first stage
of the holding time at x = 0. A similar interpretation can be given for
(21); notice now that -CM,tf is .the flow of probability mass away from
]0,M[ via the upper boundary.

In addition to (19), (20), (21) appropriate boundary conditions for
f(x,t) must be specified and initial conditions (at t = 0) must be
given for the stochastic process. Since the boundaries at x = 0 and
x = M behave as absorbing boundaries during their respective holding
times we set lim f(x,t) = lim f(x,t) = 0 for all t > 0. Of course

x>0 M+0
we set

M
dex+P(t)+Q(t)=l .
0

4. Application to the GI/G/l Queue: Stationary Solution

IA this section we propose an approximation to the number in a
single server queue wifh general service time distribution of mean 1/u
and variance Vs’ independent of the interarrival times or of queue length,
and with independent interarrival times having a general distribution

function with mean 1/)X and variance Va. The stochastic process
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{X(t), t > 0} approximating the number in queue at time t takes values
on the non-negative real line [0,[; it is of the type defined in the

previous sections and its behavior is given by the equations

’i

(26) Ax’tf + i—lxi(l-bi)Pi(t)d(x—l) =0
and
: - AP (t) + C £, if i=1
27) é% Pi(t) - 1'1 0,t
- AiPi(t) + Ai_lbi_lPi-l(t) , if 1 <i<n.

where &(x) is the unit (probability) mass concentrated at x = 0. 1In
this model the case X(t) = 0 refers to the empty queue; an arrival ag
time t to the empty queue corresponds to an instantaneous jump of
X(t) from 0 to 1, hence the value fl(x) = §(x~-1). For a finite
value of t there can be no probability mass at infinity hence we only
have a probability mass P(t) at the origin. When the queue becomes
empty, the general arrival process is being approximated by an almost
general process in the sense of Section 2 of this paper with appro-
priately chosen parameters Al,...,kn and bl""’bn' The parameters

b and a in the operators A and Cx are chosen from the pre-

X,t ot

dictions of the central limit theorem as in [7,8,9]:
(28) b=A-1

.3 3
ﬂ29) o= A Va + U Vs .

X, the mean arrival rate to the queue, coincides with (E{h})-l, where
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h 1is the random varlable representing the holding time at the lower
boundary for the diffusion process. Since there is no upper boun~
dary to the process being considered the definition of u given in (14)
is irrelevant to the discussion in this section. Let us denote by

2

Ka = A Va and KS = uZVS the squared coefficients of variation of the

interarrival and service times, respectively.

Let us denote by f(x) and Pi’ 1 <i<n, the stationary dis—~

tribution for {X(t), t > 0}; it is obtained (when it exists) by setting

5 dPi(t)
Y 0, T 0, 1<1i<mn, in the system of equations (26), (27).
The appropriate boundary condition is still lim £(x) = 0. P shall be

x>0
the stationary total probability mass at the origin. The following

result can be obtained.

Proposition 1. Let {X(t), t > 0} be the stochastic process defined

in this section approximating the number in queue for a GI/G/1 system.
Its stationary probability distribution exists if p = (A/u) < 1.
Furthermore it is given by

p[e-Y-—l]eYx , 1f x

> 1
(30) f =
pl1-e"*] , if 0<x<1.
(31) ’ P=1-p
ua Aa
(32) P, = —Xi p(1-p) = —=(1-p)
i i

where
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_20-p)

pKa+Ks

(33) Y

The approximate expected queue length at stationary state is given by

o w 1 pKa+Ks
(34) L = Joxf'dx =plz+ E?T:BT] .

We shall not go through a proof of this result since it is very
similar to that cf Proposition 2 given in Section 5. It is interesting
to notice that the diffusion approximation of this section is able to
predict the stationary probability of an empty queue P exactly as one
would expect to obtain from quéueing theory; previous approaches to
diffusion approximations [6,7,8,9] will not yield this result unless it
is expressly introduced. Of course the fact that the total probability

mass is unity
{v o]
P+ J fdx=1
0

has been used in obtaining our solution. Another interesting pcint is
that L of (34) has a form similar to the POLLACZEK-KHINTCHINE formula

for the M/G/1l queue which is

P(L+K))

L=p[l+ —EYI:SY-

]

In fact, if we set Ka = 1. in (34) in order to approximate a Poisson

arrival process we obtain that the error is
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—A:'.'.R -—
L-L=73[1 Ks] .

It is important to note that as p =+ 1 the relative error (L-f)/L
vanishes, and that it vanishes as well when KS = 1 (for the M/M/1
system). If we had discretized the probability density function £(x)

" by defining the probability of- i customers in queue as

i
m,o= I f dx , for i2>1
i-1

and taken the average queue length as being

; . pKa+KS
L' = in, = pll+ =]
i=1 i 2(1-p)
we would have had
1
- T = e =
L L 2 sz .

Again the relative error vanishes as p = 1,

What is most interesting is that the stationary probability of an
empty queue and all the moments of the stationary queue length distribu-
tion predicted by Proposition 1 are independent of all moments but the
first of the holding time distribution at the origin.

It is essential to note that in our approximation method the random
variable h refers to the time interval between the last departure from
the queue of a busy period to the first arrival of the next busy period.

I1f the arrival process is Poisson it is natural to take A = (E{h})—;,

1) This will be proved in greater generality in Section 6.

v
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as we have done. However if the arrival process is not Poisson then the
interarrival time distribution and the distribution of h need not
be the same. Let us consider briefly the case where (E{h})_l = )\' # A.

With this assumption the stationary solution of (26), (27) becomes

R[e"Y —l]eYx s X221
(35) f = x

R[1-e"], 0<x<1

A'ai .
(36) P, = —4—=(1-R) , 1<i<n

i
(37) ‘ P=1-R
where
A'

(38) R = TR

The condition for existence of the stationary solution is still
p=A/u <1 since it is derived from the condition Y < 1. We see how-
ever that the usual queueing theory result P = 1-p will only be

obtained if we set A' = A,

5. Application to a Closed Two-Server System

With General Service Time Distributions
A special case of the model presented in Section 3 will be proposed
here as an approximation to a queueing system containing a finite number

of customers and two servers.
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The system whose behaviour we wish to approximate is shown in
Figure 2. It consists of a céntral processing unit (CPU) and an input-
output device (IOD); a finite fixed number M of programs are being
executed in the system. We shall assume in this section that service
times at the CPU are independ§nt and identically distributed (i.i.d.)
random variables with distribution function with mean u-l and variance
Vs; they are -independent of the service times at the IOD which are also
i.i.d. random variables of mean A-l and variance Va. In general we
do not exclude the possibility that A, Va, ¥ and Vs be functions

of M.

The approximate model is described by the following set of equationms,

where the operators Ax . and Cx . are given by (7 ) and (18).

4 ’

n m
(39) A £+ ) A (=6 )P (£)8(x-1) + g by (1-B,)Q, (£)§(x-M+1) = 0
i=1 i=1
-AP. (t) +C, f, if 1=1
40) f?"i(t) - 11 0,t )
AP () + Ay by P (B), if 1<i<n
- - £ if 1 =1
; I RTCGI N
(41) 5 (B =

i“uiQi(t) + ui__lBi_lQi_l(t) , if 1<i<m

Here f = f(x,t) is the probability density function for {X(t), t > 0},
the.process approximating the number of programs in the CPU queue, when

this number is in JO,M[. The epoch from the instant that the CPU queue
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becomes empty to the arrival of the first customer is represented by the
holding time h at the origin which is assumed to have an almost general

1""’An and

1""’bn' The corresponding parameters for H, the epoch from the

instant that the IOD queue empties to the arrival of the first program

distribution function (see Figure 1) of parameters A

b

to this queue, are ul,...,um and B Bm' The boundary conditions

1,-...,

are that f(x,t) vanishes at x =0 and at x = M. As in the previous

section, we take b = A~y and a = A3V3-+u3vs as the parameters in

erators A and C .
the op X, t n X, t

Proposition 2. Let {X(t), t > O} be the stochastic process approximating

the number of programs in the CPU queue of the multiprogramming system
described in this section, and whose probability distribution function
satisfies (39), (40), (41) with the boundary conditions mentioned above.
Its stationary probability density function exists ahd is given by

YX
K[i-e 1, 0<x<1

- Yx
(42) £=<CKleV-1le , 1<x<M-1

kle? XM _ 1) YDy < x< M

with P and Q, the probability masses at 0 and at M, respectively, at

stationary state being

(43) o8l , Q=k (- e’ ™

where p =X/ u , and



K = p(1 - ple YOI

This result can be either verified by substitution in (39),(40),
(41) with the appropriate boundary conditions and setting partial
derivatives with respect to time equal to zero or can be obtained by
solving the differential equations‘directly. The.verification of the
result is left to the interested reader. It is interesting once again
to notice that the stationary solution obtained depends only on the

expected values of the holding times at 0 and M.

On Figure 3 is summarized the result of some simulation
experiments conducted by M. BADEL and V.Y, SHUM concerning our model
predictions.ﬁor the model described on Figure 2, The quantity
" plotted is the absolute value of the error term relative to the
gquantity obtained by simulation, for the stationary probability
(1-P) that the CPU is active. That is, if 7= (1-P) obtained
from the diffusion madel and B is the corresponding quantity, then
the guantity plotted is 'n-—B]/‘S. Two sets of simulation results,
one with constant service time at the 10D and the other with
exponentially distributed service time at the I0D0 are given. In
each case we have also plotted the estimated confidence intervals
for a 95°/o confidence level., The value of p has been varied between
0.25 and 0,9 and M has been varied between 1 and 10 ; the relative
error plotted for each valug of Ks is the maximum absolute relative
error over all these values of p and M for a given value of Ks . This
error remains relatively low, and in any case is smaller than the

width of the confidence interval.
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6. The Diffusion Mcdel with Genersl Holding Times st the Boundaries

Consider the following equations

(44) Qh, t) = 3P (V.‘ t) + oP (.V, t)
dt dy ot

I
=

(y) P (y, t) + {Co,tf} 6 (y)

(45) dg (z, t) =3Q (z, t) + 39 (2, t)
— dt oz ot

=-v (z) Q(z, t) - £CM, tf] &5 (z - M)

(46) A, T+ {]; uly) Py, t) dy).f1 (x)

+ Q/; v (z) Q (z, t) dz) £, (x) =0
where f (c, t)=f (4, t) =0 , and
I.‘Mf(x t)dx+rmP( t)d‘er( t) dz = 1
JO X1 JO Yo Y+Jo Z, 2=

(47) uly) =gl ,v(z)=h(z)

1 -¢ (y) 1 - K (z)

¢ (y), H (2) are the probability distribution functions of total time spent

by the process {X , t 2{0} on the lower and upper boundary, respectively,

and g (y), h (z) are the corresponding dénsit}es (which are assumed to exist).
The sbove system of equetions gereralizes (19), (20),A(21) to the case where
the holding time probability distribution furctions G (y), H (z) are continuous
but not necessarily Coxian. f, (x) and £, (x) are the density functions
(definied on [0, M]) for the value taken by {X , t = O} at the time just after

t
a jump from the lower and upper boundaries, respectively. The probtabilities

P (y, t), Q (z, t) are :

it
!

Py, t) =P [X =0, 7€)t -y, t] and X, _ v > 0]

-

Q (z, t) M, t€] t - 2z, t] and X, _ , <M

e [X
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The fcllowing result states that the stationary solution to (44) (45), (46)
depends only on the expected values of the holding times at the upper and

lower toundaries, Let
o0 o0
-1 [Tt n (t) at
A ..fotg(t)dtp = fo

P(t)= dy Py, t) ,Q (t) —fo dz Q (z, t)

P (t), Q (t) are the probabilities that X = 0, X, = M, respectively.
y t t

-

Theorem : Consider ihe stationary "solution to (44), (45), (46) for
P(t), Q(t),f(x,t) , obtained by setting

oP (y, t) =0, gg,) =0

ot Ot
It depends on the expected values of the heolding times at x=0, x=M, and
is independent of all higher moments of the holding time distributions. Thus
the stationary solution is identical to the correspondlng solution when

the holding times are exponentially distributed with means A -1 , ~1

Proof. : The stationary solution to (44) is P(y)= 11m P(Y,t)= a(y)ekp(.fg u(s)ds)
yielding P(y)= a(y) (1-G(y)), where a(y) is obtalned using the boundary

condition £(0,t)=0 in (44) and carrying out the usual substitution s SO

that
ay) = [%(n f)Jx .
so that oo
P =fo P (y) dy =~ [_?.(a f):l
2 ox x=0
Similarly

- [-aen)

also we obtalnu,

foub)P(§) dy:%’[_\).(af)] = AP
o] x =0

X

[ v (z) Q (2) dz = p ¢

Jo
so that (4€) becomes at stationary state

(48) - 2(bf)+ _2%(a £eapr (x)+pQ £, (x) =
ox x
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which is independent of all moments but the first of G(y), H (z). This

completes the preccf.

This result is particulary interesting since it states that if we are cnly
interested in the equilibrium solution to the non-Markovian diffusion

model it suffices to solve the corresponding Markovian diffusion model,

-
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