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ABSTRACT

Scene analysis has long been a fusion point between the fields of
pattern recognition and artificial intelligence :' it integrates techniques from
both disciplines., Usually, these techniques are applied to single frames
containing static images, but reéentiy there has been growing interest in
developing techniques which could be applied to scenes containing moving
images. This report contains two major parts: the first part is a survey
of the computer systems, as reported in the lite.rature, which attempt
to analyze scenes containing moving images; the second part is a detailed
description of a system developed by the authors to analyze scenes containing
moving planar curvilinear objects. Included are examples which indicate the

success of the authors' system,as well as the need for further study.
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1. INTRODUCTION

This report has two main purposes. The first is to present a detailed
description of previous attempts to develop computer systems which analyze
the temporal features of a visual scene. Chapter 2 begins with a general
discussion of this problem domain, but is primarily concerned with a survey
of the recent literature bn what we will refer to as dynamic scene analysis.
The second purpose is to present the: results of our attempt to develop a
dynamic scene analysis system, and Chapter 3 contains a rather detailed
discussion of the program as well as some of the examples which have
been analyzed. A brief descriptién of the human visual system will comprise
the remainder of this chapter and set the context for the further presentations.

The human eye, indeed any biological vision system, has an enor-
mous capability for efficiently and effectively transferring complex informa-
tion. The study of biological vision systems has shown that the eye is not
a mere transducer which accepts visual stimuli and transmits neural stimuli;
the transference process also involves the correlation and integration of
both spAatial.and temporal features of the visual stimulus. The psychological
literature is replete with studies of visual perception, but a few representa-
tive texts are those of Refs. 1-3. The endeavor to develop computer systems
with these capabilities is generally called scene analysis.

The papers presented in Refs. 4-6 give a good indication of the scope
and depth of the field of scene analysis: they show that the prime concern

has been to develop methods to detect, represent, store,and manipulate the
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spatial features of a scene, Thus scene analysis systems analyze a single
static image or picture in order to determine the constituents of the image
as well as obtain information about their structure. In most cases the
problem of analyzing the temporal features of the visual stimuli has been
put aside for further study; but it i8 clear that in biological systems the
dynamic nature of the stimulus is used extensively. In fact, Johannson [7]
states that "a frog or chameleon, for example, can perceive and catch its
prey only if the prey is moving." Various studies [8,9,10 on the eyes of
cats, frogs,and rabbits have found physiological structures specifically
for detecting motion. MacKay [1 1] presents a theory that humans have
similar structures, and Schouten [12] concludes from his experiments on
humans that "these findings strongly support MacKay's hypothesis that
‘detectors of motion as such' exist in the human visual system.®

The retina of the human eye has an uneven distribution of receptors,
with the highest density around the fovea. Price [13] states that "visual
acuity is best at the fovea," and "since acuity is so poor at the periphery,
the eye must be moved around the scene so that areas of interest are
projected on the fovea."” The attentive processes of the human visual sys-
tem operate on the stimuli which impinge upon the fovea, while the pro-
cesses on the periphery must recognize "areas of interest” for future
attention. Thus there must exist parallel processes, some of which perform
the detailed attentive functions at the fovea, while others "watch” the

peripheral areas of the visual field for interesting features. Clearly,these




features could be shape, texture,and color; but more importantly, movement

is such a feature. Price [13] states “"the periphery is sensitive to motion;
a movement in the periphery attracts attention." Just as the peripheral
processes must be able to detect motion and diréct the attentive processes
to it, the attentive processes must be able to track the movement and attend
to the details of the objects in motion. These two phases of visual percep-
tion are exemplified by a person who is crossing a street. The person must
be able to notice "out of the corner of his eye" the movement of a car, as
well as be able to look at the car and judge its speed and direction of move-
ment. Chen and Jones [14] give a sketchy description of a similar multi-
leveled system,

It should be noted that the two phases mentioned above are,essential-
ly, not cognitive processes. A higher-level cognitive process is required to
decide questions such as which detected area of interest should be
attended to, and what detailed features should the attentive processes
consider? This multilevel structure implies that the various processes
deal with the stimuli at different levels of abstraction: the peripheral or
motion detection processes react in terms of movement itself in various
areas of the visual field: the attentive processes refer to the motion of
particular (if yet unnamed) objects; while the cognitive processes relate
both of these to the current "psychological get" of the person, his know—

ledge, and expectations.




2. A HISTORICAL SURVEY

2.1 Dynamic Scene Analysis in General

This chapter will describe several computer systems which perform
the functions of the peripheral and attentive processes discussed in the
previous chapter. Since the analysis required by these two types of pro-
cesses is quite different and since no system currently performs both
functions, the description will be split into two sections. But first, we will
discuss the genéral problems involved in computer analysis of the temporal
features of a visual scene, referred to here as dynamic scene analysis.

The general, problems discussed in this section are problems encountered
by both the peripheral and attentive phases of dynamic scene analysis.

In contrast to the s.ingle static image usually taken as input by
standard scene analysis systems, a dynamic image is the input for the
systems described here. A ”dimamic image" is a series of static images
(referred to here as frames) with a given or assumed time function relating
the order and the elapsed interval between elements of the series. This,
of course, is taken from the paradigm of the dynamic images generated by
the static frames of a movie; however, the concept is founded, as is any
discretizing function, on the principle that if the sampling interval is
smaller than the interval required to resolve the smallest feature of interest,
then no important information is lost by the function.

The analysis of dynamic images differs from standard scene analysis

in that not only must information be extracted from each frame, but informa-

4




tion must also be extracted from the series as such: this means that

the details derived from each image must be integrated into a coherent
whole. This integration is not a simple compiling of facts, because change
is occurring in the appearance of the scene between frames; thus a given
feature or structure of a scene must be recognized even though it is con-
tinually changing. But the changes as well as the structures are important
in dynamic image analysis, so the techniques used to recognize the struc-
ture, regardless of a certain set of changes, must also be able to identify
the changes that occur. This process is further complicated by the existence
of noise in the scene: noise introduces changes which must be ignored.
Thus, a dynamic image analysis system must be able to separate the con-
stancies from the changes, and be able to separate the interesting changes
from the noisy ones. In a slightly different form, Futrelle [15] presents

this aspect of the problem by saying that analysis of dynamic images

...is not, in fact, a case of concatenating the analysis of
a number of static frames. Explicit algorithms would have
to be devised to correlate sequential frames, to associate
apparently different but semantically identical items, to
handle objects which progressively occlude one another or
otherwise appear or disappear, etc., ad nauseum.

Figure 1 contains the gray-scale overprints of two frames which show how

"gsemantically i&entical“ images may appear different in dynamic scenes.
Of particular interest in Futrelle's quote is that he included occlu-

sion as part of the ad nauseum. Indeed, occlusion remains a major problem

in both static and dynamic scene analysis. Although some amagzing results
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Figure 1. Two Frames Showing the First Major Problem in Dynamic
Scene Analysis: Associating Semantically Identical
Images Although They Appear Different.




for analyzing occluding objects have been obtained for polygonal shapes

in static [16] and dynamic [17] scenes, these methods do not seem to be
generalizable to scenes containing curvilinear shapes. Kasvand [18]

describes the problem of occlusion as a paradox. In his words,

... we immediately encounter a paradox, i.e., it is im-
possible to extract one object from the picture before the
object is recognized and it is impossible to recognize the
object before it is extracted, standardized for size, etc.
In other words, attempts to process one complete object
for recognition will not succeed.... Most often this diffi-
culty is avoided by defining that the objects are not to
touch or overlap. However, the paradox is one of the
fundamental problems in picture analysis....

Figure 2 shows several frames from Ref. 19 which show an apparently single
object as analyzed into its appropriate occluding parts.

As the task of dynamic scene analysis has been described here, it
contains two major problems: (&) to associate vgemantically identical”
images although they appear different: and (b) to solve the occlusion
nparadox”. We shall now turn to a description of various attempts to
analyze dynamic scenes, and later return to these problems to present some
promising directions for the further research needed to solve them. Table 1
lists the papers surveyed in tiue next two sections in a chronological
ordering within the major subdivisions, with common techniques noted

where applicable.

2.2 Motion Detection

The majority of what little work has been done on dynamic scene
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Figure 2. Consecutive Frames Exemplifying the Second Major Problem in

Dynamic Scene Analysis: Occlusion.
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analysis concerns motion detection systems. The methods used in these
systems are best suited for the peripheral "attention attracting" processes
because they involve features which are in some sense global. In most
cases the analysis yields a motion vector for an entire frame or some arbi-
trary subset of it. They do not pick out entities within the scene, which
means that although they tend to solve the first of the two major problems
listed above, they cannot solve the second problem., The details of these
problems will be presented as each system is discussed.

The first dynamic scene analysis i:roblem to gain much attention
was the automated detection and measurement of cloud motions from satel-
lite photographs, and we will discuss two such systems in this section and
one in the next section. Leese, et al [20] use two methods to implement
their automated system: in each case, they compare two successive pic-
tures with the first picture divided into systematic sections (64 x 64 pixels);
then for each section, some reasonable area’of the second picture is
searched for a good match to the original section. The first technique is
to form a “"cross-correlation coefficient” using the fast-Fourier transform
on the full gray-scale values within the section. The cross~correlation
coefficient is computed for each pairing of the original section to a candi-
- date section in the second picture; the candidate section which yields
the maximum coefficient is chosen as the match. The second technique is
to first form binary images of the original pictures by recording a one for

each spatial point whose gray-scale value is within a given interval,and a
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zero otherwise. This interval was chosen to yield the edges of the cloud
formations, i.e., a value greater than the dark background yet less than
the bright interior of the formations. The sections of the first binary image
are then mapped to an appropriate match in the second binary image by a
nrelatively simple matching technique,” which is a modification of a method
developed by Moore and refined for cloud motion study by Bristor et al [21,22].

In both cases, the motion vector is computed as the distance and
direction between the center of the original section to the center of the
matched section; this essentially assigns a motion vector to the section,
not to any feature within the section. Herein lies the major drawback of
this system: the pictures are sectioned arbitrarily so that if there are two
or more features in a section, each having a different motion vector, the
section cannot be matched in the second image, alternatively, the section
is matched but the resulting vector is a weighted average of the actual
vectors. This particular problem is discussed in more detail in Ref. 23: the
authors state that "neither technique was successful in discriminating the
motion vectors when there were two or more layers of clouds present”;
they conclude that "the inability of the automated techniques to discriminate
among multiple cloud layers present in the same image sector precludes
their implementation as a completely automated operation.”

Arking, Lo,and Rosenfeld [24] present a summary of a series of
papers [25-2 7] on the use of two Fourier-transform techniques to estimate

cloud motions from a pair of successive pictures: the first technigque is
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to perform cross-correlation on the gray-scale values of the two pictures to
form a measure of the indicated motion; the second technique is a phase-
shift analysis in the frequency domain of the transformed images. The
phase-shift method has the advantage that,computationally,it is simpler

than cross-correlation; it has the additional feature that it yields "many
independent estimates"” of the motion, whereas the cross-correlation method
yields one. This would appear to be an advantage; however, the various
estimates have proved difficult to analyze coherently in all but the most
straightforward examples,

Each technique was applied to both simulated and real images. Figure
3a shows consecutive simulated frames (taken from [24]) in which two clouds
are moving together. Both techniques gave good results even though most
of one cloud has moved out of the field of view. Two more frames in which
the clouds are moving in various directions are presented in Figure 3b; in
this case, the cross-correlation vields a weighted average of the velocities,
while the phase-shift method gave inconclusive results,

The authors conclude that other techniques are necessary to pre—
process the images in order to separate the clouds into groups that are
likely to be moving together, and then the Fourier-transform methods can be
used to analyze the motion of each group. They suggest that if the altitude
of the clouds could be determined, it would be an appropriate feature on which
to base the separation processor,

Potter [28,29] describes a system which uses motion as a method to
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segment a scene into objects. His original work [28] focused on the points
of a grid superimposed over each of two gray-scale images. For each point
of the grid, he calculates the distance to a discontinuity in the gray-scale
image or to the boundary of the image in each of four directions; this
yields eight distance measurements (four for each picture) for each grid
point. From these distance measurements, eight motion measurements are
calculated, which in turn allow each point to be classified as being in
either the "body" of an object, the motion "shadow" of an object, or the
background. Clearly, the problem with this type of analysis is that it
classifies the points of the grid and not features, in either of the pictures.
The motion "shadow' classification is one good example of this because it
represents a feature which is in neither of the pictures. An area on the grid
is called a "shadow" if an object occupied that area in one of the pictures,
but did not occupy it in the other; actually, "shadows" are features of the
difference image between the pictures, not the pictures themselves.

Potter recognized the problem of focusing directly on grid points,
and in his latest work [29] he presents a variable *cross-shaped template”
which is generated from the first picture, then searched for in the second
picture. The term “cross-shaped" refers to the fact that the template
has an "arm" in each of the four directions. The template is variable because
the length of each arm is determined by the distance in the direction of the
arm from the center of the template to the nearest discontinuity in the gray-

scale image of the first picture. After such a template has been generated,
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a heuristic search for a match is begun at the same grid point of the second
picture. If a match is found, then a velocity value is computed by comparing
the position of the matched templates and this value is associated with the
grid point of the center of the template in the first picture; if no match is
found before a preset search limit is reached, then a null value (different
than zero) is associated with the point. Now, the scene of the first picture
can be segmented by grouping together points which are associated with the
same velocity values.

Potter states, "the avowed purpose of this procedure is to obtain a
crude first approximation of the basic object segments in a scene." Indeed,
this must be taken as a simple tool to be used to complement other segment-
ing processes. The clearest example of this is that if a series of scenes
have an object moving in them the process will correctly extract the object,
but if the object slows to stop it will be swallowed up by the background.
There are several fairly trivial problems such as just mentioned, but
there are two debilitating problems: the first is that the procedure cannot
analyze occluding objects; the second and most important is that the ob-
jects are not allowed to exhibit rotational velocity. The second problem
is of prime importance because rotational velocity is an integral part of any
motion, and yet it does not appear that the prdcess can be readily extended
to analyze rotational velocity.

The papers [30,31] described in the following do not deal directly

with motion analysis; they do not attempt to recognize any particular
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feature in either of the two successive pictures, therefore they cannot
ascribe motion to a feature or even to the scene as a whole, They do, how-
ever, address the problem of determining areas of change between two images
of the same scene. The areas of difference are found by a simple subtrac-
tive process, but the simplicity of this operation requires that the images
must be carefully aligned by both spatial coordinates and intensity value.
The spatial registration is done by considering one image as the reference
image and then distorting the other image until they are aligned: the dis-
tortion is a localized procedure which operates o'n subregions (Ulstad calls
them submatrices) of the images. Cross-correlation techniques are used to
compute the amount of distortion necessary to align a subregion with its
corresponding subregion in the reference image. After the spatial registra-
tion has been completed, the gray-scale values must be matched® Lille-
strand calls this "transparency rectification", while Ulstad refers to it as

"moment matching" because the process matches the first two central mo-

ments of the gray-scale values of a given subregion with the moments in the
corresponding subregion in the reference image.

Once the images have been "rectified" a point-to-point subtraction
process generates a third image which displays the small-scale differences

between the given images. "Small-scale” is an important qualification be~-

cause it seems that the areas of change must be of a size which is inconse-
guential to the rectification process, otherwise these processes would be-

come lost when trying to match the subregions.
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A hardware implementation of another subtractive method is discussed
by Limb and Murphy [32]: here the first of two consecutive frames from a
television camera is delayed so that the corresponding pixels of each frame
can be compared. In addition to those between-frame comparisons, within-
frame comparisons were made among pixels and their suitable neighbors.
The within-frame comparisons are used to normalize the between-frame
comparisons: these comparisons are essentially the absolute differences
of the pixel intensity values and are summed over the entire frame. This
yields a velocity estimate for the frame as a whole and not for any feature
in particular; in fact, the system has not been tested on scenes with more
than one moving object,much less on scenes containing occluding objects.
Additionally, it appears that there are some rather subtle relationships be-
tween the texture of the background and the effectiveness of the system.
In the face of these difficulties the system did give fairly accurate estimates
for the velocity of an object which was moving in the range of 0 to 3 pixels
per frame: the authors propose extensions to the normalizing process, which
should give better velocity estimates. Yet, the system remains fundamen-
tally a motion-detecting process because it "provides an estimate of the
average picture element displacement" between the frames.

A rather different form of image-differencing is used by Nagel [3 3]
to initially extract a single moving object from a dynamic scene; the
velocity measures calculated from the initial extraction are then used to

further refine the form of the extracted object. This system uses a complex
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dynamic image. From the original sequence of frames two subsequences
must be chosen so that the initial phase can analyze the differences be-
tween corresponding frames of the two subseguences, while the refinement
phase can analyze the similarities of the consecutive frames of the second
subsequence.

Each frame is segmented by a modified versicn of Yakimovsky's
region-growing algorithm [34,35]. The remaining analysis is performed on
these regions., Corresponding frames of the two subsequences are compared
to find overlapping regions whose gray-value distributions are similar;
these matched regions are then removed from the frames of the second
subsequence leaving the unmatched regions of each frame. If the two sub-
sequences have been chosen correctly, then the largest 4-connected group
of unmatched regions will be a good initial estimate of the moving object.
Velocity vectors are now computed for the "object-candidates” by performing
cross~correlations of the region boundaries in consecutive frames of the
second subsequence. Using the velocity estimates,the "object-candidates”
of all the frames can be spatially normalized, superimposed, and passed
‘through a thresholding procedure to yield a final representation of the
moving object.

This last process is similar to Potter's approach in that it requires
the object to exhibit only translational velocity, while the initial process
is similar to the differencing schemes previously mentioned in that it can-

not handle more than one moving object. The entire approach, however, has
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the more serious problem of specifying the proper subsequences. This
choice is critical to the performance of the system, yet the author can
only suggest how it might be done automatically, since in the examples
given it was chosen manually.

The next paper, Chow and Aggarwal [36], is dissimilar from the
other papers in this section because it relies on a preprocessor to extract
the objects from the frames; but, the system is more importantly similar to
the other systems in that it analyzes features global to the objects. Some
of the features used are the area, the position of the centroid, and the
angle (with respect to horizontal) of the second central moment of the figure.
The dynamic scenes analyzed by this system are taken from an image-dissector
camera viewing rigid curvilinear opaque two-dimensional figures. A
preprocessor B7]is used to generate a binary image with the boundaries of
the figures marked as ones and the remainder of the image unmarked. The
figures are allowed to move at various velocities about the field-of-view of
the camera; however, when one figure occludes another the camera and
pxreprocessor are unable to distinguish the intersection so that the boundaries
seem to merge and separate as the figures move.

As long as no occlusion occurs ,the figures are tracked through their
various motions by simply matching the global features of the current frame
to those which are stored in the model. The features of the matched figures

in the model are then updated and new velocity estimates for each figure

are calculated. The occlusion of two or more figures requires the generation
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of a "predictive” model. Using the calculated velocities and figure descrip-
tions stored in the model, a frame is generated which "predicts” the appear-
ance of the figure resulting from the occlusion. If the actual figure in the
input frame matches the generated figure of the "predictive” model, then the
system assumes that its current velocity estimates are correct and simply
updates the model for each figure. In the example of Fig. 4, the "predic-
tive" model is not required until the third frame; at that point, the images
occlude one another and the system must form a joint image from the descrip-
tions retained in the model in order to correctly analyze the input frame. If
the "predictive" model does not match the actual figure,then the system
halts. This brings out the most serious restriction of the system, that
once two or more figures start occluding they must move with constant velo-
cities until they separate again. This restriction is due to both the simple
nature of the predictive model and the global aspect of the identifying
features,

There have been several rather novel applications of motion analysis,
and we will finish this section by discussing three of them. Fenton [38]
used a grating to project contour lines and reference points onto a moving
object, then analyzed the deformations of the contours to measure the move-
ment of the object (in this case the object was a living dog's heart). This
is essentially a range-finding method similar to those used in some static
scene analysis systems [39],

A binocular range-finder was used by Lappalainer and Tervouen [40]
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to track as many as four "reflective markers" as they moved through the
scene. Although the motion analysis system is minimal and the marker
identifying procedure is rather simple, this system is a first step at the
hardware level to correlate information from two cameras as well as from a
sequence of frames.

In contrast to the two systems above, Nevatia [41] proposes that
the series of frames in the dynamic scene taken from a moving camera be
used to simulate a stereo camera system in order to derive range informa-
tion. The idea is that the small differences between consecutive frames in
the series would allow common areas to be matched by cross-correlation or
normalized mean-square-difference techniques; the range information would
then be computed from the large differences between common areas (matched
through intermediate frames) of widely separated frames of the series. The
major problem with this system is that it gives no basis for determining the
relative camera positions in the two frames used by the range-finding process.
In the author's words, "for an actual moving observer, the camera transforms
may be difficult to obtain and could be a major source of errors." For a dis-
cussion of the problem in an orbital photography system see Smith and

Phillips [42].

2.3 Motion Analysis
In the following section we will discuss several sysiems whose

complexity and degree of detailed analysis are at the level of the "attentive”
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process, which we described in the introduction. Again, the first system
we shall discuss was developed to measure cloud movements.

The motion analysis described by Endlich et al [43] is carried out on
overlapping systematic sections (120 x 120 pixels using every fourth point)
taken from a satellite photograph after each section has passed through two
preprocessing phases. Here the sections in both pictures are taken to
represent the same geographical areas, while the overlap is used to connect
the sections within a photograph and detect motions across a section’'s
boundary. The first of the preprocesses extracts the clouds from the back-
ground: this is done by a simple thresholding on the gray-scale values.
The photographs are digitized into sixteen (0-15) levels of brightness,and
the threshold is set at six; thus every point having a brightness less than
six is declared to be background, while all the rest are considered to be
clouds. This process yields points in a three-dimensional space over the
% direction, the y direction,and the brightness level; the second preérocess
called ISODATA for Iterative Seli-Organizing Data Analysis, works on these
points. ISODATA is a multivariate clustering technique [44] which detects
clusters and yields their center points: these points are called the "bright-
ness centers”, and the motion analysis is performed on them.

The actual motion analysis is an iterative procedure to pair bright-
ness centers in a section of the first picture to centers in a section of the
second picture such that the pairings indicate the most consistent motion

- x. - —y -y, and AB,, =B, - B
vectors. For this procedure Axij xj X Ayi} y] Yy 1 3 i
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are calculated for each ij, where i ranges over the indices of the centers
of the first photograph and j ranges over the indices of the centers of the
second photograph. From these values a "fitting function® F 1is formed
such that

2

4t

N 2 2
IF‘(iJ)—t(Axij X) +(Ayij Y) +(ABij

For the first iteration of the motion procedure, X is set to be the median of
the Axij values and Y is set to be the median of the Ayij values., F is
evaluated for each pair ij,and brightness center i is matched to brightness
center j if F(ij) is close to zero. These pairings are then used to calculate
the average horizontal velocity Ax and the average vertical velocity Ay
for the given section. The remaining iterations are computed in a similar
manner, except X is set to be Ax and Y is set to be Ay, with Ax and Ay
computed by the immediately preceding iteration. The authors state that
"three iterations gave stable results in pair-matching (and therefore also in
the motion vectors) in all cases investigated." Although not every center
is matched, this process vields a separate motion vector for each pair of
brightness centers.

The presence of two or more banks of clouds having various velocities

still presents a problem for this system. The authors state that "computed

motions are permitted to vary within different portions of the region treated,”

and while the statement is true, it deserves further discussion. It is, of

course, the degree to which the velocity vectors are permitted to vary that
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is at question. The problem occurs at two levels, the first of which is recog-
nized by the authors who state that "there are many cases where cloud mo-
tions change with altitude and this can cause ambiguity in computer process-
ing when all clouds are lumped together, as they are by using brightness
alone to describe them." The problem here is that separate centers cannot

be generated for the interspersed points of the banks of clouds which occur

at various altitudes. The use of infrared data is set forth as a solution to

the problem at this level: "It appears that the ac;dition of IR data to position
and brightness measurements would permit ISODATA to give separate centers
for clouds at different IR temperatures (i.e. , altitudes).”

The second level at which this problem occurs is in the method used
to make the pairings between centers in the two sections. The authors again
seem to expect the solution to be found in the infrared data: " The motion
program can be generalized to include an IR measurement, and should gene-
rate separate cloud motions for different altitudes." However, as we stated
earlier, the motion program pairs brightness centers which yield the most
consistent motion vectors; possible pairings which have a motion vector
widely different from the other pairings are discarded. The authors even
point ocut an examplve (see Fig. 5) in which brightness would have
served to separate the clouds at different altitudes. Indeed, the brightness
difference helped pair the centers of the dominant cloud bank, yet the two
centers of the subordinate cloud bank are not paired. The reason for this is

that the motion vector, the dotted line labeled i in Fig. 5, which would
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have resulted from pairing thé two centers would have been almost perpen-
dicular to all the other accepted motion vectors (i.e., the value of F at the
two centers would have been large for all iterations of the motion program),
While detecting the separate motions of occluding cloud banks re-
mains a problem for this system, the use of brightness centers is an appro-
priate method for describing cloud images, for two reasons: the large reduc-
tion in the amount of data required to represent the photographs; and the
ability of a center to easily represent the amorphous nature of a cloud image.
The system discussed by Aggarwal and Duda [17],and Peterman [45]
does not actually use machine-sensed data, rather the input is simulated by
using software-generated two-dimensional scenes. The scenes are allowed
to contain arbitrarily complex opaque rigid polygonal figures (possibly con-
taining holes) moving with various translational and rotational velocities.
The input is actually the spatial coordinates of the visible vertices of the
perturbed parallel projection of each frame. The projections are perturbed
in that a preset amount of additive noise is introduced at the coordinates of
the vertices. A vertex is visible unless it is occluded by another polygon,
-in which case new vertices are generated at the points where the boundaries
of the polygons intersect. Thus, there are two types of vertices in this
problem domain: the first type includes the actual vertices of the polygons,
while the second type includes the vertices generated by the intersection of
occluding polygons. The authors refer to these as "real” and " false"” vertices,

respectively. It is one of the main tasks of this system to correctly classify
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each of the input vertices into one of these two groups. This task is made
manageable by requiring that the polygons be rigid, in which case the
angular measure of the "false"” vertices will change between frames, while
the angular measure of the "real" vertices will vary only with the additive
noise. The change at the "false" vertices is due to the difference in the
rotational velocities of the occluding polygons. This problem is not solved
by the requirement of rigid polygons, for two reasons: (a) in order to deter-
mine that angular change is occurring between frames at a vertex one must
be able to identify the vertex in both frames; (b) if the occluding polygons
do not exhibit any relative rotational velocity, then the angular measure of
the "false” vertices will not be changing.

The task is actually solved by making one further observation about
the problem domain and one further restriction on the input scenes: the
observation is that an acute-angled vertex cannot be generated by the inter-
section of two polygons (i.e., cannot be "false"). This means that any
acute-angled vertex must be a "real” vertex of some actual polygon. Thus,
if the polygons in the scene are reasonably heterogencus, then a polvgon in
one frame can be identified in the next frame by s-earching for a suitable
number of matches to its "real" vertices; but,the entire polygon may not be
matched by this process because it is the union of two or more actual poly-
gons and contains "false" vertices. At this point, the authors use a final
restriction, which is that at most one "real" vertex may become occluded

or become visible between any two consecutive frames. The implications of
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this restriction are that all possible "false" vertices can be classified into
six groups based on the difference in the number of acute angles between the
first frame and the second frame, as well as the difference in the number of
obtuse angles. This classification scheme allows special procedures to be
written to identify the "false" vertices in each éase.

Throughout the processing of a dynamic scene,this system forms
and continually updates a model for each actual polygon encountered. Thus,
if an apparent polygon in a particular frame is the union of several actual
polygons,then a model will be associated with the apparent polygon for each
of the constituent actual polygons. The association is through the visible
vreal" vertices of the actual polygon. The authors point out that these
models not only allow the system to track occluding polygons, but also allow
the system to generate a complete description of actual polygons having seen
only a series of partial views of it. Figure 6 contains every other frame of
an example from Ref. 19, exhibiting the analysis of complex occluding images.
The final paper to be included in this survey (Greaves [46]) reports
on a rather novel system which is used to analyze the movements of micro-
organisms. The dynamic scenes analyzed by this highly interactive system
are composed of frames taken from a video image of a deep well slide as
viewed through a microscope. A major assumption of the system is that the
‘ organisms viewed at a particular time in this manner can be represented by
a single point, In order to form this representation and to remove noise and

other unwanted features, the interactive user sets a threshold to be used on
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Figure 6. Example of the Analysis of & Complex Image Formed
by Occlusion of Objects.




the intensity values of the frame pixels. If the intensity value of a pixel

passes this threshold,then its x,y coordinates are recorded; then a simple
clustering procedure groups the recorded points and replaces all the points
of a cluster by the centroid of that group. Thus,each frame is represented by
a list containing the x,y coordinates computed for the centroids of the
clusters detected in the threshold video image.

The next step is to form the "bugpaths". A single "bugpath" is the
list of centroids which represent a particular organism at each instance of
time (i.e., one in each frame). To form a "bugpath", the centroid repre-
senting a "bug” in one frame must be matched to the re»presentative centroid
in the adjacent frames. A particular centroid in one frame is matched to
another in the next frame by a simple smallest-Euclidean-distance criterion.
When all the "bugpaths" have been formed,the dynamic scene is completely
described by two sets of lists: the elements of the first set are lists which
range through the spatial domain, but each list is fixed in time by a particu-
lar frame; the second set contains lists which range through time as well
as space, but each is associated with a particular *bug’”. From this data
structure an entire repertoire of velocity (and in this case behavioral)
analysis functions can readily be applied, and the majority of the paper

involves the description of these functions.



3. A NEW APPROACH

3.1 Acquisition of the Images

The investigation undertakep here has been to analyze a sequence
of frames taken from an image-dissector camera., The camera is controlled
by an XDS3930 computer and responds in 32 levels of gray, at 256 x 256
pixels. The sequence is formed by directing the camera at a homogenously
dark background upon which white planar objects move with various veloci-
ties. Due to the time required by the camera to scan the scene, each frame
is processed as a still shot, then the objects are moved and another frame
is scanned. It is then assumed that the frames represent systematic samg-
ples of the visual scene, with a constant time interval between consecutive
frames. At this stage each frame is passed through a preprocessor which
locates the edges of the objects [37]. This preprocessor yields a 112 x 112
binary map of each frame, with edges marked by a one and all other points
marked by a zero.

The fact that white planar objects are used has several implications ,
on the output of the edge-finder: first, the only edges in a frame are the
boundaries of the objects; secondly, the scale of the images remains con-
stant because the objects move in a single plane perpendicular to the
camera's line of sight; finally, when two or more objects overlap,the
boundary between the objects is not discernable to the camera, thus the

overlapping objects appear as a single object, These facts along with
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the properties of the preprocessor, insure that the binary images of the
objects are closed connected chains of points,

To understand that description, consider the following definitions
for grid points of the binary map: the neighbors of a given grid point are
the eight grid points nearest the given point: a set 6f points is connec§ed
if for every pair of points in the set there exists a sequence of set points
such that one of the pair points is a neighbor to the first element of the
sequence, the other pair point is a neighbor to the last element of the
sequence, and consecutive elements of the sequence are neighbors; a
chain is a set of marked points such that every element of the set has no
more than two marked neighbors T; a set of points is closed if every point
has at least two neighbors in the set. Taken together,these definitions
specify that the preprocessed image of an object is a set of marked points
on the grid, such that every point has exactly two marked neighbors, and
that by going from neighbor to neighbor within the set, one can get from any
set point to any oth@\r set point. Figure 7 shows several sets exemplifying
various combinations of these deéinitions.

Thus,the input to the system described in the remainder of this report

is a sequence of frames each of which is a two-dimensional binary map

TThe exception to this rule is corners. The points adjacent to the corner
points may have more than two neighbors, however taken as a set (the
corner point and its adjacent points), the points will not have more than
two marked neighbors (see Fig. 7, sets D and E).
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representation of the field-of-view of the camera, such that each object
viewed by the camera is represented by a closed connected chain of points
in the map (see Fig. 8). The system immediately transforms this sequence
of frames into a data base where each object image is described by two
complementary methods. The data base itself is described in the Appendix.
The first descriptive method is a simple list of the x,y coordinates of the
object image points, starting with an arbitrary point then proceeding in a
clockwise manner about the image until the original point is encountered
again. This description can easily be obtained from the binary map and

is mainly used as the basis of the second descriptive method, chain-coding.

3.2 Encoding the Images

Freeman [47] was one of the first to discuss in detail chain-coding
of digital images. The chain code for an image is normally formed by
defining an eight-direction orientation, qhoosing an arbitrary starting point
on the image, and then proceeding in a clockwise manner from neighbor to
neighbor recording the direction between neighbors according to the orien-~
tation: Fig. 9 gives an example of this. Freeman also noted that if one
forms a graph of the chain code versus arc length from the starting point,
then essentially horizontal lines in the graph will correspond to straight
lines in the image. McKee [48] observed that if one slightly modifies the
chain code so that its graph against arc length is "continuous " then

circular arcs of the image result in straight graph lines of slope proportional
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to the curvature of the arc, This immediately suggests that one could repre-
sent an arbitrary curve with a series of straight line segments and circular
arcs by fitting lines to the modified chain-code graph. In this way, McKee
described images by a list of lines where each line is given by its starting
point, length, and slope as found in the chain-code graph.

Here, instead of obtaining the code and then modifying it, an
equivalent method is used whereby the total angle subtended since the
starting pdint is graphed against arc length. To form this graph an arbitrary
starting point is chosen, the counter for the total subtended angle is set to
zero, and the image is traced in a clockwise manner. For each point, a
temporary orientation is defined so that the 0 direction is the same as the
direction of the vector from the given point's counter-clockwise neighbor to
the point itself. The directions to the right of 0 are the positive directions

1, 2, and 3, while the directions to the left are negative, -1, -2, and -3,

39

of course, since the images are closed curves the exactly opposite direction

is not possible, Now, the direction of the given point's clockwise neighbor
ig determined according to this temporarily defined orientation. This direc-
tion, the discrete angular change, is added to the total angle counter and
this intermediate total is recorded as the code for the given point (see

Fig. 10). This process is cont;nued until the starting point is encountered
again. It should be noted that since these closed curves are being rans-
versed in a clockwise manner and the right-side directions are positive,

the final value will always be 8; which is to say that the image subtends
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in total an angle of 2w radians.

The rectilinear nature of the grid causes this code to be distorted
because the arc length between diagonal neighbors is »/ 2 units, while
other neighbors are one unit apart. This distortion can be reasonably recti-
fied by specifying that the distance between diagonal neighbors is three
units, while other neighbors are two units apart: this is easily done by
repeating the code for points whose clockwise neighbor is on a diagonal
three times, while repeating the other codes only twice.

The graph of the code versus arc length would now be ready for the
line-fitting process except that the process would be greatly affected by
both the arbitrary choice of the starting point and the noisy nature of the
images. The effect of the starting point choice on the line-fitting process
can be nullified by using the graph formed by completely traversing the
image twice. Equivalently, the codes for the first traversal can be repeated
while adding eight to each code value; then the resulting lines at the
beginning and end of the graph, which are not repeated in the body of the
graph, can be discarded along with the unnecessary repetitions. The un-
repeated lines in the middle of the graph are the correct lines representing
the arcs in the vicinity of the starting point.

The effects of noise can be minimized by averaging each code value
over a nine-point window, which includes the given code value and the four
values on either side of it. With these modifications, the graph is finally

ready to have straight lines fitted to it. A standard mean-square-error
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technique is used to actually fit the straight lines which are referred to
here as code lines. The erroneous and unnecessary code lines are then
discarded, as described above, and the final result is a description of the
image in terms:of a list of straight lines in the subtended angle versus arc
length domain.

Careful attention must be paid throughout this process to retain the

connections between the spatial coordinates of the image points and their
corresponding code points. This system does that, and when each code

line is inserted into its respective object description in the data base, it
is associated with the spatial description by pointers to the first and last

corresponding image points in the originally formed list of coordinates.

The ability to retain this connection is a major advantage of this descriptive
method. The length and slope of the code lines, as well aé the order in
which the code lines appear, efficiently and effectively contain the neces-
sary information for discimination of shape regardless of translation or
rotation.¢ The coordinate list complements this by retaining the information
for spatial discrimination, such as area, perimeter, and location of the

image, But most importantly, the combination of both descriptions conveni-

ently segments an image, using features intrinsic to that image., Figure 11

*This statement must be qualified because translaticns of integral units
and rotations of integer multiple of 90° are the only transformations on a
discrete grid which do not modify the shape of the images on that grid.
The differences in the shape of an image due to translation and rotation
are considered part of the noise inherent in the digitizing process.
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shows the derived features of an example frame,

Two images described by a list of such code lines can be compared
for similarity of shape in the following manner. Choose one of the images
and designate one of its code lines as the beginning. Then using an initial
value of zero, the slope of the given line, and the code line's length,
generate the first section of the code graph for this image. The remaining
sections of the graph are generated by taking the next code line in the list
for this image and using its slope and length to extend the graph from the
point that the last section ended. When all the code lines for this image
have been used, then form another graph for the other image also starting
at zero. The area between these two graphs is a good measure of the simi-
larity of the shape of the two images as oriented to their starting points.

In this case, the starting point of each image is the spatial point which
corresponds to the start of the code line chosen to begin the graph of the
respective image. Two images are oriented to their starting points if the
images are translated so that their starting points are at the origin and

are rotated about the origin so that the “tangents" of the images at their

starting points are the same. Here the "tangent" of an image at a given point

is the vector from the counter-clockwise neighbor of the given point to the
point itself. Thus,comparing the code graphs is equivalent to physically
orienting the images to their starting points and visually comparing the
gimilarity of their shapes.

It is clear that this form of shape comparison is severely limited by




the choice of starting line, i.e., the beginning code line on the generated

graph. Two images could have the same shape, yet if different starting
lines were specified for each image then the area between the generated
graphs could be substantial. Intuitively, if two copies of the same image
were oriented to different starting points,then even a visual comparison
would declare their shapes, as oriented, to be different. Circles and
certain pairs of starting points on other axially symmetric images would
visually be judged to be similar; but in these cases the area between the
code graphs would also be small. McKee [48] presents this problem, as
well as discussing the problem of scaling, in somewhat different settings
not dealt with by this gsystem. The next section presents a discussion of
how this system solves the problem of arbitrarily choosing the starting line

for shape comparison.

3.3 Segment Matching

At this point, the system has taken the input frames, extracted the
object images of each frame, and then analyzed each object image into its
components, i.e., itg straight lines and circular arcs. Now, from these
analyzed images the system must attempt to synthesize representations of the
actual objects in the scene. An actual object is to be distinguished from an
apparent object in that the apparent object is the image formed by the oc-
clusion of two or more actual objects. The first step in this synthesis is to
find features (i.e.. edge segments) common to consecutive frames. The

second step. discussed in the next gection, is to group these features
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according to common motion vectors.

The common features are detected on the basis of the shape of the

images in the current and next frames. The terms "current" and "next" will

%
[ 4

be used throughout this discussion to refer to the first and second frames of

any pair of consecutive frames, "If a portion of an image in the current

frame is found to match a portion of an image in the next frame, then they
form an edge segment and are called the current aspect and the next aspect
of that edge segment; but since each frame can contain several images,

the system must make rough pairings of the images in the current frame to
images in the next frame bLefore the portions can be matched. The rough

pairings are based on features global to the images, such as area, perimeter,

and position of the centroids.

The paired images are then compared to find any common edge seg~
ments. Remember, the images have been analyzed into their components
(i.e., code lines), so the system begins by finding code lines with similar
slopes and lengths. The similarity measure is a relative difference defined
for two numbers u and v by the following equation: RD = (2% ]u-v])/]u+v l .
If the relative difference of the slopes of two code lines is less than 0.25
and the relative difference of their lengths is less than 0.5,then the compo-
nents are declared similar, Two code lines are the maximally matched
components of a set of matched code lines if the sum of their relative
differences is minimal over the set. This measure gives preference to arcs

with large curvature or long lengths, over either short flat arcs or straight

lines.




The system goes on to look for groups of contiguous code lines of
the current image which are similar to contiguous code lines in the next
image. These groups are listed by the order of their maximally matched
code lines: then the remaining singularly matched code lines are added to
the end of the list uﬁder the same ordering. Starting with the first group
of contiguous components, then progressing through the rest of the list,
the system tries to "grow" common edge segments. The system "grows "
the edge segments in the sense that it begins with a "seed" segment and
generates a code graph for each aspect of the segment as the segment is
extended in both directions around the image. The "seed" is the edge seg-
ment whose aspects are represented by the maximally matched components
of the given group. The segment is first grown incrementally in the clock-
wise direction until either the shape similarity measure between the two
aspects is greater than some preset threshold,or a previously grown edge is
encountered; then the orientation is reversed and the segment is grown
incrementally in the counter-clockwise direction. The shape similarity'
mgasure is the code-graph difference as described in the previous section.

Besides meeting certain criteria while the edge segment is being
grown, the resulting segment must also pass a length and orientation test.
1f the edge segment passes these tests, it is accepted as a feature common
to both images and recorded as such in a data base of common segments. A
data base retains information about the matched code lines of the segments

and their connections to the spatial coordinates list, A complete description
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of this data base is given in the Appendix. Figure 12 shows two consecutive
frames and the resulting common segments,

The image pairing, component matching, and common edge segment
growing are continued until each image in the consecutive frames is appro-
p;iately matched to one or more images in the other frame. An object image
must be allowed to match more than one other image because the current
frame might contain an apparent object which will split into two or more
of its constituent actual objects in the next frame; conversely, two actual
objects of the current frame might occlude one another in the next frame,

creating a single apparent object.

3.4 Motion Analysis

Having found the edge segments which are common to consecutive
frames, the system is now ready to group the segments into object models
according to motion measurements. The motion of a segment is determined
by comparing the location and orientation of the segment's two aspects.
Remember that the aspects of an edge segment are the image segments from
the current and next frames, which were matched to form the edge segment.
The horizontal, vertical,and angular velocities of a given edge segment are
determined from the displacement of the next frame aspect, with respect to
the current frame aspect. The noise inherent in the digitizing process, as
well as the effect of different orientations on the binary grid, preclude the
point-to-point mapping of the two aspects: this means that the displace-

ment cannot be directly calculated from the list of coordinates of the aspects.




49

input frames

2

matched edge segments

next aspect

Figure 12. The Matched Edge Segments for a
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Instead, the system forms a triangular complex of points for each aspect
of the given edge segment and calculates the displacement based on the
location and orientation of these point complexes.

A triangular complex is formed, for a given aspect of an edge segment,
by finding the first, last,and midpoint coordinates of the aspect. Connecting
these points in the given order forms a triangle from which the system cal-
culates the centroid of the triangle and the midpoints of the three sides.
This process yields seven points which can iae mapped to the similar seven
points formed for the matching aspect. The system then computes the ave-
rage horizontal displacement and the average vertical displacement for the
mapped points. The angular velocity is estimated by forming six vectors
from each triangle and averaging the angular change of the mapped vectors.
The six vectors used are the three sides of the triangle and the three lines
that connect the vertices to the centroid.

Fach edge segment common to the current and next frames is pro-
cessed in the above manner to derive estimates of the three velocities; then
the system groups the segments into object models. Now it is clear that
two edge segments with their current aspects taken from different object
images of the current frame cannot be edges of the same actual object.
Thus, for each pair of images which have been mapped together by the seg-
ment mafching process, the following procedure is applied only to the set
of edge segments that are common to a given pair of images. From such a

set of edge segments a list of all possible distinct unordered pairs of
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segments is formed. For each pair on the list, the velocity estimates are
contrasted. If the velocity differences are greater than some preset thresh-
olds,then the two segments definitely represent different actual objects; if
the differences are less than some other thresholds,then the two segments
definitely represent the same actual object. Finally, if the differences are
between the thresholds, then the two segments possibly represent the same
object. Each of the three velocities have separate thresholds, although the
horizontal and vertical thresholds have the same value.

Essentially, this contrasting and thresholding procedure defines two
mutually exclusive relations over the set of unordered pairs of edge segments:
the "same object" relation; and the wdifferent object” relation. The final
object models are formed from the "equivalence classes" of the "same
object” relation. An "equivalence class" for that relation is a subset of
the original set of edge segments, such that for every segment in the class
there is at least one other segment in the class, which has been designated
as definitely representing the same object as the given segment. In addition,
for every segment in the class, all segments of the original set which have
the "same object" relation to the given segment must be elements of the
class. To each such "equivalence class” is added any segment which has
been designated as possibly representing the same object as some segment
in the class, yet is not in the "different object" relation to any element of
the class. Thus, the "same object" relation 'is used to form the object

models, while the "different object" relation is used to clarify the ambiguous
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in-between cases.

An object model is formed for each augmented "equivalence class ",
and the Appendix gives a complete description of this data structure. The
motion analysis process given above is applied to the set of edge segments
of each of the paired images until all of the images in the current frame
have been analyzed. Figure 13 shows the edges of the object models of an
example as analyzed by this process. It should be noted that the models
are named according to information obtained from previous frames as well
as current motion measurements., The name of an object model is determined
by interrogating the image data base to determine if any of the image seg-
ments of the current aspect of the object model were matched to an image
in the previous frame. This procedure works well, except when two occluding
objects exhibit joint motion through a few frames, before having a relative
velocity. In addition, if occluding objects do not exhibit a relative angular
velocity, then the portion of the image where the actual objecvt boundaries -
intersect may retain its shape through several frames.

In both of these cases,a previously supposed actual object is found to be
only apparent and must be split into its constituents. The system checks
for these cases by looking for current object models which have been given
the same name. The system first assumes that if the naming procedure
assigns the same name to two models, this is evidence that they should be
parts of one model. With this assumption, the system again performs a

motion analysis of the segments in the involved models, only under less
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Figure 13. The Object Models Derived by Motion Analysis.

53




54

stringent thresholds for the same object designation. If the velocity dif-
ferences of all of the segments in the models pass these thresholds,then
the models are merged; otherwise, one of the models is arbitrarily given
a new name.

‘When the entire motion analysis is completed, a list of the object
models of the current frame will have been generated and the system can go
on to the next frame. In this way, each frame becomes the next frame for
the segment matching and motion analysis procedures, then it is analyzed
directly as the current frame, and finally it becomes a past frame as part
of the data base. The next section will discuss several examples which

this system has analyzed,

3.5 Examples ,

Presented in this section are three example scenes which the system
has analyzed into object models. The input frames are shown by plots recon-
structed from the coordinate 1i§t of each frame, For each pair of consecutive
frames the derived object models are shown below the input frame, with
the edges of each model labeled by the system-defined name of the object
model. It should be remembered that an object model is associated with two
sets of image points, i.e., the current and next aspects of the edge seg-
ments of the object. So,for a pair of frames, the image points from the
first frame form the current aspect and the image points from the second frame
form the next aspect of the object model, To highlight this, the frames of

each example scene are presented in pairs, with the object model aspects




below their respective input frames. Thus, the edge segments assocliated
with the current frame, which are labeled by the same name as edges of
the next frame, were first matched by shape and then grouped into object
models by motion measurements.

The first example, Fig. 14, is a scene containing two occluding
objects shown through three frames. The stationary -central object is
labeled A, while the rotating object is labeled B. The sections which
could not be matched by shape are not plotted: these sections include
small noisy edges,as well as the junction points of the occluding objects
which are indeed changing shape.

The second example, Fig. 15, shows a large object uncovering
a smaller object. Note that as the small object first appears (frames 2 and
3) the edge is changing too radically to be matched by shape, S0 no model
is formed for the small object until 3 is the current frame.

We would like to present the final example, Fig. 16, in the spirit
of the old adage, that many times one learns the most from his fallures.
Although the main portions of this example have been analyzed correctly,
the three minor errors bring to light some of the inner workings of the
system. Each of the three errors is the result of the system matching
edge segments which are locally similar in shape. Remember that the
images of the input frames are initially partitioned into intrinsic features
by the shape description, i.e., into code lines. Then the "seed" partitions

from which the edge segments are ngrown" are the code lines which most
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nearly match (in slope and length) a code line from the next frame. At this
level the analysis is strictly on the basis of shape, so that if an input
image contains several portions of similar shape the system may become
confused and match the wrong portions.

This is precisely what has happened in this example. With frame 2
as the current input frame, the system mistakenly matches the edge seg-
ments to form object model B and object model C. New object models were
formed because of the large velocity derived from comparing the location
of the current aspect of each model to the location of its next aspect. With
frame 3 as the current frame, the same problem occurs for object model B.

The errors also show the arbitrary nature of the obj ect-naming
process. When it is found necessary to divide the segments of a previously
single object model into several new models (see Section 3.4), the new
names are assigned arbitrarily. Thus, when the models for objects B and
E of the current aspect of frame 2 were formed from the previous model B,
either of them could have been given the name E, Although the naming
procedure somewhat clouds the issue, one can still see from the example
that the large object named A is consistently tracked throughout the scene
as are the major portions of the central object, after they receive the new
name. The smallest object undergoes extensive change, but at least some
part of it is always tracked correctly through each frame.

The errors discussed above are primarily a result of the local-

ness of the segment growing procedure. It seems that if some global
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information could be brought into the decision, then the problem could be
solved; however, it is not clear at this point what this global information
might be. Such things as global orientation or connectivity of the segments
are rendered ineffectual by the fact that the images are moving, merging,
and splitting. It is clear that more work is needed on this problem,
possibly making more extensive use of the information from previous frames

when analyzing the current frame.
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Figure 14. Example 1: Two Occluding Objects.
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Figure 14. (continued)
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Figure 15.

Example 2:

Two Objects Separating.
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Figure 15. (continued)
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Figure 16, Example 3: Three Objects With Various Motions.
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Figure 16. (continued)
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Figure 16. (continued)




4. CONCLUSION

In the Introduction we described a multilevel visual svstem suitable
for perceiving dynamic scenes. Then,in Chapter 2 we discussed the problems
inherent in trying to develop a computer system of this sort, and presented
several previous attempts to develop the "peripheral” and "attentive" visual
processes. It was shown that the first major problem of dynamic scene
analysis, to associate "semantically identical” images although they appear
different, has been solved in many ways. The motion-detecting processes
of Section 2.2 solved it by identifying locally different frames by global
techniques. In Refs. 43 and 46 the objects are reduced to centroids, making
spatial location the only feature of the objects. This reduction makes the
solution to the first major problem rather simple, while it destroys the
features needed to solve the second major problem, occlusion.

The two most successful systems for analyzing occluding objects
(static [16] and dynamic [17] scenes), both rely on local feature
analysis and the polygonal nature of their inputs. Chow and Aggarwal [36]
analyzed the occlusion of curvilinear objects by features global to the
objects, but only under a rather heavy-handed restriction on the motion of
the occluding objects. The system described in Chapter 3 utilizes local
features to analyze the curvilinear objects without severely restricting the
movement of the objects. Indeed, this system can be seen as the comple-
mentary attentive process to Chow and Aggarwal's peripheral process. The
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combination of the two systems might yield an overall system much like that
described in the Introduction. However, it must be noted that scenes ana-

lyzed by these systems are still essentially artificial scenes: the objects

are rigid and the imgges are rather clean. For the more complex and noisy
everyday scenes, it appears that the extracted objects must be described

by a "general-purpose model"” as mentioned in Ref. 49, or by some forin of "rubber
mask"” as presented in Ref. 50. Widrow [50] mentions in passing that the

wrubber mask" can be used to keep track of the distortions as they are en-
countered and although he rejects the idea for his application, it is a facility
fundamental to dynamic scene analysis.

Discussing two levels of analysis implies that a general computer
vision system will integrate the use of both levels. The general syétem
would have procedures to "watch"” the peripheral regions of the scene. These
procedures would alert the system to areas which were undergoing extensive
change. The system would then decide (possibly directed by a goal-oriented
procedure) whicl'; areas merit the full attentive-level processes. From these
remarks it is clear that biological vision systems still serve as the main
model for generalized computer vision systems. The extreme efficiency of
biological systems validate their use as models : however, the extensive
parallelism in the biological processes remains problematic for the essentially
serial computer processes.

At the present state of dynamic scene analysis the "peripheral”

vision problem, global motion detection, has been solved in a number of
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satisfactory ways, while more research is needed on the "attentive" vision
problem of locally analyzing general shapes. In addition, research is
needed to derive systems which use both levels of analysis and are able to

exploit the parallelism inherent to the visual process.



APPENDIX

Information about a given dynamic scene is retained in four inter-
related structures: the coordinate list; the encoded image list; the matched "
edge segment list; and the object model list. The coordinate list is a simple
linear array, each element of which contains the x and y coordinates of a
given marked point in a given frame of the scene. Due to the large size
of the CDC6600 word, the x coordinate is packed, right justified in the
left half of the word, while the y coordinate is packed into the right half
of the word. Throughout this appendix the components of such packed words
will be referred to as the "left" and "right", The coordinate list has no
inherent structure; instead structure is imposed by references to the list

from the other structures.

Encoded Image List

The encoded image list is structured by frames, images, and code
lines. The first word contains the number of frames and is immediately
followed by the block for the first frame. Each frame has a block of words
with the following structure.

' FRAME BLOCK

index meaning of element
1 pointer to the next frame block
2 miscellaneous matching information
3 number of images in this frame
4 pointer to the last image block in this frame

A frame block is immediately followed by the first image block of this frame.
Image blocks have the following structure and are connected into a doubly
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linked list structure.

IMAGE BLOCK

index meaning of element

1 pointer to the next image block

2 pointer to the previous image block

3 left first spatial point of this image (points into the coordinate list)
right last spatial point of this image

4 left total area of the image
right total perimeter of the image

5 left the x coordinate of the centroid of the image
right the y coordinate of the centroid of the image

6 miscellaneous matching information

7 miscellaneous matching information

8 number of code lines for this image

An image block is immediately followed by the linear list of its code line
blocks, each having the following structure.

CODE LINE BLOCK

index meaning of element
1 length of code line (in code graph units)
2 slope of the code line
3 initial value of the code line
4 if zero then the code line is not yet matched

otherwise the left is the index of the edge segment which
contains the code line, i.e., the edge segment for which
this code line is the current aspect; and the right is the
image pair of the edge segment (a pointer into the matched
edge segment list) ’

5 the same as 4 except the code line is the next aspect
6 left the first spatial point of this code line (points into the
coordinate list)
right the last spatial point of this code line

Matched Edge Segment List

The matched edge segment list is structured by frame pairg, image
pairs, and edge segments. Each frame pair has a block of the following

structure.
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FRAME PAIR BLOCK

index meaning of element
1 left current frame (a pointer into the encoded image list)
right next frame
2 pointer to next frame pair block

A frame pair block is immediately followed by its first image pair block.
Each image block has the following structure. .

IMAGE PAIR BLOCK

index meaning of element
1 left image of the current aspect (a pointer into the encoded
image list)
right image of the next aspect
2 pointer to next image pair block for this frame pair
3 number of edge segments for this image pair

An image pair block is immediately followed by the linear list of its

edge segment blocks each having the following structure.

EDGE SEGMENT BLOCK
index meaning of element
1 orientation of the seed code line (a boolean flag which
ig true when the segment was originally grown in a clock~-
wise direction, starting from the counter-clockwise end
of the seed code line)

2 left previous model (if a portion of the edge segment matched
to the previous frame then this points to the model which
contains the portion)

right current model

3 left index of the seed code line for the current aspect
right index of the seed code line for the next aspect

4 left percent of the first code line actually matched by the segment
right index of the first code line matched

5 left same as 4 but for the last code line
right same as 4 but for the last code line

6 left first spatial point of the current aspect of the segment

(a pointer into the coordinate list)

right last spatial point of the current aspect

7 same as 4 but for the next aspect

B same as 5 but for the next aspect

9 same as 6 but for the next aspect




77

Object Model List

The object model list is structured by object frames, model lists,
and segment lists,

OBJECT FRAME BLOCK

index meaning of element
1 pointer to next object frame block
2 pointer to the first model in this object frame

MODEL BLOCK

1 pointer to next model block

2 a header word

3 left pointer to parent object frame block
right print image of the modeled object

4 pointer to the first segment in this model

SEGMENT BLOCK

1 pointer to next segment block in this model
2 left index of the segment
right image pair of the segment (a pointer into the matched edge
segment list)
3 left x velocity of the segment
right y velocity of the segment

4 angular velocity of the segment
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