VERIFICATION OF
NONDETERMINISTIC PROGRAMS
by

Raymond T. Yeh

TR-56 {revised) June, 1977
(original) May, 1976

VERIFICATION OF
NONDETERMINISTIC PROGRAMS
by
Raymond T. Yeh
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

I. INTRODUCTION

In this chapter we present a methodology for the verification of
both deterministic and nondeterministic programs. Our method is
based on the concept of predicate transformer introduced by
Dijkstra [1975]. Predicate transformer is used by Dijkstra to define
formal semantics of programs by a mapping which transforms a set of
states after the execution of a program to the set of all possible
states before the execution of the same program. Thus, the difference
between the concepts of determinism and nondeterminism loses its
significance in this semantic context. The focus is on the nature of
the computation, and hence the concept of iteration, and not how
the program iterates, is of concern in the current context.

By the very nature of the semantic definition using predicate
transformer, it is implicitly assumed in our method that the term-
ination property of a program is an inherent property of the

algorithm that realizes the given program. Furthermore, the

termination and consistency can be handled by the same modus operandi.
Theée points will be clarified later in the paper. We also show that
proof of program "incorrectness" (with respect to its specification)
in this framework needs no special treatment and is symmetric to a
proof of correctness.

In section II, we introduce nondeterministic program constructs
a la Dijkstra. As an example, we have demonstrated the simplicity of
writing a nondeterministic :program for the eight queens problem. .

In section III, the concept of a predicate transformer and its
properties are introduced.

In section IV, we give an axiomatization of semantics of program
constructs based on the notion of a predicate transformer.

In section V, the concept of termination, consistency and
correctness are introduced and a method for their verification, based
on the semantic definitions given in section IV is given. This approach
allows the proof of both the consistency and termination to be handled
simultaneously. Several examples are given to illustrate this approach.

In section VI and VII, we explore the approach of characterizing
the loop construct by a recursive equation and its implications in verifi-
cation. The notion of output-adequate loop invariant is introduced, and

its relation to fixpoints of the recursive equation explored.

II. NONDETERMINISTIC PROGRAM CONSTRUCTS
In this section, we will briefly review two constructs intoduced
in [Dijkstra, 1975] for nondeterministic programs. They are given in

terms of an extended BNF grammar with the convention that braces "{...}"

J R

should be interpreted as "followed by zero or more instances of the
enclosed.”
<guarded command> : :=<guard>><guarded list>
<guard>::=<boolean expression>

- <guarded list>::=<statement>{;<statement>}

<guarded command set>: i=<guarded command>{D <guarded command>}

<alternative construct>::=if<guarded command set>fi
<repetitive construct>:i?§g§guarded command set>od

<statement>::=<alternative construct>l<repetitive construct>

“other statements”

where "other statements' means assignment statements or procedure calls.

The semicolons in the guarded list have the usual meaning: when
the guarded list is selected for execution its statements will be

executed‘successively in the order from left to right; a guard 'list

will only be seiected for exeéution in a stateVsuch that its gﬁéf&
is true. If the guarded command set consists of more than one guard-
ed command, they are mutually separated by the separator "U ": the
order in which the guarded commands of a set appear in the text
is semaﬁtically irrelevant.

Note that for the alternative comstruct "if ... fi", if either

none of the guards were true in the initial state, or the guarded

command set is empty, the program will "abort". Otherwise, an

arbitrary guarded list with a true guard will be selected for execution.

To illustrate this comstruct and the nondeterminancy such a
construct can bring about, we use the original example in [Dijkstra,

1975].

Example 1 - A program that for fixed x and v assigns to m the

maximum value of x and y.

1%

if x 2y ->m: =X

14

U y 2 x>m: =y
1
in order to define the semantics of alternative construct more
easily later, we shall use the following abbreviations.
Let IF denote
i + L —>' i
it B >s [... 0B »s fi
Let BB denote
Bl v BZ V... VBn
where each Bi is a Boolean expression and eachOSi is a program statement.

There are two special cases for the alternative constructs
which specialize to the usual deterministic comnstructs.

Case 1. IF denotes "if B SID B> S, fi". 1In this case,
the IF comstruct corresponds to the usual "if B then Sl else 32"' We

will show in a later section that these two constructs are indeed
"gsemantically equivalent"°

Case 2. IF denotes "if B > SlU B > skip £i". In this case,
the construct IF is equivalent to the "deterministic' comstruct
"IF B then Sl"n

For the repetitive comstruct "do ... od", in the case either
none of the guards were true in the initial state, or the guarded
comment set is empty, the statement is semantically equivalent to
"gkip". We will use the abbreviation DO for

do B -+sl[]”,[]sn—>sn_9_@

1

A special case to be observed here is that the construct
"do B + S1 od" is "semantically equivalent” to the usual determinis—
tic construct '"while B do Sl".
Example 2 - The following nondeterministic program is to find
a placement of eight queens on a chessboard such that no two queens
occupy the same row, column, or diagonal.
The program uses four vectors:
ROW with integral indices in the range {1,...,8}
COL with integral indices in the range {1,...,8}
LD with integral indices in the range {=7,...,7}

RD with integral indices in the range {2,...,16}

representing rows, columns, left diagonals, and right diagonals,

respectively. Each vector element represents a count of the number
of queens in that row, column, etc. Square (i,j) of the board is
in row i, column j, left diagonal i-~j, and right diagonal i+j.
The nondeterministic program is:
ROW:=COL:=LD:=RD:=0;
do ROWrl>if ROW,1-I:=1 0.
ROW8%1+I:=8 £i;
if COL1%1+J:=1 0... 1
c0L8+1+J:=8 fig
if RD J<1 and LD_ <1l»

- I+ I-J

ROW, :=COL :=RD_ _:=LD . :=1

[true » "skip" fi

o

Where if A and B are vectors, then A=l means that for each i,

the ith component Ai = 1; A € B means that for each i, Ai = Bi'

We note that the program iteratively places a queen on the board
in a position that does not conflict with previous choices. Depend-
ing on previous choices, this may or may not be possible. If it so
happens that this is possible for all eight queens the program
terminates successfully. However, if for some queen this is not

i

possible, the program will continue to search without ever terminating.

I1II. THE CONCEPT OF A PREDICATE TRANSFORMER

In this section, we provide the basic concept and some properties

ofwawﬁredicate transforme?mwhicg wiil béM;;;éwf;;wgﬁé"Qéfification
of programs in later sectioms.

We shall use symbols P, Q and R to denote predicates defined
on the state space of a program. We use symbol T to denote the
predicate which is satisfied by all states and F to denote the pre-
dicate which is satisfied by no state at all. For eaéh predicate
P, we denote by P* the set of states satisfying P.

Let S be a given program. A specification of S is meant here

to be a pair of predicates (P,Q) such that P is an input assertion

characterizing all legal initial states of S, and Q is an output
assertion characterizing all desirable final states of S. Examples

of such specifications include:

P S Q
x > 0 x: x + 2 x > 2
a list .
{xl, cees X 3 A sort program a list

{ xl,,...,x n‘}

of ascending order

We now introduce the notation P[S]Q to represent the followiég
proposition:
"If the assertion P is true (on certain initial state
vector) and the program S is initiated with this state vector then
S terminates and the assertion Q is true on the final state vector.'’

Predicates P and Q in P[S]Q are referred to as the pre- and

post condition of S.

An example to illustrate the previously introduced notation is

=

i

x =1 [x: = x+ 2] x 3

Note that

x>0 [dox% 0~+x:=x+10d]Q
is not valid for ény predicate Q since the given program will not
terminate.

We will use the notation WP(S$,Q) to denote the weakest pre-
condition for all the initial states of S such that activation of §

is guaranteed to lead to a properly terminating activity with the final

state of the § satisfying the postcondition Q. The function WP is

called a predicate transformer since it transforms a postcondition

R into a precondition WP(S,R). Alternatively, WP(S,Q)* is the
largest set of initial state of S for which S terminates and Q is
.true at output. If we denote by fS the function to be computed by a
given program S, then we see that WP(S,Q)* = {x ‘ fs(xj € Q*},

We proceed to list a set of properties 6f the ''predicate
transformer" for given S and Q. These properties were given in
[Dijkstra, 1975] and is included here for the sake of completeness.
The proofs for these properties are fairly straightforward by observing
that WE(S,Q)* = £, 1 (Q*%).

Theorem 1: The following identities and implications hold.

1) WP(S,F) = F;
2) [P=»Q] = [WP(S,P)"WP(5,Q)];
3) WP(S,P)VWP(S,Q) = WP(S,P V Q)

4) WP(S,P) A WP(S,Q) = WP(S,P A Q)

-8~

It should be noted that the converse of condition (3) in the

previous theorem holds in the deterministic case.

1v. A DEDUCTIVE SYSTEM FOR PROGRAM PROOFS

In order to prove that a program is what its creator intended, it is
necessary to provide an axiomatic definition as formal semantics for
program constructs as well as rules of inference for the semantics of
program as a whole.

Let Q be an arbitrary postcondition, the semantic definitions
will be given in terms of the weakest precondition of the given con-
struct with respect to Q. Thus, two programs S1 and 82 are said to

be semantically equivalent if for any given postcondition Q, WP(Sl,Q) =

WP(SZ,Q); i.e., they have the same predicate transformer.
We now proceed to the axiomatic definitions for various program

constructs.

1. Primitive statements: the semantics for the two primitive

statements ''skip™ and 'abort" are given in the following:
WP ("skip",Q) = Q; - (L
WP ("abort",Q) = F (2)

2. The axiom of assignment: the semantics of the assignment

statement "x:=E" is defined by
WP ("x:=E",Q) = Q (3)
where Q; is obtained from Q by substituting the expression E for

every occurrence of the variable x.

There are two examples in the following to illustrate this axiomn.

X3

X3

Program
Statement S

x + 1

x * 3

Postcondition Q

In the following, we shall provide rules to define the semantics

of composite program constructs.

3. The axiom of composition: the semantics of the composite
statement "Sl; 82" is defined by
LA ° 8% = 4
WP("S 3 8,",Q) = WR(S,WP(S,,Q)) (4)

Equation (4) expresses that the effect of the composition of two
transformer is that of applying the transformer of S1 to the predicate
cbtained by applying the transformer of S2 to the original predicate Q.

Consider the following program segment S: S_; S, ; S,.;

: 3 -] b
Example 3 1 2 3
Sl: y: =v + 1;
82: x: = v + x;
83: IF x < 0 THEN x: = -x ELSE x: = xf

By (4), for any postcondition Q(x,y), we have

WP (S,Q(x,y)) = WP(S,, WP(S,, WP(S,, Q(x,¥))))

1° 2°
W?(Sl,W?(xz =y +x, [x <0 AQ-x,7IV

]

x 20 AQx,v)]1))

Hi

WE(S [y + x <0 AQ-Gtn), IV [y +x20A

Qi+ vy, D

il

[x+y+1<0AQ-x+y+1),y+1ly

[y +x+120AQ0x+y+1, v+ 1)].

-10~

4. The axiom of alternative construct: the semantics for the

statement "IF" is defined by
WP(IF,Q) = BBA[B, ~ WP(S,,Q)]A---
CALB > WR(S_ Q). (5)
Example 4 - Consider the program that for fixed integers

x and vy, assigns to m the maximum value of x or y.

P

ifx=2y~>m =x
I y>xsm-y
£1

With respect to the specifications I = [x @ 0 Ay = 0], and

Q = [m = max(x,y)], it is easily seen that

[

WP(IF,Q) = [x 2 y 7 x = max(x,y)]A

i

max{x,y)].

"
¥

«

i

ly
There are two special cases for the alternatiQe construct in
the deterministic case.
Case 1) 1IF denotes

its>s 0 5>s, f1

2

Using (5) and algebraic simplification, we can derive the following:

we("if B > s [B ~s, £1",Q) = [BAWR(S,,QIVIBAWE(S,,Q)] (6)
Case ii) 1IF denotes
if B >5 [B ~skip £1

It is easily seen that in this case,

WP ("if B —>slﬂ B > skip", @ = [BA WP(S,Q)] V [BAQ

From [Basu and Yeh, 1975], it is easily seen that special cases of

the IF constructs are semantically equivalent to the constructs

-11-

"IF Bl THEN Sl ELSE 82" and "If B THEN Sl", respectively.
Example 5 - Consider the program segment S: IF x < O THEN x:=
-x ELSE x: = x;
For any postcondition Q, we have
WP(S,Q(x)) = [x <0 AQ-¥)]1V [x 20 AQ(x)]

Where Q(x) is a predicate with variable x.

5. The axiom of repetitive construct: the semantics for the

statement "DOY is defined by

WP(D0,Q) £ (3k =0 : H (Q) (8)
where

H(Q)Z= BBAQ; and (9

Vik> 0, B (Q) = WP(IF,H_,(Q)V B (Q (10)

Thus, Hk(Q) is interpreted as the weakest precondition guaranteeing
termination after at most k selections of a guard list, leaving
the system in a final state satisfying Q.

Note that in the deterministic case, equation (8) ié reduced
to the following (due to the equality of (3) in theorem 1 in

this case).

Corollary 1: (Basu and Yeh) Let S be the statement "While B

do S." then for any postcondition Q, we have

1
WP(S,Q) = [33:] 2 0:a7 (@]

where

A (@ =B A

j+ 1

Ay Q) = BAwP(sl,Afé (Q)), for j = 0.

(11)

It follows from (8) and (11) that the two constructs

"do B> 8, od" and 'while B do S;" are semantically equivalent.
It should be noted that definitions (8) and (11) are identical

in the deterministic case but different in the nondeterministic

case as i1llustrated by the following example due to Dijkstra

(private communication).
DO: do X?O—>x:=x~lﬂx>9—>x:=x—103§_

The reason for this is that equation (3) in theorem 1 is an
identity in the deterministic case, but not in the nondeterministic

case.

Note that equations (9) and (10) provide a way of obtaining
WP(D0O,Q) in that successive terms of Hk(Q) can be computed until a
suitable candidate fof WP(DO,Q) is found. While this technique is
not algorithmic, it is similar to the sequence extrapolation technique
familiar in mathematics. We will now illustrate the previous definitions

by the following examples.

¢

Example 6 - Consider the program

do x ¥ 0~ x:=x = 1 od.

] 3=

With respect to a postcondition Q = (x = -1), we see that by
the proceddre given in theorem 3,
H, = F, 120
i

Hence, WP(DO,x = -1) = F.

For postcondition Q' £ (x = 0), we have
HO Ex=0
Hl = x =1

To find the general term Hi’ assume that for j > O

We find that

o
it

41 WP(IF,Hj)

x = j+1

i

Hence, we have

WP(D0,Q") = [Jj:3 = 0:x = 31 |

Example 7 - Let S' be the following program computing the quotient
and remainder with a specification [I,Q], where I = (x 2 0 Ay =2 0)

and Q (x £ B< yAx 20 Ax = BtAy) are the respective input and

output assertions.

x20AnAy >0)
S': begin A: = 0; B: = x3
S: While B 2 y do

begin B: = B-Y;
A: = A+l

We apply the procedure given in corollary 2 to compute WP(S',Q).

Ag (Q) 0B <YAX20AX=38+ AY

In order to compute WP(S,Q), we need to obtain the general term
A% (Q), for j > 0. This can be done by induction on j with Ag Q)

as the basis of the induction. Thus we obtain for j ~ O,

A (@ iy EB < GHDYA X2 0Ax
S
Hence, WP(S,Q) = (3n 20) [ny € B < (ntl)y A x 20 Ax = B + AY]

B + AY

and

WP(S',Q) = (In20) [ny £ x < (atl)y Ax > 0]. |l

Example 8 - Let S' be the following program computing the ;;

. . B
exponential function A~ of two integers with specifications [I,Q], where

I=[A>0AB20] and Q = [2 = A°].

S': (A>0AB20)
begin x: = A; y: = B; z: = 1:
S: Whiley % 0 do
begin if odd (y)

_ begin y: = y-1;
z: = z¥*x
end
y: = %g xX: = X%x
end
(z = A%

~15~

Again, we shall compute a few successive terms using corollary 2
and then use induction to prove the expression of a general term

to finally obtain the expression for WP(S',Q) of the loop.

Clearly,
2@z ly=0Az=4")
By (9), we have
B @z Gt Alleven) AT=0Az= 8TV

[odd (¥) A -y—;_—lc 0 A z#x = AP])
There are two cases to be considered:

i) ZT=0=(=0Vy=1

This implies that (even(y) A %-= 0) =y =20
ii) X-Z:':—L'=GE(y=lVy=2)
This implies that (odd (y) A X%l=)=z y=1
By (i) and (ii), we conclude that
AL (@ = [y = 1A 2 = &)
Similarly, we obtain
Aé Q) = [y=2A z*x2=AB]\I
[y = 3 A z*x3 = AB]
and
RN e R R
Viy = 5 A z*X5 = AB] Vigy=7A z*x7 = AB]

By induction on j, we obtain that for j > 0,

j+1

3
= _l_ é E3 k) B
Ag (Q)~\§Z=231[y 0 A z*x A7)

~16—

Hence,
WP(S,Q) = (Jn = 0)[2" £y < 2™ A zx’ = AP
and, wp(s',Q) = (In 2 0)[2" €8 < 2", ||
We note that in both of the previous examples, the way we
obtain WP(S,Q) is by the generation of a sequence of expression
Aj (Q) using corollary (7), and by ''guessing” the general term

S

Ag (Q). If our guess is correct, then it can be proved by induction
on j. Otherwise, more terms are_generated and another guess is made.
It should be emphasized here that this technique is heuristic in
nature, and therefore, does not always provide a solution readily.
Applying this technique to programs of nested loops will immediately
expose the limitations of this techmique. Some special cases of
generating sequences to approximate general‘terms have been studied

in [Grief and Waldinger, 1974]. However, nested loops remains the

biggest problem in this approach.

V. THE NOTIONS OF CONSISTENCY, TERMINATION, AND CORRECTNESS AND

THEIR VERIFICATION

In this section, we shall forﬁulaté the concepts of consistency,
termination, and correctnesé, and illustrate how to prove these
properties of programs utilizing the formal semantics defined in
terms of predicate transformer.

We first formulate the notion of termination using intuitive
arguments of Dijkstra. Consider a given program S and some post-

condition R. Then each initial state S belongs to one of the following

17

disjoint sets according to the following three conditions:

1) S will terminate after activation in a final state
satisfying Q;

2) S will terminate after activation in a final state
not satisfying Q;

3) S will not terminate.

The first two sets are characterized by WP(S,Q) and WP(S,Q). Since

WP(S,Q) V WP(S,Q) = WP(S,QWQ) = WB(S,T),
the third set is characterized by ﬁ?fngjl Hence, termination is
characterized by WP(S,T).

The main goal of program verification is to develop techniques
which can demonstrate formally that the logical behavior of a program
is indeed what its creator had intended. In order to provide a formal
proof of demonstration, it 1s necessary to express a programmer's
intention as formal specifications, and that the logical behavior
of a program in terms of the formal semantics of its constructs. The
proof process then is to show that the semantics of the program as a
whole satisfies its specifications. Note that while specification may
include all kinds of information and properties of program, termination
is not usually included.

We now introddce Hoares notation. The symbols P{S}Q have the
meaning "if assertion P is true on certain initial state, and the
program is activated in this state, and if § terminates, then the
assertion Q will be true on the final state.

We say a program S is consistent (or partially correct) with

~18~

respect to a pair of input and output assertions I and Q if and only
if I{S}Q. |

Note that P[S]Q always imply that P{S}Q, but the converse does not
hold in general.

Finally, a program S is said to be correct (or totally correct or

strongly verifiable) with respect to a pair of input and output

assertions P and Q if and only if P[S]Q.

The usual practice of program verification consists of two parts:
1) to prove consistency, and 2) to prove termination. Usually,
the failure to prove consistency or termination does not lead to a
proof of inconsistency (i.e. P{S8}Q is false) or nontermination
(i.e., ﬁ@?ngS is true). Fuythermore, most techniques handle con-
sistency and termination proofs separately. It will be shown in the
following that the verification method we propose here handles con~-
sistency and termination proof simultgneously, and that failure to prove
correctness automatically proves incorrectness.

The following results is a straight forward_from theorem 1 and the
definition above.

Theorem 4 - A program S terminates with respect to an input
assertion I if and only if I - WP(S,T).

To illustrate the concept, let us consider example 7. It is
easily seen that

WP(S',T) = (dn =2 0) [ny £ x<(otl)y].

Since

x20Ay> 0 -*(3n20)[ny £ x < (otl)y]

~]19=

is clearly a basic property of the number theory, we conclude that S
terminates with respect to the input assertion.
Theorem 5 - A program S is strongly verificable with respect to
a specification [I,Q] if and only if I - WP(S,Q).
It follows from theorem 5 that the problem of verifying I[S]Q
can be partitioned into the following subproblems.
1. Given S and Q, obtain a candidate R for WP(S,Q);
2. Show that R = WP(S5,Q);
3. Prove that I - R.
To illustrate the concept of strong verification, we refer the

reader back to examples 4 and 6. In example 4, we see that

L]

Iz[x20Ay=20]~>[x2y->x=mnax(x,y)]A

1

max(x,y)] = WP(IF,Q)

]
¥
k<:
Il

ly
Hence, the program is strongly verifiable.
Similarly, one can esily show in example 6 that
x> 0> [3j:3 2 0:x = 3]
is a tautoclogy, and hence the program is strongly verifiable with
respect to [I,Q°].

It should be observed here that when strong verification of a
program S cannot be achieved with respect to [P,Q], a program is
automatically incorrect with respect to [P,Q] in the sense that there
exists x € P* such that either S does not terminate with respect
to input x, or that S terminates but fs(x) ¢ Q*. Where P* = {X[P(X)}a

The following results characterizes incorrectness and is a

corollary of theorem 4.

-20~

Corollary 2 - A program S is incorrect with respect to a pair of
input~output specification [I,Q] if and only if I » WP(S,Q) is false,
Referring again to example 6, we seé that the program in example
6 is incorrect with respect to [I,Q] for I = x > 0 since WP(DO,Q)= F
and I -~ F is false.
Note that we can prove indeed whether the incorrectness is con-
tributed by inconsistency or nontermination. First, nontermination
can be pfoved if I - WP(S,T) is false, Hence inconsistency is proved
if I - WP(S,Q) is fdlse but I - WP(S,T) is_true. Referring again to
example 6, we see that I - WP(S,T) is true, and hence its incorrectness
is due to inconsistency.
Finally, we consider examples 7 and 8. In example 7, we obtained
WP(S',Q) = (3n 20)[ny £ x <(otl)y A x > 0]
Since it is easily shown from properties of integers that
x20Ay20-> (3n)[n £ x < (ntl)y]
We have shown that I - WP(S',Q), and hence S; is correct.
In example 8, we obtained
WP(S',Q) = (I3n20)[2 £B <2 7],
Again, it is easily seen that
A>0AB20~>(3In=20)[2

Hence, we have proved that S' is correct.

-21=

VI. THE FIXPOINT THEOREM
In this section, we shall consider another way of viewing the
repetitive construct DO for program verification.
We first consider the deterministic construct
S':; WHILE B DO S;
We note that this program is equivalent to
IF B THEN S;

IF B THEN S;

°
o

IF B THEN S;:
Where the equivalent program consists of as many "IF B THEN S" state-
ments as the number of times 8 is executed in the WHILE program if it
terminates. Thus, the program S' is equivalent to the program S":

IF B THEN begin S;

WHILE B DO S;
end;

By (7), we see that

WP(s",Q) = BA QV BAWP(S;S',0)
By the axiom of composition,

WP(S',Q) = WP(S,WP(S',Q)
and hence we derive the following recursive equation

WP(S',Q) = [BAQ] V [BAWP(S,WP(S',Q)] (12)

Similarly? in the nondeterministic case, we note that the

statement DO

do8 —>s; [J...00 B, > s od (13)

-22-

is "semantically" equivalent to the statement

if BB — "'skip"[] BB —IF; DO fi (14)
where BB is the negation of BB. Hence, we arrive at the following
recursive equation.

WP (D0,Q) = [BBAQ] V [BBAWP(IF,WP(D0,Q))] (15)

We shall now justify that statements "DO" and ﬁiﬁ_iﬁ'—> "skip"”

D BB —> 1IF; DO fi" are indeed semantically equivalent by proving (15).
First of all, we will need a lemma due to Dijkstra [1976] which states

BBAWP (DO,Q) = BBAWP(IF,WP(DO,Q))V (16)
then,

(BBAQ) V [BBAWP (IF,WP(DO0,Q))]

I

(BBAQ) V (BBAWP (D0,Q))

4]

(BBAQ) V (BBAJi:i = 0:H,) (by 16)

i

Ji:i 2 0:
HO\/ (3i:1i = 0:BBA Hi)

HO\I aizl b3 l:BBAHi

= ﬂi:‘i z O:BB;‘\Hi

i

HE

WP (DO,R) .
Let us consider a function 1t whose domain is the set of predicates
defined on state space of a program such that for any such predicate P,
T(P) = [BB A Q] YV [BB A WP(IF,P)] (17)
where BB and IF refer to the repetitive comstruct "DO".

In the deterministic case, we have

T(P) = [BAQ] V [BAWP(S,P)] (18)
where we are referring to the construct "While B do Sl".

We call P a fixpoint of 7 if T(P) = P. By equation (15), we see
rifpoint

that WP(DO,Q) is a fixpoint of 7. Indeed, we have a stronger result as

D G

stated by the following theorem.
Theprém 6 - The predicate WP(DO,Q) is the least fixpoint of <t
in the sense that if P is any other fixﬁoint of 1, then WP{DO,Q) —> P.
Proof: Let P be a fixpoint of t. We need the fdllowing lemma :
for i > 0, WP(IF,Hi_l(Q)) —> WP (IF,P) (19)
Assuming (19) holds, then we can conclude that for i > 0,
: WP(IF,Hi_l(Q)) v HO(Q) —> WP(IF,P) V¥ HO(Q) (20)
Since WP(IF,S) —» BB, we can conclude that
WP(IF,P) = WP(IF,P) A BB (21
Hence, by equations (20) and (21), we have
H, (Q) = Hy(QVWE(IF,H,_ (Q)) — (BBAWP(IF,P))VH,(Q), for i > 0

Therefore,

i
HJ

We(D0,Q) =J3:j 2 0:H,(Q) —> Hy(Q)VBBAWP (IF,P) =
And hence the theorem is proved.
We now need to prove the lemma stated by equation (19). The
proof will be by induction
(i) WP(IF,P) = WP(IF, (BBAQ)V(BBAWP (IF,P)))
<— WP (IF,BBAQ)Y WP (IF ,BBAWP (IF,P))
= WP(IF,HO(Q))VWP(IF,BBAWP(IF,P))
Hence, WP(IF,H,(Q)) —> WP(IF,P).
(ii) Let us assume that for K = 1,
WP (IF,H (Q)) —> WP (IF,P)
Let k = K+1, we have
WP (IF,H, , (Q)) = WP (IF,WP(IF,H, (Q))VH;(Q))
— WP (IF, (WP (IF,H, (Q))ABBWV H, (Q))

—> WP (IF,WP(IF,P)ABB)VH,)

~24-

= WP(IF,P)
Thus, we can conclude by induction that
for i > 0, WP(IF,H,_,) — WP(IF,P).
and hence the lemma is proved. ||

Note that for any x & P* - WP(DO,Q)*, x é‘Hi(in for 1 > O,
and hence we conclude the following result. Where P* denotes the set
of states characterized by the predicate P.

Corollary 3 - Let P be a fixpoint of 7 in (17) different from
WP(S,Q), then the program DO will not terminate when input with elements
of the set P*-WP(S5,Q)*.

The previous result states than any solution to (15) is a
predicate consisting of WP(DO,Q) together with some elements which will
not cause DO to terminate. Recall that WP(DO,T) is the weakest precon-
dition for DO to terminate,uthis combined with the previous result leads
to the following corollary.

Corollary 4 - Let P be a fixpoint of 7 in (17), then

WP(DO,Q) = P A WP(DO,T).

Proof: Since P A WP(DO,T) is again a fixpoint of T, and that
P A WP(DO,T) —> WP(DO,T), we conclude that P A WP(DO,T) = WP(DO,Q) by
theorem 6 and corollary 3. ||

Example 9 - Consider again the program computing the quotient

and remainder given in Example 7. We will illustrate here that

1t

WP(S,Q) = WP(S,T) A P, where P (x = B + AY).
P is clearly a solution to equation (17) since

B<YAx=B+AY) V(B2yAx=(B+Y) + (A+1Y=

x = B + AY.

25

Consider now T as the postcondition. We have for j =0,

A:E];(T) = 5Y € B < (F+D)Y.

WP(S,Q). ||

i

Hence, clearly, WP(S,T) A P
Corollary 3 and example 9 illustrate that weakest precondition
may be obtained in two separate stages: by finding a solution to
equation (15), and by determining WP(DO,T). As we pointed out
previously, WP(DO,T) is precisely the condition for termination, we
therefore are led to the fact that if P is a solution to equation
(15) then a proof of I —> P, where I is the input specification
for S, would bé a proof that S is consistent (or partially correct)
with respect to its specifications.
Observe that the previous discussions suggest that proof of
a program can be achieved in two stages using our approach, namely,
prove the consistency and termination separately. This, of course,
is familiar in the case of using "inductive assertion" approach. However,
the difference is that there is no need to invent a well-ordered set
for the termination proof. WP(DO,T) singles out the inherent proper-—
ties of an algorithm which lead to termination as illustraged in

example 9.

As a consequence of theorem 4 and coroilary 4; we haﬁe the
following result.

Corollary 5 - Let [I,Q] be a pair of specifications for the program
s: do B, »s, [... 8 ~s_ od,
then S is consistent with respect to [I,Q] if and only if I - P for

some fixpoint P of 1T in (17).

Example 10 - Consider the nondeterministic program given in

example 2 for the solution of the eight queens problem. The predicate

P=ROW£ 1ACOLZL1 ALDE1ARDZ1

26—

is clearly a fixpoint of T in (17). Let the specifications [1,0]

be respectively the following:
1= [ROW:=COL:=LD:=RD:=O]
Q = [ROW=1 A COL £ 1A1LDE1ARDE<1].
We see that BB A P + Q, where BB = [ROW ¥ 1] and WP(I,P) = T. Hence~

by corollary 4, the program is consistent with respect to [I,Q].

1t should be noted the ease of the consistency proof. The termi-
nation proof turms out to be tedious in that WP(DO,T) is a precise
description of various ways of placing the queens to obtain all solu-

tions of the problem.

Example 11 - Consider the following nondeterministic programs with
specifications [I,Q]. Show that it is strongly verifiable with

respect to [I,Q].
I:[(n>0 A(VYi: 0€41i£€n, £(1) 2 0)]
k:=0; j:=1
do j %0~ if £(3)
£(3)

[N

flk) » j:i=3 + 1

1%

0 £(k) » ke=j;i:=3 + 1
£i

od
Q:[0 £k <n A(Vi:0 £ i< n:if(k) 2 £(1))]

Utilizing the fixpoint theorem, we shall first find a candidate

1N

for a fixpoint of the loop equation (15). .This, of course, can be

done by the generation of sequence of ex?ressions HO(Q)’Hl(Q)’ wee
and extract from it a term and plug it into (15) to test whether it
is a fixpoint. 1In any event, a candidate is proposed. In this
case, we propose
P=(33:02 3 <n) A(Vi:0 €1 < 3:£(3) =2 £(1)
to be a fixpoint of (153) which is readily’verifiablee
Since it is clear that I - P, we see that the program is con-

sistent with respect to [I1,Q].

27—

To prove termination, we proceed to compute HO(T),Hl(T), etc

and use induction to obtain the expression for a general term such that
i
E\/~' =
Hi(T) K20 itk = n

Hence:

i

WP(DO,T) = (Jk 2 0)[k + j = n]

and
WP(S,T) = (dk =20)[k + 1 = n].
Clearly, I > WP(S,T) and this together with the consistency

above implies that the program S is strongly verifiable. H

VII. 'THE CONCEPT OF A LOOP INVARIANT AND ITS FIXPOINT CHARACTERIZATION

Recall that in both examples 10 and 11, the fixpoints P we selected
turned out to be "invariant' with respect to the loop DO. In other
words, the predicate P remains to be true no matter how often the

guarded command of a set is selected. We say P is a loop invariant

of the l;op DO if
P A BB - WP(IF,P) (22)
The following result of Dijkstra called the "Fundamental Invariance
Theorem for Loop S" is included here for completeness.
Theorem 7 (Dijkstra) - Let a guarded command set with its dernived
alternative construct IF and a predicate P be such that
P A BB -+ WP(IF,P)
holds for all states; then for the corresponding repetitive construct

DO we can conclude that

[P A WP(DO,T)] - WP(DO,P A BB)

-28=

The previous theorem states that if P is a loop invariant, then
upon termination of the whole retetitive comnstruct, when none of the
guard is true, the program will enter a final state satisfying PA BB.

We now pursue the relationship between loop invariants and fix-
points further. Consider a fixpoint P of equation (12). We note that
if BB is true, then

P = BB A WP(IF,P)
From which we can conclude that P A BB = WP(IF,P) and hence P is a
loop invariant.

In the event BB is true, then

P =BBARQ
and we can conclude from the above equation
P ABB > Q (23)

We note that property (23) provides a sufficiency condition for
deducing the output assertion upon the completion of the repetitive
‘construct.

We will call a predicate P an output-adequate loop invariant of DO

if it satisfies equations (22) and (23). The following results summarize
the relationship between this type of loop invariants and fixpoints of
(15).

Theorem 8 - Any fixpoint of (15) is an output adequate loop
invariant of DO.

The converse of theorem 8 does not hold since the program construct
IF may not terminate.

Theorem 8 states that fixpoints of equation (17) are those loop

invariants which are strong enough to imply the output assertion, and

VA® B

to gaurantee that the loop will terminate. For verifying programs
using the inductive assertion method, "output—adéquate invariants' are
the desirable invariants. Thus, equation (17) provides é test for this
type of inmvariant.

To illustrate this point, let us consider the program of computing
quotient and remainder given in example 7. The loop invariant
P = X = A+ BY is clearly a fixpoint of (17). Similarly, the loop

y

invariant for the loop in example 8 is P = B% x’ = AB which is again

a fixpoint of (10).

VIIT. CONCLUDING REMARKS

In this paper, we have utilized the concept of a "predicate
transformer" introduced by Dijkstra for the verification of deter-
ministic and nondeterministic programs,

We have studied two ways of generating the weakest preconditions;
by generation of a sequence of "approximations” of the final predi-
cate and by solving for a solution of a recursive equation. Note that
these two techniques can be used to complement each other in locating
the loop invariant. The generation of successive terms will provide
a guideline in obtaining a candidate, and that the recursive equation
provides a test for checking the adequacy of the candidate. It thus
seems that these two techniques will be a useful addition to any
verification system based on inductive assertion method.

We conclude this paper by observing that the results of this
papér seem to indicate that the concept of defining program semantics

using predicate transformer is a very useful one. However, from a

=30

practical point of view, a basic limitation is imposed by the explod-

ing complexity of the weakest precondition.

IX. ACKNOWLEDGMENTS

The author is indebted to Professor E. W. Dijkstra for pointing
out an error in an earlier draft of this chapter.

Support from NSF under Grants GJ-36424 and DCR75-09842, and Air

Force uncer contract grant F44620-71-C-0091 are duly acknowledged.

~31-

VIII.

16.

11.

12,

13.

14.

15.

REFERENCES

Basu, S. K., and J. Misra, "Proving Loop Programs', Trans. on
Software Engineering, Vol SE-1, No. 1, 76-86, (1975).

Basu, S. K., and R. T. Yeh, "Strong Verification of Programs",
Trans. on Software Engineering, Vol SE-1, No. 3, 339-345, (1975).

Dijkstra, E. W. "Guarded Commands, Non-determinancy and A
Calculus for the Derivation of Programs', Proc. 1975 Internatiomal
Conf. on Reliable Software, 2.0-2.13; CACM, Vol. 18, No. 8,

(1975) 453-457.

Dijkstra, E. W., A Discipline of Programming, Prentice Hall
Publishing Co., (1976). :

Floyd, R. W., "Assigning Meaning to Programs', Proc. Amer. Math.
Soc. Symposia in Appl. Math., 19: 19-31, (1967).

Fusaoka, A., and R. Waldinger, "Program Writing Using Sequences',
Stanford Research Institute Technical Report, (Jan. 1974).

Grief, I. and R. J. Waldinger, "A More Mechanical Heuristic Approach
to Program Verification", Stanford Research Institute Technical
Report, (1974).

Hoare, C. A. R., "An Axiomatic Basis for Computer Programming',
CACM, Vol. 12, No. 10, 576-583, (1967)

Kleene, S. C., "Introduction to Meta Mathematics”, Amer. Elesvier

Publishing Co., (1971).

London, R. L., "A View of Program Verification”, Proc. 1975
International Conference on Reliable Software, 534-545.

Manna, Z., Mathematical Theory of Computation, McGraw-Hill Inc. (1974).

Manna, Z., and J. Vuillemin, "Fixpoint Approach to the Theory of
Computation’, CACM, Vol. 15, No. 7, 528-536, (1972).

Manna, Z. and Z. Pnueli, "Formalization of Properties of Func-
tional Programs’, J. ACM, Vol. 17, No. 3, 536-555, (1970).

Katz, S. and Z. Manna, "The Logical Analysis of Programs', CACM,
to appear.

Parnas, D. L., W. Bartussek, G. Hendzel and M. Wuerges, '"Using

Predicate Transformer to Verify the Effect of "Real' Programs',
Private Communication (1976).

