UT-MIX REFERENCE MANUAL
by

James L. Peterson, Editor

January, 1977 TR~-64

Department of Computer Sciences

The University of Texas at Austin

ABSTRACT

This document describes the UT-MIX system used at the University of
Texas. UT-MIX is a complete implementation of the MIX machine, as
described by Knuth, and includes significant extensions. This document
describes the differences and extensions to the basic MIX system defined
by Knuth. It is intended primarily as a user's reference manual. The
basic configuration, instruction set, assembly language, macro and
conditional assembly instructions and input/output system are described.

This document is a revision of an earlier reference manual prepared
and published by the Department of Computer Sciences at the University
of Texas at Austin. The current revision was prepared and editted by
Professor J. L. Peterson. The previous versions were not identified
as to author. Any comments, corrections or suggestions concerning the
present revision should be directed to:

James L. Peterson

Department of Computer Sciences
The University of Texas

Austin, Texas 78712

(512) 471-4353

INTRODUCTION« « « + + .+ .

THE UT-MIX SYSTEM

2.1 Access to UT-MIX
2.1.1 Control Cards and Job Parameters
2.1.2 Deck Structure

2.2 Central Processor and Memory
2.2.1 Words

2.2.2 Registers .

2.2.3 MIX Memory . . .

2.2.4 Indirect AddreSSLng .

2.2.5 Instruction Timing .

2.3 Input-Output Devices
2.3.1 Magnetic Tapes -- Units 0,1 ,
2.3.2 Magnetic Disks -- Units 8,9 .
2.3.3 Magnetic Drum -- Unit 10 .
2.3.4 Card Reader -- Unit 16
2.3.5 Card Punch -- Unit 17
2.3.6 Line Primter -- Unit 18 .

2.4 Clocks . . .
2.4.1 User Interval Timer ,

2.4.2 Simulation Summary . . .

2.5 Execution Diagnostics
2.5.1 Trace . . . e e e
2.5.2 Fatal Error Messages e

THE UT-MIX INSTRUCTION SET

3.1 Loading Operators

3.2 Storing Operators

3.3 Arithmetic Operators .

3.4 Comparison Operators . .

3.5 Address Transfer Operators .

3.6 Jump Instructions .

TABLE OF CONTENTS

3.6.1 UT-MIX: Additional Jumps
3.6.2 Restriction on all jumps

ii

W N NN O OOV D T RERPLWW W WD N

10

[aen

10
10
10
10

11
11

5.

THE UT-MIX INSTRUCTION SET

3.7 Shift Instructions .
3.7.1 UT-MIX Extensions
3.8 Input-Output Operators

3.9 Mixcellaneous Operators
3.10 Conversion Operators .
3.11 Special A-X Register Operators .

3.11.1 A-X Register Exchange

3.11.2 A Register Sign Operations
3.11.3 A Register Logical Operations

THE MIXAL ASSEMBLER .

4.1 Introduction . .
4.2 Program Structure and Organlzatlon .

4.2.1 Location Counter . .

4.3 The MIXAL Language

.
0w W Wi W Wi w

.

p
5

o~

3 ® . °

SEERDRRDD WO PSSR RDDE

WMo O

4

W~ P W

.

N G R R VLI RS

Coding Format .
Statement Types
Statement Fields
Local Symbols
Symbols . .
Forward References
Constants . .
Special Element .
Expressions

.10 W-values (Word Values)
.11 Literals .o

erations Codes
gdo-Instructions

.

Assembler Control - END .

Counter Control - ORIG

Symbol Definition - EQU .

Data Generation - ALF .
Data Generation - CON
Listing Control - LIST

Trace Limit Setting - TRLM

4.6 The Assembly Llstlng Ce e e
4.7 Error Codes . . . e e e

MACRO ASSEMBLY AND CONDITIONAL

5.1 Macros

5.1.1

5
5.

.1.
1

2
.3

* 0 v e ® & o @ s 5 ® .

Macro Defianition . . .
Macro Call'

Operation Code Recognition

iid

.

3

«

-

s

°

ASSEMBLY

-

. 23

. 23

11
11

12
12
12
12

13
13
13

14

14
14

14
15

15
15
16
17
18
19
19
19
19
21
22

23
23
24

24
24

. 25

25
26
27
30
30

30
34
36

5. MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY
5.2 Conditional Assembly .

5.2.1 1IF

IFC .
IFD .
ELSE
ENDI

Uit
NN
[B0 S VLR N

6. THE UT-MIX INPUT/OUTPUT SUBSYSTEM .

6.1 The Simulated MIX I/O Units
6.2 CDC 6000-Series Files
6.3 Data Transfer

6.3.1 Alpha (character) Input
6.3.2 Alpha (character) Output .
6.3.3 Binary Input and Output

6.4 UT-MIX I1/0 Instructions

6.4.1 The IN and OUT Instructions .
The I0C Instruction .
The JBUS Instruction
The JRED Instruction

oo O
S~
S~ W

6.5 Exceptional Conditions .

6.5.1 End of Record .
6.5.2 End of File .
6.5.3 Trash Disk and Drum Records .

6.6 Input/Output Control (I0C)

Magnetic Tape -- Units 0,1
Magnetic Disks -- Units 8,9 .
Magnetic Drum -- Unit 10

Card Reader -- Unit 16

Card Punch -- Unit 17 .

Line Printer -- Unit 18 . ..
Multiple-Record Input (Card) Flles

SN O
s s e e s e s
AR ONO
e e s s s s
~NOY U WN e

6.7 Disposition of I/0 Files .
6.8 Fatal 1/0 Errors .
6.8.1 Nonexistent Unit’ .o
6.8.2 1Illegal I/0 Operatiom .
Appendix A. Simulator Trace Feature
Appendix B. Fatal Simulator Errors
Appendix C. The UT-MIX Character Set .
Appendix D. MIX Symbolic Opcodes ~- Alphabetic Order .
Appendix E. MIX Symbolic Opcodes -- Numeric Order

iv

. 37

. 37
. 38
. 38
. 38
. 39

. 40

. 40
. 40
. 40

. 41
. 41
. 41

. 41

. 41
. 42
. 42
. 43

. 43

. 43
. 43
. 43

. 44

. 44
. 44
. 44
. 44
. 44
. 45
. 45

. 45
. 45

. 46
. 46
. 47
. 48
. 52
. 54
. 58

CHAPTER 1

INTRODUCTION

MIX is a mythical computer, designed and used by Donaid E. Knuth
to give programming examples throughout his series of books, The Art of
Computer Programming. UT-MIX is a complete system, designed for the CDC
6000-series computers at the University of Texas at Austin. It provides
users of this facility the opportunity to write and run MIX programs.

UT-MIX has all of the features described by Knuth in references 1,
2, and 3 below, and includes several significant extensions. This paper
describes the differences between UT-MIX and Knuth’s original

specifications.

Knuth’s specifications for MIX appear in all three of the
references below. This document assumes the reader has access to at
least one of these books.

This document supersedes and replaces all earlier references on
UT-MIX prepared at the University of Texas at Austin.

References
1. Knuth, Donald E., MIX, Addison-Wesley, 1970, 48 pp.
2. Knuth, Donald E., The Art of Computer Programming, Volume 1:

Fundamental Algorithms, (Second Edition), Addison-Wesley, 197§:
pp. 120-227.

3. Knuth, Donald E., The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, Addison-Wesley, 1969, pp. 565-~595.

CHAPTER 2

THE UT-MIX SYSTEM

UT-MIX includes a simulator for the MIX computer and an assembler
for the MIXAL assembly language. This Chapter describes the basic
features of the simulated MIX machine and its interface with the UT CDC
6000-series system.

2.1 ACCESS TO UT-MIX
2.1.1 Control Cards And Job Parameters

A field length of 40000 (octal) is required for the MIX system in
all cases. This is both a minimum and a maximum. Larger field lengths
are unnecessary and undesirable.

The MIX system is called by a MIX control card of the form,

MIX.

or
MIX, parameters.

This card calls the MIXAL assembler to translate a user program
deck written in the MIXAL assembly language. After assembly, the

program is executed by the simulator.

The possible parameters for the MIX control card are,

I = filename Input file. This file is used for input to the MIX
assembler.
0 = filename Output file. The assembly listing and MIX program output

will be printed on this file.

X = filename External text file. If specified, the MIXAL assembler
first takes its input from this file. When an
end-of-record is found on the X file, input 1is switched
to the standard input file (the one specified by the I
parameter).

]
i

filename Data file. The assembled MIX program will use this file

-2

THE UT-MIX SYSTEM Page 2-2

for input when IN operations are done on the card reader
(MIX I/0 device 16).

The parameters may occur in any order. Defaults are INPUT for I
and D, OUTPUT for O, and no X file. Thus a MIX. control card is
equivalent to MIX,I=INPUT,0=0UTPUT,D=INPUT. If no D file is

specified, the I file 1is wused for input data. Thus, MIX,I=DMX. 1is
equivalent to MIX,I=DMX,D=DMX. If program input should come from DMX,
but data should come from INPUT, then either of the following two
control cards could be used: MIX,I=DMX,D=INPUT. or MIX,X=DMX. This
latter card uses the default values of INPUT for I and D.

2.1.2 Deck Structure

Sequence card,
Password card.

MIX.

7/8/9

MIXAL source program
7/8/9

data for MIX program
6/7/8/9

2.2 CENTRAL PROCESSOR AND MEMORY
2.2.1 Words

Each UT-MIX word consists of five bytes and a sign. The sign
position has only two possible values, + and -. Each UT-MIX byte
contains six bits, giving the limits:

00 through 63 (00 to 77 octal) for each byte;

00 through 4095 (00 to 7777 octal) for two bytes;
absolute value 1073741823 (7777777777 octal) for each word.

The partial fields of instruction words and their field
specifications are: numbered O through 5, left to right, beginning with
the sign.

Sign Ah~field I-field F-field C-field
(0:0) (1:2) (3:3) (4:4) (5:5)

2.2.2 Registers
The UT-MIX central processor (CPU) has the following registers:

A register (accumulator): five bytes (30 bits), and sign.

-3

THE UT-MIX SYSTEM Page 2-3

X register (extension): five bytes (30 bits), and sign.

I registers (index):11,12,13,14,1I5 and I6. Each index
register has two bytes (12 bits) and sign.

J register (jump address): two bytes (12 bits). Sign is +.

Additionally, there is an overflow toggle (one bit, either on or off)
and a comparison indicator (three values: less, equal or greater).
Both function exactly as specified by Knuth.

Arithmetic in all registers is done in integer mode. Numeric data
are represented as a 30 (or 12) bit absolute value with a separate sign
field. UT-MIX includes some boolean operations, which operate only on
the 30 value bits of the A register.

2.2.3 MIX Memory

UT-MIX memory includes 4022 words of storage. Locations 0000
through 3999 (decimal) are available for normal use by a program for
instructions and storage. Locations 4000 - 4021 have special uses and,
while a program has access to them, their contents may be modified by
activities of the simulator. (These locations are described in Sections
2.4, 2.5, and 6.5).

2.2.4 Indirect Addressing

UT-MIX provides for indirect addressing and double indexing as
described by Knuth[2] pp. 248-249. The I-field of each instruction has
the form 8*Ii+I2, where 0 < I1 < 7, 0 < I2 < 7. In MIXAL this is
written as:

OP ADDRESS,I1:I2
or
OP ADDRESS,I2 if I1 = 0

When the instruction is executed, ADDRESS is modified by Il then by 12
and OP is performed with the new address. If Il and I2 are index
register specifications (0<Il<7, 0<I2<7) the contents of the appropriate
index registers are added to ADDRESS. If Il = 7 the new address is
taken from the 0:3 field of the location specified by ADDRESS
(indirection). If I2 = 7 the new address 1s taken from the 0:3 field of
the location specified by ADDRESS modified by Il. The case Il = 12 = 7
is not allowed.

THE UT-MIX SYSTEM Page 2-4

2.2.5 Instruction Timing

CPU instructions have the execution times prescribed by Knuth.
UT-MIX specifies a MIX time wunit to be equal to ! microsecond. The
behavior of input/output (1/0) devices is tied to this time scale.

~-all load, store, compare and shift instructions: 2 units

~-the ADD and SUB arithmetic operations: 2 units
--the MUL arithmetic operation: 10 units
~-the DIV arithmetic operation: 12 units
--the MOVE operation, to MOVE n words in memory: 2n+l units
--all other instructions: 1 unit

Note that I/0 instructioms (IN, OUT, 10C) require only one unit to
start an 1/0 operation, but the operation may not be complete for
several thousand units (milliseconds), depending on the characteristics
of the I/0 device and other I/0 activity. A UT-MIX program may continue
to execute CPU instructions of 11 kinds while 1/0 activities are in
progress.

Each level of indirect addressing used by an instruction requires
an additional time unit.

2.3 INPUT-OUTPUT DEVICES

The UT-MIX I/0 subsystem provides some capabilities beyond those
specified by Knuth. 4 full set of typical devices is available.
Complete operating specifications for each device, and for the 1I1/0
subsystem, appear in Chapter 6 to supplement the brief description given
here.

2.3.1 Magnetic Tapes == Units 0,1

Two magnetic tape wunits are available for binary read/write
operations. Each IN or OUT instruction transfers 100 full MIX words and
requires 16 milliseconds to complete. Each tape may be spaced forward
or backward, or rewound under program control.

2.3.2 Magnetic Disks -~ Units 8,9

Two random-access, moving head disks are available for binary
read/write operations. Each disk contains 64 tracks, with 64 100-word
sectors on each track, giving each unit a total capacity of 4096 records
- (409,600 words). Each IN or OUT instruction transfers 100 full MIX
words with a disk address specified by the contents of the X reglister.
A transfer requires an average of 32 milliseconds for access, plus 32
milliseconds per track if head movement is required, plus 1 millisecond
for actual data transfer.

THE UT-MIX SYSTEM Page 2-5

2.3.3 Magnetic Drum -- Unit 10

One random-access, head-per-track drum is available for high speed
binary read/write operations. Its organization and operation is similar
to that of the disk units, but its fixed heads and higher rotation speed
give 1t an average access time of only 16 milliseconds for any record.
Each IN or OUT operation transfers 100 full MIX words with a drum
address specified by the contents of the X register and requires ome
millisecond, after access delay. The capacity of the drum is 4096
100-word records.

2.3.4 Card Reader -- Unit 16

One high speed card reader is provided. The IN instruction
transfers 80 characters into 16 words of MIX memory. The operation
requires 50 milliseconds, simulating a rate of 1200 cards per minute.

2.3.5 Card Punch -~ Unit 17

One low speed card punch is provided. For each OUT instruction,
the contents of 16 words of MIX memory are transferred to 80 characters
of punch output. The operation requires 200 milliseconds,
simulating a rate of 300 cards per minute.

2.3.6 Line Printer —— Unit 18

One high speed printer is provided. Each OUT instruction transfers
120 characters (24 words) from MIX memory to the device at a simulated
rate of 1200 lines per minute (50 milliseconds per operation). Page
ejects, single and multiple line feeds may be performed under program
control using the IOC instruction.

2.4 CLOCKS

Two internal clocks are used by the MIX simulator to record
simulated CPU active time and simulated total elapsed time. These
values are available to the user in a printed summary, and a running
program may also access the current value of the CPU activity clock
through MIX memory cell 4001.

THE UT-MIX SYSTEM Page 2-6

2.4.1 User Interval Timer

The simulator automatically increments the value in MIX wmemory
location 4001 as each instruction is executed, adding the number of time
units (microseconds) required for the instruction. Using normal load
and store instructions, the user may read this value, or preset or reset
the value as desired.

2.4.2 Simulation Summary

The internal clock values are printed as the final 1lines of each
simulation ocutput. The summary shows:

~-the number of units of MIX CPU active (time spent
executing instructions)

~~the number of units of MIX CPU idle time (usually
awaiting completion of an I/0 operation)

--the number of units of total simulated time (sum of
active time and idle time).

A1l of the above are printed as decimal integers and should be
interpreted as microseconds. The simulator also issues a dayfile
message giving the number of seconds of CDC system TM (charge time) used
by the assembler {excluding simulation) and by the simulator {(excluding
assembly of the MIXAL deck).

2.5 EXECUTION DIAGNOSTICS

UT-MIX provides two diagnostic features during execution of a MIX
program: an execution trace and fatal error messages.

2.5.1 Trace

The simulator checks the contents of MIX memory location 4000
immediately after execution of each program instruction. If the
contents of location 4000 are non-zero, a line of printed output is
generated giving the location of the instruction just executed, the
instruction, and the contents of all registers and toggles at the
completion of the instruction.

The user may turn on the trace feature with a store instruction
which places a non-zero wvalue in location 4000 (e.g. STJ 4000), and
turn off the feature with a store instruction which places a zero value
in the cell (e.g. STZ 4000). Trace output is limited to a total of 500
lines for each program. The complete format of trace output is given in
Appendix A.

THE UT-MIX SYSTEM Page 2-7

2.5.2 Fatal Error Messages

As each MIX instruction 1is decoded prior to execution, it is
checked for wvalidity. Illegal instructions are trapped and cause the
simulator to stop, printing an error message. The user has no control
over this feature (unless an 1illegal instruction is deliberately
issued).

The error termination process clears all I/0 devices to assure that
the last 1line of printed output (and the 1last card punched) are
preserved, and generates one line of trace output. This trace differs
from the normal trace in that the offending instruction and its address
are printed, but all register values are as they were before the
instruction was executed.

A complete list of fatal error conditions and associated messages
is given in Appendix B.

CHAPTER 3

THE UT-MIX INSTRUCTION SET

All MIX instructions specified by Knuth have been implemented in
UT-MIX except for the floating-point operations mentioned in references
2 and 3. With only minor exceptions noted below, all of these
instructions have the exact formats and effects prescribed by Knuth.
UT-MIX includes some extensions of the original instructions, and some
additional instructions which are described in this Chapter. The MIXAL
mnemonics are used in these description. See also appendices D and E.
The symbol M stands for the calculated effective address (Section
2.2.4).

3.1 LOADING OPERATORS

ILDA, LDX, LDi; i = 1,2,000,6.

LDAN, LDXN, 1LDiN: {4 = [,2,...,6.
These instructions operate exactly as prescribed by Knuth. The M-value
of the dinstruction wmust be in the range 0 < M < 4021. An attempt to

load an index register with a non-zeroc value exceeding 12 bits will stop
the simulator with an error message.

3.2 STORING OPERATORS

STA, STX, STi; i = 1,2,...,63 STJ, STZ.

These instructions operate exactly as prescribed by Knuth. The M-value
of the instruction must be in the range 0 < M < 4021.

THE UT-MIX INSTRUCTION SET Page 3-2

3.3 ARITHMETIC OPERATORS

ADD, SUB, MUL, DIV.

These instructions operate exactly as prescribed by Knuth. Overflow
occurs for ADD and SUB if the absolute value of the result exceeds
1073741823 (7777777777 octal). If the DIV operation encounters a zero
divisor or a quotient larger than 1073741823, the A and X registers are
set to zero and the overflow toggle is turned on.

3.4 COMPARISON OPERATORS

CMPA, CMPX, CMPi; 1 = 1,2,...,6.

These instructions operate exactly as prescribed by Knuth. The M-value
of the instruction must be in the range 0 < M < 4021.

3.5 ADDRESS TRANSFER OPERATORS

INCA, INCX, INCi;
DECA, DECX, DECi;
ENTA, ENTX, ENTi;
ENNA, ENNX, ENNi;

= 1,2,44.,6. (increment)
1,2,¢4.,6. (decrement)
1,2,...,6. (enter)
1,2,...,6. (enter negative)

R
W ou

These instructions operate exactly as prescribed by Knuth. The overflow
toggle is turned on for an A or X register result which exceeds an
absolute value of 1073741823, Simulation is stopped with an error
message if the absolute value of an index register result exceeds 4095
(7777 octal).

3.6 JUMP INSTRUCTIONS

J4p, JSJ, JOov, JNOV, JL, JE, JG, JGE, JNE, JLE.
JeN, JrZ, JrP, JrN, JrNZ, JrNP; r = A,1,2,...,6,X.

These instructions operate exactly as specified by Knuth. The M~value
of the instruction must be in the range 0 < M < 4021.

~-10~-

THE UT-MIX INSTRUCTION SET Page 3-3

3.6.1 UT-MIX: Additional Jumps

JrE r=A,1, 2, 3, 4, 5, 6, X.
Jump if the register is even.
C = 40, 41, 42, 43, 44, 45, 46, 47;
F = 6'

Jr0 r=A4,1, 2, 3, 4, 5, 6, X.
Jump if the register is odd.
C 40, 41, 42, 43, 44, 45, 46, 47;
F = 7.

The least significant bit of the specified register 1is examined; all
other bits, and the sign, are ignored. If the least significant bit is
zero, the register is even. If the least significant bit 1s one, the
register is odd.

3.6.2 Restriction On All Jumps

Simulation is stopped with an error message if an executed jump (in
the case of a conditional jump, if the condition is satisfied) specifies
its own location. This is done to avoid time-consuming non-productive
loops.

3.7 SHIFT INSTRUCTIONS

SLA, SRA, SLAX, SRAX, SLC, SRC.

These instructions operate exactly as specified by Knuth, if M > 0.

3.7.1 UT-MIX Extensions

SLB, SRB (shift left or right M bits).
C=6; F=6 for SLB;
C=6; F= 7 for SRB.

These instructions produce the same results as SLAX, and SRAX, with both
A and X registers participating in an end-off shift except that the
value of M specifies the number of bits, instead of bytes, to be
shifted.

The original shift instructions (SLA, SRA, SLAX, SRAX, SLC, SRC)
are extended to permit bit shifts by using the value of M. If M < 0, it
is interpreted to mean bits instead of bytes. (Note that the value of
M does not in any way imply the direction of the shift).

-11-

THE UT-MIX INSTRUCTION SET Page 3-4
3.8 INPUT-OUTPUT OPERATORS

IN, OUT, IOC, JBUS, JRED.

Basically, all of these instructions operate exactly as specified by
Knuth, though there are some differences depending on the 1/0 unit
referenced. Their exact UT-MIX implementation is described in Chapter
6. For all IN and OUT instructions, the value of M must be in the range
0 <M < (4022 - record size for the unit). 1IN, OUT and IOC instructions
which reference disk (units 8, 9) or drum (unit 10) compute the disk or
drum address from the contents of the X register (bytes 4:5).

3.9 MISCELLANEOUS OPERATORS

NOP, MOVE, HLT

These instructions operate exactly as specified by Knuth. The HLT
instruction stops the simulator. The simulator always clears all 1/0
operations in progress as part of its normal (or abnormal) termination
procedure. For the MOVE instruction 0 < F < 63 and the M-value must be
in the range 0 <M < (4022 - F). The value of the Il register, which
specifies the destination address for MOVE, must satisfy the same
restrictions as M.

3.10 CONVERSION OPERATORS

NUM, CHAR

NUM and CHAR operate exactly as specified by Knuth. Overflow will occur
with the NUM instruction if the character code in the combined A and X
registers represents a decimal number larger than 1073741823.

oCT

OCT is a UT-MIX extension (C = 5, F = 3) to provide binary~to-octal
conversion of the value in the A register. The value in the A register
is converted into a 10-byte octal number which is put into registers A
and X in character code.

3.11 SPECIAL A-X REGISTER OPERATORS

UT-MIX implements an extended set of operations affecting the A and
X registers. These include three groups: A-X register exchange, A
register sign operations, and unary and binary A register boolean
operations.

~12~

THE UT-MIX INSTRUCTION SET Page 3-5
3.11.1 A-X Register Exchange
XCH (exchange the A and X registers)

C=5; F=09,

The contents of the A and X registers, and their signs, are exchanged.

3.11.2 A Register Sign Operations

ssp (set sign positive) C = 5; F = 4,
SSN (set sign negative) C=5; F=5.
CHS (change sign) C=25; F=6b.

The indicated operation 1s performed on the sign of the A register. The
absolute value of the A register is unchanged. M is ignored.

3.11.3 A Register Logical Operations

The following operations alter the 30-bit value field of the A
register. The sign of the register is unchanged in all cases. The
letter V below designates the specified field of the contents of M,
right-justified with leading zeros 1in a 30-bit word. The M-value
associated with OR, XOR and AND instructions must fall in the range of
0 < M < 4021,

LNG (logical negate). C = 5; F = 8.

The value field of the A register is complemented, bit for bit. M is
ignored.

MSK (mask). C = 5; F = 10,

M (modulo 30) bits are turmed on in the A register; the rest are turned
off. If M > 0, the consecutive on bits are left justified. If M < 0,
the mask is right justified.

OR (logical sum) C=1; F=17.
XOR (logical difference) C = 2; F = 7.
AND (logical product) C=3;F=7.

V is combined with the 30-bit value field of the A register to form the
logical sum, difference or product. Examples of the results:

...0101... OR ...1100-.. .0.1101.0.
.+.0101... XOR ees1100... ...1001...
...0101... AND ...1100... = ‘..0100...

[

=-13-

CHAPTER 4

THE MIXAL ASSEMBLER

4.1 INTRODUCTION

The MIXAL assembler is a comprehensive macro assembly system for
the MIX computer. It provides a symbolic programming language for the
effective and efficient utilization of the MIX hardware. This Chapter
describes the basic assembler, while Chapter 5 describes the macro and
conditional assembly features of the assembler.

4.2 PROGRAM STRUCTURE AND ORGANIZATION

Each set of statements submitted as input to the MIXAL assembler
must constitute a complete, self-contained program with all code
necessary to perform a specific task. No independent assembly of
subprograms is provided. The MIXAL assembler processes all statements
up to and including the first occurrence of an END pseudo-instruction,
ignoring all other statements before the occurrence of a data separator
(7/8/9 card). The MIXAL assembler stores the assembled information into
the memory of the MIX machine directly. Areas of the memory not
specified to receive information by the assembled program are preset to
zero by the MIXAL assembler.

4.2.1 Location Counter

The MIXAL assembler maintains a location counter which always
specifies the address of the 1location into which the next word of
assembled information will be placed. Normally the location counter 1is
started at 0000 (octal) and 1s incremented by 1 for each statement
processed. The value of the location counter may be directly set by the
programmer, however, by use of the ORIG pseudo-instruction (see Section
4.5.2 below). When the special element * appears in an operand

expression on a MIXAL statement, the value of the location counter will - .on. .

be used.

~l4=

THE MIXAL ASSEMBLER Page 4=-2

4.3 THE MIXAL LANGUAGE
4.3.1 Coding Format

A MIXAL program consists of a sequence of symbolic statements.
Each statement contains a maximum of four fields in the order listed
below. The format is essentially free field.

l. Location field - must begin in column 1.
2. Operation field - may begin in any column from 2 to 16.
3. Operand field - must begin before column 18.

4. Comments field — may begin after termination of the operand
field or no earlier than column 18 if the operand field is

empty.

Fields on a line are separated by one or more blanks. Blanks are
interpreted as field separators except when embedded in the comments
field, in a character data string, or in a parenthesized macro
parameter.

Columns 73-80 of the line may be used only for comment information.
A statement extending beyond colum 72 will be truncated to 72
characters. Continuation cards are not possible.

Comment lines may be included in programs, being denoted by the
appearance of a * in column 1 or by columns 1-17 being blank. These
lines appear in the program listing but otherwise do not affect the
assembly process. Any other configuration of symbols on a line will be
interpreted as a statement to be assembled.

The standard format for source statement lines is:

column content

1-10 location field

11 blank
12-15 operation field
16 blank

17-72 operand and comments fields
73-80 statement sequencing information

4.3.2 Statement Types

The statements processed by the MIXAL assembler fall into three
categories:

1. A normal statement which is assembled and may produce stored
information.

-15-

THE MIXAL ASSEMBLER Page 4-3

2. A statement which is bypassed by the assembler because of a
conditional instruction test which failed. (See Chapter 5).

3. A statement which is part of a macro definition. (See Chapter
5).

4.3.3 Statement Fields
4.3.3.1 Location Field -
The location field may be blank or may contain one of:

local symbol
symbol

4.3.3.2 Operation Field -
The operation field may be blank or may contain one of:

MIX machine operation code mmemonic
pseudo-instruction
macro name (See Chapter 5)

4.3.3.3 Operand Field -

The content of the operand field is dictated by what is in the
operation field.

For a MIX machine operation mmemonic the operand has the general
form:

A-part,l~-part (F-part}

The A-part corresponds to the sign and AA-field, the I-part to the
I-field, and the F-part to the F~field of the instruction word as
defined in Section 2.2.1. Each of A~part, I-part, and F-part may be an
expression consisting of symbols and numeric constants combined by
operators. Any or all of the parts may be absent, in which case zero
values will be used for the A-part or I-part. The default F-part which
is appropriate for this instruction (usually 0:5) will be used if the
F-part is absent.

For a pseudo-instruction the content of the operand field will be
determined by the operation field as described in Section 4.5 below.

The operand field for a macro name in the operation field is a

sequence of character strings separated by commas. Further description
is in Chapter 5.

16~

THE MIXAL ASSEMBLER Page 4-4

4.3.3.4 Comments Field -

This field is completely optional and may contain any combination
of characters.

4.3.3.5 Interpretation Of Special Cases -

When some or all of the statement fields are blank, the MIXAL
assembler makes certain assumptions for their values. Given here is a
summary of most of the special cases that may arise and the
interpretation given to them.

If the location, operation, and operand fields are all blank, the
line is treated as a comment, and generates no information.

If the operation and operand fields are blank but the location
field is non-blank, a word containing zero will be assembled.

If the operation field is blank but the operand field is non=-
blank, the operand field will be assembled as for a MIX machine
instruction and a word will be assembled with a zero operation code
(no~operation).

If only the operand field is blank the operand of the operation
will be treated as zero.

4.3.4 Local Symbols

A local symbol in the MIXAL language is any character string of the
form:

<digit>H or <digit>B or <digit>F

where <digit> is any single decimal digit, 0-9. Local symbols play a
special role in the MIXAL language, and may each appear as many times as
desired. Local symbols represent values which are assigned to the local
symbols according to usage as described below.

4.3.4.1 The <digit>H Symbol =~

Local symbols of the form <digit>H may be used only in the location
field of a MIXAL statement. If the operation field of the statement is
EQU, the value assigned to the local symbol is the value of the
expression in the operand field and may be a full MIX word in size. If
the operation field is any machine operation mnemonic or any other
pseudo-instruction, the wvalue assigned to the 1local symbol is the
current value of the location counter when the 1local symbol is
encountered.

-17-

THE MIXAL ASSEMBLER Page 4=5

Local symbols of the form <digit>B may appear only in the operand
field of a MIXAL statement. The value referred to by such usage is the
value assigned to the most recent previous occurrence of the <digit>H
local symbol with the same <digit>.

4.3.4.3 The <digit>F Local Symbol -

Local symbols of the form <digit>F may appear only in the operand
field of a MIXAL statement. The value referred to by such usage is the
value assigned to the next occurrence of the <digit>H local symbol with
the same <digit>.

4,3.4.,4 Examples Of MIXAL Local Symbols -

The following are examples of legal local symbols.

OH 2F 0B 2H 310 38 GF 9H 9B

4,3.5 Symbols

A symbol is a sequence of 1 to 10 letters and/or digits containing
at least one letter, excluding those character sequences meeting the
definition of a local symbol (see Section 4.3.4 above). Each such
symbol represents a value which is assigned to the symbocl according to
usage as follows:

1. If the symbol appears in the location field of a machine
instruction or of most pseudo-instructions the value assigned
to the symbol is the current value of the location counter.

2. If the symbol appears in the location field of an EQU
pseudo-instruction the value assigned to 1t is the value of the
expression in the operand field.

3. If the symbol never appears in a location field, but does
appear in an operand field, it will be defined by MIXAL with a
value of the address of a location following the end of the
program.

Any given symbol may appear in a location field only once in any
MIXAL program. : .

18~

THE MIXAL ASSEMBLER Page 4-6

4.3.5.1 Examples Of MIXAL Symbols -
The following are legal MIXAL symbols.

MIXAL Al 1A
123456789Q 1238456 TABLE3

4.3.6 TForward References

The MIXAL assembler is a one-pass processor, that isy, it examines
each statement only once. Values are assigned to symbols when they
appear in the location field of some statement or at the end of the
program. Thus a symbol occurring in the operand field of some statement
which has not previously appeared in a location field will be undefined
at that point. If a symbol appears in such a circumstance, it is termed
a forward reference as it refers to a value which will be determined
later.

A forward reference may be used in only one way in a MIXAL program
-~ as the A-part of a machine operation. In such use, the forward
reference must appear by itself with no sign or other operators.

Occurrences of a given symbol are forward references only until
that symbol occurs in the location field of some statement.

4,3.7 Constants

A constant is a string of 10 or fewer digits specifying a decimal
integer value. Constants are full-word values and are bounded in
absolute magnitude by 1073741823. Any constant representing a value
larger in magnitude than 1073741823 will be reduced modulo 1073741823
before use. Constants may be used in the operand fields of machine
instructions and pseudo-instructions.

4.3.8 Special Element

The character * appearing in an operand field represents the value
of the location counter when the * is encountered.

4.3.9 Expressions
Expressions enable the MIXAL programmer to compose values for the

various parts of a machine operation and certain pseudo-instructions
from symbols and constants. Elements of expressions may be:

~]19-

THE MIXAL ASSEMBLER Page 4-7

element meaning

symbol the value assigned to the symbol is used in the
evaluation of the expression.

constant the value of the constant is used in the
evaluation of the expression.

special always stands for the current value of the
element (%) location counter

Note well that forward references are not elements of expressions.
An expression may consist of:
1. An element, or
2. An element preceded by a plus or minus sign, or

3. An expression followed by a binary operator followed by an
element.

The six admissible binary operators are
+, -, %, /, //, and :

Any of these operators may appear between any two elements of an
expression.

4.3.9.1 Evaluation Of Expressions -

Expressions are evaluated as full-word (5 bytes plus sign)
quantities. If the value of the expression is to be placed into a field
that is smaller than a full word, it is truncated after evaluation.

Evaluation of expressions proceeds in a strictly left-to-right
manner with no hierarchy of operations. Evaluation begins by evaluating
the first element of the expression. If this element was preceded by a
minus sign, the wvalue 1is negated. This process defines the current
value of the expression. If a binary operator follows this part of the
expression, then the element following the operator is evaluated and its
value is combined with the current value of the expression according to
the meaning of the operator forming a new current value of the
expression. Evaluation may then proceed using this current value as the

left operand of the next binary operator until the expression is

exhausted.

Meanings of the binary operators are given below:

=20~

THE MIXAL ASSEMBLER Page 4-8

expression meaning

a+b the sum of the two operands, a+tb

a-b the difference of the two operands, a-b

a*b the least significant 5 bytes of the product

of the two operands, a*b

a/b the integer part of the quotient of the two
operands, a/b

a//b the fractional part of the quotient of the
two operands, a/b, treated as an integer

a:b is equivalent to: a*8+b
Some example expressions with their values:

expression value

-143 2

~-1+5%20/6 13

1//3 357913941

1:3 11

*4-4 location counter + 4

ok % location counter times location counter

4.3.10 W-values (Word Values)
A W-value is a MIXAL construct used to form data values with
specific 1items in specific parts of a word. W-values are used in the

operand field of a CON pseudo-instruction and in the specification of
literal values (see Section 4.3.11 below). A W-value is,

1. An expression, or

2., An expression followed by a field specification in parentheses,
or

3. A W-value followed by a comma followed by a W-value of the form
specified by 1 or 2 above.

-21~

THE MIXAL ASSEMBLER Page 4-9
A W-value denotes the contents of one MIX word determined as
follows:
Let the W-value have the form
el(fl),e2(£f2),...,en(fn) where n > 0
The ei are expressions, and the fi are field specifications. The

desired result is the final value which would appear in memory location
CON if the following hypothetical program were executed:

STZ CON
LDA cl

STA CON(fl)
LDA c2

STA CON(£2)

.
°

LDA c¢n
STA CON(fn)

Here cl,c2,...,cn denote locations containing the values of
expressions el,e2,...,en respectively. Each fi must be of the form
8*Li+R1 where 0 < Li < Ri < 5.

Examples:
1 is the word | +] 1]
1,-1000(0:2) is the word | =]1000 | 1}
~1000(0:2),1 is the word b+ 1]

4.,3.11 Literals

A literal is a reference to a constant whose space allocation will
be performed by the assembler. A literal may appear in the A-part of
the operand field of a MIX machine operation. Every literal use is a
forward reference to a word which will contain the data item specified
in the literal. The word containing the data will be allocated by the
MIXAL assembler at the end of the program.

A literal is composed of a W-value of less than 10 characters
enclosed in = signs. Examples:

=2= =1(0:3)= ==2,1(2:3)=

—22~

THE MIXAL ASSEMBLER Page 4-10

4.4 OPERATION CODES

Refer to Chapter 3, Appendix D or Appendix E for descriptions of
the legal MIX machine operation code mnemonics.

4.5 PSEUDO-INSTRUCTIONS
Pseudo-instructions provide the programmer with the ability to
control certain operations of the assembler, to specify the physical

layout of his program, and to create data items. All programs must
contain at least an END pseudo-instruction.

4.5.1 Assembler Control - END

Format:

location operation operand
field field field

ignored END expression

Every program must have an END statement as 1its last card. The
statement causes the assembler to stop assembling the program. The
expression in the operand field is evaluated and its value specifies the
location in the program at which execution of the program is to begin.
If the operand field is empty, execution will begin at location O.

4.5.2 Counter Control - ORIG
Format:

location operation operand

field field field
symbol ORIG expression
or empty

ORIG sets the location counter to the value of the expression in
the operand field. If a symbol appears in the location field, it is
assigned a value equal to the location counter before it is set by the
ORIG pseudo-instruction.

ORIG is commonly used to allocate a block of memory words. The
statement:

-23=

THE MIXAL ASSEMBLER Page 4~11

X ORIG *+10

for example, reserves a block of 10 words starting at location X.

4.5.3 Symbol Definition -~ EQU
Format:

location operation operand
field field field

symbol EQU expression

There must be a symbol in the location field of an EQU statement.

The EQU statement assigns the value of the expression in the operand
field as the value of the symbol.

4.5.4 Data Generation -~ ALF
Format:

location operation operand

field field field
symbol ALF anything
or empty

The ALF pseudo-instruction reserves one memory word and fills it
with a + sign and five character codes. The operand field of the ALF
pseudo-instruction begins in the third column after the F of ALF and
consists of the 5 characters starting in that column. (For example, if
the ALF starts in columm 12, its operand field will start in column 17
and extend through column 21). Any character may be in the operand of
ALF and its code will be stored in the word.

4.5.5 Data Generation - CON
Format:

location operation operand

field field field
symbol CON W=value
or empty

| -24-

THE MIXAL ASSEMBLER Page 4-12

The W-value in the operand field of the statement is evaluated (see
Section 4.3.10) and the resulting full-word value is stored in a memory
word reserved by the CON pseudo-instruction. If a symbol appears in the
location field, its value will be the address of the word reserved by
the CON pseudo-instruction.

4.5.6 Listing Control - LIST
Format:

location operation operand
field field field

ignored LIST sequence of options separated by commas

The LIST pseudo-instruction exerts control over the listing
produced by the assembler. The available options are:

option meaning

L produce a listing of statements following

-L suppress the listing of statements following

M show the lines of macro bodies when they are expanded
-M do not show the lines of macro bodies when they

are expanded

The LIST pseudo-instruction may appear any number of times within a
program with various combinations of options. The options in effect
when the assembler begins are L and -M. No matter what the state of the
listing optioms, all 1lines which contain erroneous statements will be
listed.

4.5.7 Trace Limit Setting - TRLM
Format:

location operation operand
field field field

ignored TRLM integer constant

~25—

THE MIXAL ASSEMBLER Page 4~-13

The operand must be an unsigned integer constant. The operand
value 1is taken as the maximum number of lines of trace output which are
to be generated before the execution is terminated for exceeding the
trace limit. The value may be any integer between 0 and 500. The
default limit is 100. The last TRLM pseudo~instruction encountered
during assembly defines the trace Iimit for execution.

4.6 THE ASSEMBLY LISTING

The MIXAL assembler produces a listing of the program as it 1is
assembled. This 1listing shows the lines of the source program, the
information resulting from the assembly of each .line, and' any errors
detected in the form or meaning of the source program.

The first line of each page of the listing is a header giving the
version number of the MIXAL assembler, the time and date of the
beginning of assembly, and the listing page number. Subsequent lines of
the listing consist of one printed line for each line of source program.

Each line consists of five (5) fields. From left to right these
fields are:

field content

errors contains up to 4 single-character error codes. This
field 4is blank 1f no errors were detected on the
line.

location address {in octal) of the word whose contents are

specified by the present line.

value contents (in octal) of the word filled by the
present line. Words containing machine operations
are shown in four separate pieces: the signed
A-part, the I-part, the F-part, and the C-part.
Source lines creating a full-word wvalue contain a
signed 10-digit octal number in this field.

line image the 80~character image of the source program line.

line number the number of the source card counted from the
beginning of the program deck.

When the 1listing has been suppressed by use of the LIST
pseudo-instruction, only lines containing error messages will be
printed. In this case, the correct 1line number will be printed to
enable the user to locate the erroneous line in his source deck.

The location and value fields will be blank on lines ccntainingfm
operations with no location or value is associated (comments, macro

definitions, 1list and <conditional pseudo-instructions). Certain
pseudo-instructions (EQU, ORIG, END) which do not £11l a2 memory word are

listed with a blank location field and the value field shows the wvalue

-26—

THE MIXAL ASSEMBLER Page 4-14

of the operand. Literals are defined at the end of the program and each
contains **LITERAL** in the line image field.

After the END pseudo-instruction of the program a line
n ERRORS IN MIXAL PROGRAM

is printed where n is the number of errors in the source program
detected by the MIXAL assembler. 1If there were any errors detected, the
listing is followed by one or more pages of error summary informationm.
For each kind of error that occurred the error summary gives a message:

ERROR x OCCURRED ON LINE(S) y,¥,ses

where x is the error type and y,y,... are line numbers. After this
message, a brief explanatory note is printed about the error.

4.7 ERROR CODES

The MIXAL assembler can detect a number of erroneous conditions
occurring in the source statements of a program. The existence of an
error is indicated by the appearance of a single-letter code in the
errors field of the 1listing. The assembler may detect more than one
error on any given line, and will report up to four errors. Note that
the occurrence of strings such as 12 in the errors field does not denote
the occurrence of error twelve, but rather the occurrence of both error
1 and error 2. The various error codes and their meanings are given
below.

Code meaning

C error detected while filling-in forward references. The chain of
forward references to a given symbol must be strictly
forward-pointing. Probable cause of this error is improper use of
the ORIG statement to position code.

D the symbol in the label field is doubly-defined. This occurrence
of the symbol is ignored and the first definition will be used.

E the operand of an ORIG pseudo-instruction is negative. The
absolute value of the operand is used.

F a forward reference was used in an expression. The expression is
given the value 0.

G overflow of the internal stack used to process mnested conditional
assembly pseudo-instructions and macros. This error necessitates
termination of the assembly. To correct, reduce the level of
nesting of conditional assembly pseudo-instructions and/or the
number of local symbols in macros.

H the operand of the TRLM pseudo-instruction 1is mnot an integer
constant or exceeds 500. The trace 1limit must be an integer

~27~

THE MIXAL ASSEMBLER Page 4-15
constant in the range 0 to 500. The incorrect limit 1s ignored
and the previous limit remains in effect.

I the operand field of a conditional assembly pseudo-instruction 1is
formatted incorrectly.

K incorrect nesting of conditional assembly pseudo-instructions.
This error causes assembly to stop.

L the label field of this line contains something other than a valid
MIXAL symbol. It is ignored.

N a number has exceeded the largest allowed magnitude of 1073741823,
The number is truncated to 5 bytes.

0 the operation field of this line does not contain a wvalid MIXAL
operation mmemonic or macro name. An 1llegal instruction is
assembled.

P format error in the parameter specifications on a MACR

pseudo-instruction or a macro call.
Q the EQU pseudo-instruction on this line does not have a label.

R the A-part of a storage-referencing machine operation or the
operand of an ORIG pseudo-instruction exceeded 4021. The value
used is the generated value modulo 4022,

S the F-part of the current instruction is larger than 45 (does not
occur for a MOVE instruction). A zero F-part is substituted.

T the transfer address in the operand field of the end statement is
invalid. FEither it is missing or is not in the range 0 to 3999. A
transfer address of 0 is used.

U a <digit>B symbol occurred in an expression for which no
corresponding <digit>H symbol appears previously. The symbol is
given the value zero.

W a literal exceeds the maximum width of nine characters. The
literal is truncated from the right to nine characters.

X separator error. Fields of the source statement were not separated
by blanks.
1 a symbol is longer than 10 characters. Only the first 10

characters of the symbol are used.

2 a number exceeds 10 decimal digits. Only the first 10 characters
are used.
4 in the operand field of the statement a symbol or constant was

expected in some position and was not found. The probable cause of
this error is a mispunched character.

e) -28~-

THE MIXAL ASSEMBLER Page 4~16

5 a character expected to be a binary operator in an expression was
not one of the allowed operators.

6 the A-part of this machine operation is incorrect. It is not an
expression nor is it vacuous. Check the keypunching.

7 the index part of this machine operation is incorrect. If no comma
follows the A-part then next character should be a (or a blank.
This error may occur improperly if there was something wrong with
the A-part itself.

8 the F-part 1is incorrect due to a missing). This error may occur
improperly if the F-part contains an illegal expression.

9 a W-value is incorrect. This error is usually caused by a missing

comma, but can appear improperly if one of the expressions of the
W~value itself is incorrect.

~29-

CHAPTER 5

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY

The UT-MIX assembler is a comprehensive macro assembly system for
the MIX computer. The MIXAL assembly language has been extended from
that defined by Knuth to include macros and conditional assembly, based
loosely on the macro and conditional assembly capabilities of the CDC
6000 COMPASS assembler. This Chapter describes the pseudo-instructions
which have been added to the MIXAL language for macros and conditional
assembly, and indicates how they are to be used.

5.1 MACROS

A macro is a named sequence of statements. The use of a macro

requires two steps: defining the macro and calling the macro. A
statement which has a macro name in the operation field results in the

sequence of statements identified by that name being assembled at that
point in the program. Such a statement is termed a macro call. The
macro call may also contain in the operand field a set of parameters

which will be substituted for defined parameters in the statements of
the macro.

5.1.1 Macro Definition

To define a macro, the programmer must specify the sequence of
statements comprising the macro, identify the substitutable parameters
of the macro, and name the macro. A macro definition consists of three
parts:

macro heading a MACR pseudo-instruction which states the name of the
macro and identifies the substitutable parameters.

macro body the sequence of statements which constitute the code
to be generated by the macro.

macro terminator an ENDM pseudo~instruction which terminates the macro
definition.

=3

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-2

A macro definition may appear anywhere in a program prior to the
first call of that macro. A given macro may be redefined at any time
with the latest definition applying to each macro call.

5.1.1.1 Macro Heading -

The macro heading line is a MACR pseudo-instruction statement and
has the form:

location operation operand

field field field
macro MACR up to 10 parametef specifications
name or empty

The location field contains the name by which the macro 1is to be
known. This name may be any legal symbol of 7 or fewer characters
except that END, ENDM, and local symbols may not be used. The symbol
used as a macro name stands for the macro only when used in the
operation field of a subsequent statement. Other uses of the symbol
stand for a value unrelated to the macro definition.

1f a macro name is identical to a machine operation mnemonic or a
MIXAL pseudo-instruction, that name is redefined as the name of the
macro and the occurrence of that name in the operation field of a
subsequent statement stands for the macro. In other words, once a
machine operation mnemonic or pseudo-instruction is used as a macro
name, that machine operation or pseudo-instruction 1s no longer
available for use. The macro may be redefined in terms of the CON
pseudo-instruction to give the same effect as a machine operation.

The operand field of the macro heading contains 0 to 10 parameter
specifications. Each parameter specification contains a symbol which it
identifies as substitutable. The substitutable symbol may occur in the
sequence of statements making up the body of the macro. When the macro
call is made the macro call statement specifies (possibly) a string of
characters which will be substituted for every occurrence of the
substitutable parameter in the body of the macro at that point. Thus
general-purpose macros may be defined which can be specialized to a
particular purpose at the point of use. Each parameter specification
has the form:

symbol
or
symbol=default value

Parameter specifications in the operand field are separated by commas.
The symbol may be any legal MIXAL symbol except a local symbol or the
symbols ENDM or END. A macro call may or may not give a string to be
substituted for a parameter. For the case in which a string is not
specified, the first form of parameter specification shown above

i

-31-

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-3

indicates that the null (empty) string is to be used whereas the second
form shown above gives a specific default string to be used. The
default value must agree with the syntax for parameter strings given in
Section 5.1.2.1 below.

5.1.1.1.1 Examples Of Macro Headings -
ABC MACR A,B,C

defines a macro named ABC with parameters A, B, and C

SAVE3 MACR NAME=NONE,RETURN=I16

defines a macro named SAVE3 with parameters NAME and RETURN

GENDAT MACR STMT={(CON 0),LABEL, BRANCH=(JMP 2F)

defines a macro named GENDAT with parameters STMT, LABEL and BRANCH

5.1.,1.2 Macro Bedy -

The macro body consists of a series of statements. Within these
statements, in any field, may appear a substitutable parameter as
defined in the macro heading. To be recognized as such, the parameter
must be bounded on both sides by a character other than a letter or
digit or by the beginning or end of the line.

The character - used as a parameter delimiter is treated specially.
All occurrences of = are deleted from the macro body when the call is
made and characters on either side of 1t appear adjacent in the
resulting statement. For example, the macro definition:

XYZ MACR INDEX
LD+INDEX TABLE~+INDEX
ENDM
when called by:
XYZ 4
becomes:
1D4 TABLE4

Comment statements within a macro definition are not reproduced
when the macro is called.

3D

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-4

Any type of MIXAL statement except END may appear in a macro body.
In particular, macro definitions and macro calls may appear in a macro
body. Macro definitions occurring in the body of another macro are not
defined by MIXAL until the enclosing macro is called the first time.
Therefore, the inner macro may not be called until after the outer one
has been called.

5.1.1.2.1 The LOC Pseudo~-instruction ~

Sometimes it is desirable or necessary for a non-substitutable
symbol to appear in the location field of a statement of a macro body.
If that macro is called more than once in the program, a
multiply-defined symbol error will result. The wuse of MIXAL local
symbols can partially remedy this situation except in the case that the
macro call lies in the range of a matching pair of references of the
same local symbol. The LOC pseudo-instruction remedies this problem
completely by allowing a set of symbols to be declared as defined only
within the expansion of the macro. The macro can then be used any
number of times and each time the symbol(s) will be redefined. The form
of the LOC pseudo-instruction statement is:

location operation operand

field field field

ignored LOC a list of symbols separated by commas

The LOC pseudo-instruction may occur only within a macro definition.

5.1.1.3 Macro Terminator -

A macro definition is terminated by an ENDM pseudo-instruction
statement of the form:

location operation operand
field field field

ignored ENDM ignored
Each ENDM pseudo-instruction encountered must match some MACR

pseudo-instruction. Each macro definition must be terminated by its own
ENDM.

~33~

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-5

5.1.2 Macro Call

When a macro is defined, its body of statements is stored by the
MIXAL assembler for use when a macro call is made. When the name of a
macro appears in the operation field of a MIXAL statement, the saved
body of that macro is expanded at that point of the program as though
the statements had been individually placed there by the programmer.
The macro call statement may contain a symbol in the location field and
a set of strings to be substituted for the substitutable parameters of
the macro.

If the location field of the macro call statement contains a symbol
the effect is as 1if the symbol had appeared on a ORIG * statement
immediately followed by the macro call without the symbol in the
location field. For example:

The macro call
LABEL MAC X,Y
is equivalent to

LABEL ORIG *
MAC X,Y

The operand field of the macro call statement may specify
substitutable parameters in either of two ways as described in Sections
5.1.2.2 and 5.1.2.3 below. In either case, the strings to be
substituted must follow the rules outlined in the next Section below.

5.1.2.1 Parameter Strings -

Parameter strings appearing in the operand field of macro call
statements are just that; they are arbitrary strings which are
substituted as a whole for the substitutable parameters. They are not
interpreted in any way by the assembler at the time of the macro call,
but will be interpreted in whatever way 1s appropriate when any
statement they are substituted into is processed. If all is to be well,
the result of substitution must be a set of legal MIXAL statements.

Essentially any sequence of characters may be used as a parameter
string except it may not contain commas or blanks since commas are used
to separate parameter strings in the operand field and a blank
terminates the operand field.

If, as is often the case, it is desirable or necessary for a
parameter string to contain commas or blanks, such a string may be used
if it is enclosed in parentheses. When scanning the operand field of a

macro call statement the assembler assumes that when the first character

of a parameter is a left parenthesis all characters between it and the
first matching right parenthesis are part of the parameter string. The
parentheses themselves are not considered to be part of the string, and

34—

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-6

do not appear when substitution occurs.

5.1.2.1.1 Examples Of Parameter Strings -

legal illegal
ABC A,BC

1234 12 34
- »

(A B C) (AB)C
(X,Y) (X,Y))
(12,(Z, (345))) ((PDQ-456)

5.1.2.2 Positional Parameter Substitution =-

One way to specify the correspondence between parameter strings and
the substitutable parameters of the macro is positional. The
substitutable parameters of the macro are defined in a particular order
when the macro is defined. The macro call statement may give a set of
parameter strings separated by commas in the operand field. These
parameter strings are then substituted in order for the corresponding
substitutable parameter of the macro. If no parameter string is to be
specified for a particular parameter, then adjacent commas appear where
that parameter string would normally be. These commas may be omitted
from the right. Any substitutable parameter for which no parameter
string is supplied will be replaced by its default value given in the
macro definition.

For example, the macro defined by
XYz MACR A=ARRAY,B=(INC6 1),C,D=6
ENTA C
B

STA A,D
ENDM

when called by

XYZ TABLE, (DEC5 2),,5
will expand as

ENTA

DEC5 2

STA TABLE,5S
and when called by

XYZ TABLE2

~35-

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-7

will expand as

ENTA
INC6 1
STA TABLEZ,6

This positional method of parameter specification may not be
intermixed with the keyword method described in the next Section.

5.1.2.3 Keyword Parameter Substitution -

The second method available for parameter correspondence
specification 1is the use of keywords. Each substitutable parameter of
the macro is a symbol, or a keyword. In this method, the parameters
which are to be substituted are given with the parameter string in the
form

keyword=parameter string

Several such parameter specifications may appear in the operand field of
the macro call statement separated by commas. Since each specification
gives the keyword, it is unnecessary for them to be 1In any particular
order, and substitutable parameters which are to have their default
values are simply not mentioned.

The two example macro calls shown in the previous Section may also
be given by (respectively):

XYZ D=5,A=TABLE,B=(DEC5 2)
and
XYZ A=TABLE2

and will give exactly the same macro expansion in each case as was
produced in the previous example.

This method of parameter specification may not be intermixed with
the positional method previously described.

5.1.3 Operation Code Recognition

The MIXAL assembler keeps a table of all defined macro names and a
table of all MIXAL pseudo~instructions and machine operation mnemonics.
When processing the operation field of a MIXAL statement, the assembler
always searches the table of macro names first. If the symbol in the
operation field appears in that table, the statement is treated as a
macro call. If the symbol is not in the table of macro names, the table
of pseudo~instruction and machine operation mnemonics is searched. If
the symbol is in that table,the statement is processed accordingly.
Only if the symbol does not appear in either table dis an illegal
operation error message given.

36—

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-8

5.2 CONDITIONAL ASSEMBLY

There are several pseudo-instructions that fall in the category of
conditional assembly. They provide the programmer with the capability
to detect certain conditions during the assembly process and optionally
assemble or not assemble sequences of statements in response to those
conditions. These pseudo-instructions are most often used within macro
bodies to control the detailed expansion of the macro, but there is no
requirement that they be used only within macros.

5.2.1 1IF
Format:

location operation operand
field field field

- o s oo o oo ——— PRSI SY

ignored IF relation,expression~l,expression=-2

The two expressions in the operand field are evaluated and their
values are compared according to the specified relation. The relation
may be chosen from the following table.

Relation meaning

EQ equal

NE not equal

LT less than

LE less than or equal to
GT greater than

GE greater than or equal to

If "value~1 relation value-~2" is true the statements following the IF
pseudo-instruction up to the matching ELSE or ENDI statement will be
assembled. If the relation 1s false those statements will be skipped by
the assembler and will not even appear on the listing.

The idea of matching ELSE or ENDI statement is based on nesting of
conditional assembly statements. If the assembler 1is skipping
statements, it will skip other conditional assembly statements and their
corresponding ELSE and ENDI statements until it sees the ELSE or ENDI
which goes with the conditional assembly pseudo-instruction which caused
the skipping to commence.

-3~

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-9
5.2.2 1IFC
Format:

location operation operand

field field field

ignored IFC relation, /string-1/string-2/
The 1FC pseudo-instruction compares two strings of characters. The
relation may be one of EQ (for equal) or NE (for not equal). "/" stands

for a character used to delimit the two strings, and it
character not contained in either string-1 or string-2.

may be any

If the ¢two strings satisfy the relation then the statements
following the IFC pseudo~instruction up to the matching ELSE or ENDI
statement will be assembled. If the relation 1s not satisfied those

statements will be skipped and will not even appear in the listing.

5.2.3 1IFD
Format:
location operation operand
field field field
ignored IFD symbol

The IFD pseudo-instruction checks the definition status of the symbol in
the operand field. If the symbol is defined already the statements
following the IFD pseudo-instruction up to the matching ELSE or ENDI
pseudo~instruction will be assembled. If the symbol is not already
defined, those statements will be skipped and will not even appear in
the listing.

5.2.4 ELSE
Format:
location operation operand
field field field
ignored ELSE “iénofed

The ELSE pseudo-instruction may appear only between a matching IF, IFC,
or IFD and ENDI pair. If the assembler is assembling statements when
the ELSE is encountered, then it will skip the following statements up
to the matching ENDI statement. If the assembler is skipping statements

~38-"

MACRO ASSEMBLY AND CONDITIONAL ASSEMBLY Page 5-10

when the else is encountered, then it will assemble the statements
following.

5.2.5 ENDI
Format:

location operation operand
field field field

ignored ENDI ignored
The ENDI pseudo-instruction merely delimits the scope of the IF, IFC, or

IFD pseudo-instruction it matches. Every ENDI must match some IF, IFC,
or IFD, and conversely every IF, IFC, or IFD must have a matching ENDI.

-39-

CHAPTER 6

THE UT-MIX INPUT/OUTPUT SUBSYSTEM

UT-MIX provides a complete input/output subsystem simulation, with
several capabilities beyond those proposed by Knuth. The MIX devices
are described briefly in Chapter 2. This Chapter provides complete
specifications for the performance of each device.

6.1 THE SIMULATED MIX I/0 UNITS

UNITS SIMULATED TYPE MODES OF OPERATION RECORD SIZE
0,1 magnetic tapes series, binary 1/0 100 MIX words
8,9 magnetic disks random, binary I/0 100 MIX words
10 magnetic drum random, bimary I1/0 100 MIX words
16 card reader serial, alpha input 80 characters
17 card punch serial, alpha output 80 characters
18 line printer serial, alpha output 120 characters

6.2 CDC 6000~SERIES FILES

FILE NAME MIX UNIT AND MODE RECORD SIZE

TAPEO 0, binary 1/0 100 CDC words per MIX record
TAPEL 1, binary 1/0 100 CDC words per MIX record
DISK 8,9 and 10 combined 100 CDC words per MIX record
INPUT 16, alpha or binary 80 characters (alpha) per card
OUTPUT 18, alpha output 120 characters per printed line
PUNCH 17, alpha output 80 characters per card

6.3 DATA TRANSFER

S g

UT-MIX handles all character conversion,
operations necessary for data transfers
running MIX program.

paékiné’ and /unpaékiﬁgu‘u-
between the CDC files and a

~40~-

THE UT-MIX INPUT/OUTPUT SUBSYSTEM Page 6-2

6.3.1 Alpha (character) Input

The UT-MIX character set 1is slightly different from the set
specified for MIX by Knuth, and the CDC display code values differ
significantly from the MIX character values. The simulator accepts the
punch characters shown in Appendix C, converting them to the numeric
values shown. All other punch codes are converted to 00 (blank).
Characters read from the input file are packed into MIX memory, five
characters to each MIX word, with the sign of each word set to +.

6.3.2 Alpha (character) Output

The simulator prints or punches the characters shown in Appendix C.
All other six-bit codes are printed (punched) as blanks. Five
characters are transferred from each word in MIX memory to the output or
punch file. The signs of affected words are ignored.

6.3.3 Binary Input And Output

Binary data transfer involves full (60-bit) CDC words, with the MIX
value occupying the lower 36 bits of each word. The sign of a MIX word
occupies the first six bits of the 36-bit field. (A sign byte value
from 00 to 37 octal is +. A sign byte value from 40 octal to 77 octal
is =.)

6.4 UT-MIX I/0O INSTRUCTIONS

The reader is urged to review pages 17-19 of reference 1, and if
possible, pages 132-134, 211-221 of reference 2 to achieve a complete
understanding of I/0 operations in MIX. Each I/0 operation is completed
in several timed steps, normally independent of central processor (CPU)
activity once it has been started. In particular, a MIX program must be
sure that the data transfer initiated by an I/0 instruction is complete
before further load or store operations refer to the affected area
(buffer) within MIX memory.

6.4.1 The IN And OUT Instructions
The instruction is decoded, and its elements (memory address, unit
number, and operation) are checked for validity. Any error will cause

the simulator to stop immediately with an error message.

If a previous operation is still in progress on the unit, CPU
activity is stopped until data transfer for that operation is complete.

-41-

THE UT-MIX INPUT/OUTPUT SUBSYSTEM Page 6-3

An initial (access-time) delay is then started for the unit, and
the CPU is permitted to continue with its next instruction.

At intervals thereafter, the CPU 1is interrupted for one memory
cycle (one microsecond) while one word is transferred between the
specified device and MIX memory. This process continues until all words
have been transferred.

A final delay may then be imposed for the unit. At the end of this
period, an internal register is set to indicate that the unit is ready.
(This reglister is tested by the JBUS and JRED instructions; see below).
The result of an input operation (IN instruction) is also recorded in
memory location 4002 + n (n = unit number). The result codes are
specified in Section 6.5, Exceptional Conditions.

6.4.2 The I0C Instruction

The I0C instruction permits certain special operations for the
various I/0 devices under control of the MIX program. The UT-MIX
implementation of the IOC instruction is significantly different from
the Knuth specifications, and its effect and timing varies depending on
unit activity. The effect of this instruction for each unit is
specified in Section 6.6, Input/Output Control.

The I0C instruction is decoded and checked for wvalidity in all
cases and, if the specified unit is busy, CPU activity ceases until the
unit is ready. The desired control operation is then started, and the
CPU resumed normal activity. The affected unit may remain busy for some
time, depending on the instruction.

6.4.3 The JBUS Instruction

This instruction permits the MIX program to test the busy or ready
status of a unit. Two forms are allowed, and produce different results.

JBUS * (unit)
This form stops the CPU if the unit is busy, and completes the 1/0
operation in progress on the unit. The CPU then proceeds normally with
the next instruction.

JBUS to other addresses (unit)
This form of the instruction functions like any other conditional jump.
If the specified wunit 1s busy, a jump occurs; otherwise, processing

continues with the next instruction. Activity on the I/0 unit, if any,
is unaffected.

. ._42_

THE UT-MIX INPUT/OUTPUT SUBSYSTEM Page 6-4

6.4.4 The JRED Instruction

This instruction functions like any other conditional jump. If the
specified unit is ready, a jump occurs; otherwise, processing continues
with the next instruction. I/0 activity is unaffected. JRED may not
specify its own address.

6.5 EXCEPTIONAL CONDITIONS

One word in MIX memory is associated with each I/0 unit to return
an indication to the using program of the status of the unit after each
I1/0 operation. The status~reply word associated with I/0 unit n is at
location 4002 + n. The simulator sets a non-zero value in a
status-reply word if an exceptional condition is detected for the
associated unit. If no exceptional condition is detected, the word is
cleared to zero.

6.5.1 End Of Record

The card reader (unit 16) may sense an end-of-record (punch code
7/8/9) during input operations. A positive value will be placed in MIX
memory word 4018. No data is transferred from the device, and the
specified memory (buffer) area is unchanged.

6.5.2 End Of File

The card reader or magnetic tape units (units 0,1) may sense an
end-of-file (punch code 6/7/8/9) during input operations. A negative
value will be set in the associated status-reply word. An I0C
instruction may be used to backspace or rewind a tape to clear the
condition. The card reader cannot be rewound.

6.5.3 Trash Disk And Drum Records

If a program reads a record from one of the random~access devices
(disk or drum), and if the record at that disk or drum address was not
previously written by the program, the simulator will place the
character string "THIS IS TRASH" in the specified memory (buffer) area.
The exceptional-condition cells are not set in this case.

-43-

THE UT-MIX INPUT/OUTPUT SUBSYSTEM Page 6-5

6.6 INPUT/OUTPUT CONTROL (IOC)

The interpretation of the IOC instruction is given below for each
unit.

6.6.1 Magnetic Tape -- Units O,1.

An end-of~-file condition, if one exists, is cleared.
If M = 0, the tape is rewound.

If M < 0, the tape is backspaced -M records or to the beginming of
the first record. :

If M > 0, the tape is skipped forward M records or to the
end-of-file mark, whichever occurs first. If end-of-file is
encountered, the status-reply word is set to a negative value.

6.6.2 Magnetic Disks ~= Units 8,9,
A seek operation is started to move the head to a mnew track,
potentially saving some time when the next IN or OUT imstruction is

issued. Byte (4:4) of the X register is used as the track index. M is
ignored. The seek operation requires 32 milliseconds per track.

6.6.3 Magnetic Drum -- Unit 10.

The I0C instruction has no effect on the drum and is ignored.

6.6.4 Card Reader -- Unit 16.

An I0C O instruction will clear an end-of-record setting in the
status-reply word (location 4018j.

6.6.5 Card Punch == Unit 17

The I0OC instruction should not be used with the card punch.

byl

THE UT-MIX INPUT/OUTPUT SUBSYSTEM Page 6-6

6.6.6 Line Printer -- Unit 18

The I0C instruction provides carriage control. No data is
transferred from memory.

If M = 0, the printer skips to the top of the next page.

If M > 0, the printer skips M (modulo 64) lines, leaving them blank.

6.6.7 Multiple-record Input (card) Files

The I10C instruction permits a MIX program to use a card input file
which consists of several CDC logical records separated by end-of-record
markers (7/8/9 punch code). When an end-of-record condition is sensed,
the status-reply cell 4018 will be set to a positive value, and no data
are transferred. The next IN instruction will read the first card from
the next logical record (following the 7/8/9 card) into memory. IOC may
be used to reset the status-reply cell. End-of-file (6/7/8/9 punch
code) cannot be reset, and any further in instructions will cause
simulation to stop with an appropriate error message.

6.7 DISPOSITION OF 1/0 FILES

All 1/0 activity is allowed to complete within the simulator before
a MIX program is terminated, regardless of the reason for termination.
In the case of an error finish, this preserves the last line of printer
output (and the last card punched) for the programmer’s inspection. The
last line is printed before the error termination message.

Final disposition of the CDC files produced is governed by the
sequence of cards in the control deck which refer to them, if any.
Files are not rewound by the UT-MIX simulator. All files may be
printed, punched, dumped or released using standard CDC utility
routines. The TAPEQ and TAPEl files may be used by any 6000-series
language program as ordinary serial binary records. The disk file may
contain randomly-produced records for the three MIX units (8,9,10)
intermixed and does not include a directory -- it is therefore of little
value for further use.

6.8 FATAL I/0 ERRORS

The following illegal I/0 operations will cause simulation to stop
with an appropriate error message.

45~

THE UT-MIX INPUT/OUTPUT SUBSYSTEM Page 6~-7

6.8.1 Nonexistent Unit

An invalid unit number in the F-field of an 1/0 instruction. The
current valid unit numbers are given in Section 6.1.

6.8.2 TIllegal 1/0 Operation

-—an attempt to write on a card reader, or to read the printer or punch.

-—-an attempt to read a tape unit, if any records have been written on
the unit, before a backspace or rewind 10C instruction has been issued.

~-an attempt to read a tape unit or card after end-of-file has been
detected, if an IOC instruction has not been issued to clear the

condition.

—-an attempt to access a non-existent disk address (the X register is
negative, or exceeds 4095).

~46-

in

APPENDIX A

SIMULATOR TRACE FEATURE

The user may turn on the trace feature by placing a nonzero value
MIX memory cell 4000 (decimal), and turn off the trace by storing a

zero (STZ) in the cell. As long as memory cell 4000 contains a nonzero
value, the execution of each instruction will cause one line to print on

the

output file showing the condition of the machine. The line has the

following format:

P

=a IN=Db O0T=c CI=d A=bX=b J=e Il=¢e¢...16=c¢

unsigned 4~digit octal number, giving the P-register value (the
location of the instruction just executed).

10-digit signed octal number, to be interpreted as five bytes plus
sign. This format 1is wused to show the instruction just executed
(IN), and the contents of the A and X registers after execution.

0 or 1, showing the overflow toggle. 1 means overflow.

0, -1, or +1 showing the comparison indicator. 0 means equal, -1
means less than, +1 means greater than.

4-digit signed octal number, to be interpreted as two bytes plus
sign. This format is used for the J, Il, I2, ..., I6 registers.

47~

APPENDIX B

FATAL SIMULATOR ERRORS

Since MIX permits modification of any instruction or a jump to any
legal address, many fatal errors detected by UT~-MIX are the result of
improper store operations which have destroyed program code or an
unintended Jjump to an address containing data or garbage instead of a
program instruction. Careful examination of the trace output
accompanying the fatal message will help to isolate the problem.

UT~MIX checks all instructions for correct format and legal
addresses. It also checks to see if a jump instruction results in a
jump to itself (other than a JBUS) and detects these sorts of infinite
loops. UT-MIX makes no attempt, however, to trap an infinite loop if it
executes more than one instruction -- in this case, a time limit dump
will occur.

All UT-MIX fatal error messages begin with the phrase *%%*
EXECUTION STOPPED. The phrase which follows indicates the type of error
detected. 1In all cases, simulation stops before any registers or memory
values are updated. The one-line register dump accompanying the message
will show the guilty instruction, its address, and all registers as they
were before the instruction was executed.

B.1 ILLEGAL ADDRESS FIELD,

During instruction decoding, the value contained in the index
register specified by the I-part of the instruction was added
algebraically to the AA-field extracted by the instruction. The
resulting absolute value exceeded 4095, and is thus an illegal M-value.

B.2 ILLEGAL ADDRESS FOR JUMP.
The M-value (see above) was either negative or exceeded 4021 at the

time a jump dinstruction was to be executed. If the instruction was a
conditional jump, the required condition was satisfied.

~dy S

FATAL SIMULATOR ERRORS , Page B-2

B.3 ILLEGAL ADDRESS FOR MOVE.

Either the M-value or the value of the Il register was negative, or
one of the values exceeded 4021 when added to the F-value of the
instruction. In any event, the MOVE process would have accessed an
invalid MIX memory location.

B.4 TILLEGAL INDEX SPECIFICATION.

During instruction decoding, the I-field of the instruction was
found to contain the wvalue 77 octal, specifying double indirect
addressing.

B.5 ILLEGAL INDEX REGISTER LOAD.

A load or address transfer operation .(ENTi, INCi, DEC{, ENNi)
generated an absolute value larger than 4095 to be placed in an index
register.

B.6 ILLEGAL MEMORY REFERENCE.

The M~value associated with a memory-referencing instruction was
either negative or exceeded the upper bound for the instruction. For a
MOVE instruction, the upper bound is (4022-F-value). For 1/0
instructions, the upper bound is (4022 - record size). For all other
instructions, the upper bound is 4021.

B.7 ILLEGAL (SAME ADDRESS) JUMP.

The M-value was the same as the address of a jump instruction at
the time the instruction was to be executed. If the instruction was a
conditional jump, the condition was satisfied. (Note: this restriction
is designed primarily to kill non-productive infinite loops. It can be
used to advantage, however, during debugging if the user wishes to stop
simulation immediately wupon occurrence of an event which can be tested
by a conditional jump -- e.g., JAZ *),

B.8 TILLEGAL DISK ADDRESS.

The value of the X-register exceeded 4095 at the time an IN, OUT or
I0C instruction was issued for unit 8, 9, or 10.

FATAL SIMULATOR ERRORS Page B-3

B.9 ILLEGAL I/O OPERATION.

An IN instruction has been issued for card punch or printer, or an
OUT 1instruction has been 1issued for the card reader, or an IN
instruction immediately follows an OUT instruction on a tape unit.

B.10 ILLEGAL I/0 AFTER END OF FILE.

An end-of-file condition was detected for a magnetic tape or card
unit, and a subsequent IN instruction has been issued. (For tape unit
end-of-file handling, see Section 6.6.1).

B.11 F-VALUE ERRORS

The F-value specifies the type of shift, jump, special, address
transfer or miscellaneous instruction to be executed, and the I/0 unit
for 1/0 instructions. It is the first value checked when one of these
instructions (denoted by the C-value) is to be executed. For most other
instructions, the F-value wmust satisfy certain fairly strict
restrictions. As a result, any one of the following errors may
frequently be reported when an attempt has been made by a MIX program to
execute data or garbage through an unintentional jump to a wrong (but
legal) address, or improper use of a store instruction which has
destroyed program code.

B.11.1 1Illegal Field Specification.

The instruction references memory, and contains an F-value illegal
for the operation being performed. Only the MOVE instruction may have
an F-value exceeding 45 (55 octal). All others require L. < R == the

first octal digit of the F-value must be less than or equal to the
second.

B.11.2 Tllegal Special Imstruction.

C = 5, and the F-value specifies a non-existent instruction type.
The present simulator accepts 0 < F < 10 (decimal).

B.11.3 Illegal Shift Type.

C = 6, and the F-value specifies a non-existent shift type. The
present simulator accepts 0 < F £ 7. :

L =30= .

FATAL SIMULATOR ERRORS Page B-4

B.11.4 TIllegal Jump Type.

C=239and F > 9, or 40 < C < 47 (decimal) and F > 7.

B.11.5 1Illegal Address Transfer Type.

48 < C < 55 (decimal), and F > 3.

B.12 TRACE TERMINATION

To conserve time and printer paper, the simulator 1limits trace
output to a total of 500 lines (approximately 10 pages) for a single
run. The trace feature of UT-MIX is valuable if used sparingly and
analyzed carefully. If an attempt is made to produce more than 500
lines of trace output, the simulator terminates with the message
EXECUTION STOPPED -- EXCESSIVE TRACE OUTPUT. This message does not
indicate any error in the MIX program code.

-51-

APPENDIX C

THE UT-MIX CHARACTER SET

Any punched character not included in the set below will be read as
a blank (00). Any numeric code not included in the set below will be
printed as a blank.

code code code:

dec. octal char. dec. octal char. dec. octal char.
00 OC blank 21 25 A 42 52 (
01 0t A 22 26 s 43 53)
02 02 B 23 27 T 44 54 +
03 03 c 24 30 4] 45 55 -
04 04 D 25 31 v 46 56 *
05 05 E 26 32 W 47 57 /
06 06 F 27 33 X 48 60 =
07 07 G 28 34 Y 49 61 $
08 10 H 29 35 Z 50 62 <
09 11 I 30 36 0 51 63 >
10 12 % 31 37 1 52 64 -»
11 13 J 32 40 2 53 65 3
12 14 K 33 41 3 54 66

13 15 L 34 42 4 55. 67 T
14 16 M 35 43 5 56 70 [
15 17 N 36 44 6 57 71 v

-52-

THE UT-MIX CHARACTER SET

16

17

18

19

20

20

21

22

23

24

i

37

38

39

40

41

45

46

47

50

51

-53~

58

59

60

61

62

72

73

73

74

75

Page C-~2

in

W

Notation:

code field symbol

APPENDIX D

M is the computed effective address
(M) is the contents of location M
* in the field specification means L:R

instruction

01 =*
03 07
05 01
05 06
70 *
77 %
71 %
72 %
73 %
74 *
75 *
76 %
60 Ol
67 01
61 Ol
62 01
63 01
64 01
65 01
66 Ol
04 *
60 03
67 03
61 03
62 03
63 03
64 03
65 03
66 03
60 02
67 02
61 02
62 02

ADD

AND

CHAR
CHS

CMPA
CMPX
CMP1
cMP2
CMP3
CMP4
CMP5
CMP6
DECA
DECX
DECL
DECZ
DEC3
DEC4
DEC5S
DEC6
DIV

ENNA
ENNX
ENN1
ENNZ
ENN3
ENN4
ENN5
ENN6
ENTA
ENTX
ENT1
ENTZ

add (M) to register A
logical and (M) into A

A is converted to l0-byte decimal characters in AX

change the
compare A
compare X
compare 11
compare 12
compare I3
compare 14
compare 15
compare 16
decrement

decrement

decrement

decrement

decrement

decrement

decrement

decrement

divide (M)
enter nega
enter nega
enter nega
enter nega
enter nega
enter nega
enter nega
enter nega
enter M in
enter M in
enter M in
enter M in

sign of A
and (M),
and (M),
and (M),
and (M)},
and (M),
and (M),
and (M),
and (M),
A by

X by
11
12
13
14
15
16
into
tive
tive
tive
tive
tive
tive
tive
tive
to A
to X
to 11
to 12

o
&
RETREIREIRER

of
of
of
of
of
of
of
of

REEREE R R

set
set
set
set
set
set
set
set

into
into
into
into
into
into
into
into

~54—

comparison
comparison
comparison
comparison
comparison
comparison
comparison
comparison

A
X
Il
12
I3
14
I5 -
I6

MIX SYMBOLIC OPCODES - ALPHABETIC ORDER

indicator
indicator
indicator
indicator
indicator
indicator
indicator
indicator

AX giving A (quotient) and X (remainder)

MIX SYMBOLIC OPCODES - ALPHABETIC ORDER Page D-2

63 02 ENT3 enter M into I3
64 02 ENT4 enter M into 14
65 02 ENTS enter M into IS5
66 02 ENT6 enter M into 16

05 02 HLT halt the MIX machine

44 N IN start input transfer from unit N .
60 00 INCA increment A by M

67 00 INCX increment X by M

61 00 INC1 increment 11 by M

62 00 INC2 increment I2 by M

63 00 INC3 increment I3 by M

64 00 INC4 increment 14 by M

65 00 INCS increment I5 by M

66 00 INC6 increment 16 by M

43 N 10C issue 1/0 control signal to unit N
50 06 JAE jump to M if A is even

50 00 JAN jump to M if A is negative

50 03 JANN jump to M if A is non-negative

50 05 JANP jump to M if A is non-positive

50 04 JANZ jump to M if A is non=-zero

50 07 JAO jump to M if A is odd

50 02 JAP jump to M if A is positive

50 01 JAZ jump to M if A is zero

42 N JBUS jump to location M if unit N is busy

47 05 JE jump to M if comparison indicator is equal

47 06 JG jump to M if comparison indicator is greater

47 07 JGE jump to M if comparison indicator is greater or equal
47 04 JL jump to M if comparison indicator is less

47 11 JLE jump to M if comparison indicator is less or equal
47 00 JMP jump to M

47 10 JNE Jump to M if comparison indicator is not equal

47 03 JNOV jump to M if overflow off, turn overflow off anyway
47 02 Jov jump to M if overflow on, turn overflow off

46 N JRED jump to location M if unit N is ready

47 01 JsJ jump to (but do not change register J)

57 06 JXE jump to if X is even

57 00 JXN jump to if X is negative

57 03 JXNN jump to if X is non-negative
57 05 JXNP jump to if X is non-positive
57 04 JXNZ jump to if X is non-zero

57 07 JX0 jump to if X is odd

57 02 JXp Jump to if X is positive

57 01 Jxz jump to if X is zero

51 06 JI1E jump to if I1 is even

51 00 JIN jump to
51 03 JINN jump to
51 05 JINP jump to
51 04 JINZ jump to

if Il is negative
if Il is non-negative
if Il is non-positive
if Il is non-zero

51 07 JIO jump to M if Il is odd

51 02 Jlp jump to if I1 is positive
51 01 Jl1Z Jump to if Tl is zero

52 06 J2E jump to M if I2 is even

52 00 J2N jump to
52 03 J2NN jump to
52 05 J2NP jump to

if I2 is negative
if I2 is non-negative
if T2 is non-positive

R RRERRRERERER R R R R e

MIX SYMBOLIC OPCODES - ALPHABETIC ORDER Page D-3

52 04 J2NZ jump to M 1f 12 is non=-zero

52 07 J20 jump to M 1f 12 is odd

52 02 J2p jump to if 12 is positive
52 01 J2z jump to if 12 is zero

53 06 J3E jump to if I3 is even

53 00 J3N jump to M if I3 is nepative

53 03 J3NN jump to
53 05 J3NP jump to
53 04 J3NZ jump to

if I3 is non~negative
if I3 is non-positive
if I3 is non-zero

53 07 J30 jump to M if I3 is odd

53 02 J3p Jump to if I3 is positive
53 01 J3z jump to M if I3 is zero

54 06 J4E jump to M 1if I4 is even

54 00 J4N jump to if 14 is negative

54 03 J4NN Jump to
54 05 J4NP jump to
54 04 J4NZ jump to

if 14 is non-negative
if 14 is non~positive
if 14 is non-zero

54 07 J40 jump to M 1f I4 is odd

54 02 J4P jump to M if 14 is positive
54 0l J4z jump to M if I4 is zero

55 06 J5E jump to M if I5 is even

55 00 J5N jump to if 15 is negative

55 03 J5NN jump to
55 05 J5NP jump to
55 04 J5NZ jump to

if 15 is non-negative
if I5 is non-positive
if I5 is non=-zero

55 07 J50 jump to M 1f I5 is odd

55 02 J5P jump to if I5 is positive
55 01 J5Z jump to if I5 is zero

56 06 J6E jump to M if 16 is even

56 00 J6N jump to M if 16 is negative

56 03 JONN jump to
56 05 J6NP jump to
56 04 J6NZ jump to

if 16 is non-negative
if 16 is non-positive
if 16 is non-zero

RRERRRREREERRERREAER R R R AR AR RE R ER ERERER R E B

56 07 Jé0 jump to M if 16 is odd

56 02 J6P jump to M if 16 is positive

56 01 J6Z jump to M if I6 is zero

10 * LDA load A with M)

20 * LDAN load A with negative of (M)

17 * LDX load X with (M)

27 % LDXN load X with negative of (M)

i1 * LD1 load Il with (M)

21 % LDIN load Il with negative of (M)

12 % LDZ load 12 with M)

22 % LD2N load 12 with negative of (M)

13 % LD3 load 13 with (M)

23 % LD3N load I3 with negative of (M)

14 = LD4 load 14 with (M)

24 % LD4N load 14 with negative of (M)

15 # LD5 load I5 with (M)

25 * LD5N load I5 with negative of (M)

16 =* LD6 load 16 with (M) - o

26 * LD6N load 16 with negative of (M)

05 10 LNG complement (bitwise) bytes 1 to 5 of A
07 N MOVE move N words starting from M to (Il), add N to Il
05 12 MSK create A mask of M bits in A (+ = left~justified, - = right)

~56~

MIX SYMBOLIC OPCODES ~ ALPHABETIC ORDER Page D-4

03
00
05
05
01
45
06
06
06
06
06
06
06
06
05
05
30
40
37
41
31
32
33
34
35
36
02
05
02

*

00
00
03
07
N

00
02
06
04
01
03
07
05
05
04

*

O = F % % ¥ % ¥ ¥ ¥ % %

Rt I]

MUL
NOP
NUM
OCT
OR
ouT
SLA
SLAX
SLB
SLC
SRA
SRAX
SRB
SRC
SSN
SSP
STA
STJ
STX
STZ
ST1
ST2
ST3
ST4
ST5
ST6
SUB
XCH
XOR

multiply (M) by A giving AX

no operation

10-byte decimal in AX converted to binary in A

A is converted to l0-byte octal characters in AX
inclusive or of (M) with A

start
shift
shift
shift
shift
shift
shift
shift
shift

output transfer from unit N

A M bytes (bits if M negative) left, end~off
AX M bytes (bits if M negative) left, end-off
AX M bits left, end-off

AX M bytes (bits if M negative) left, circular
A M bytes (bits if M negative) right, end-off
AX M bytes (bits if M negative) right, end-off
AX M bits right, end-off

AX M bytes (bits if M negative) right, circular

set sign of A negative
set sign of A positive

store
store
store
store
store
store
store
store
store
store

A into location M
J register into location M
X into location M

zero into location M
I1 into location
I2 into location
I3 into location
I4 into location
I5 into location
I6 into location

RREERRR

subtract (M) from A
exchange registers A and X
exclusive or of (M) with A

=57~

Notation:

code field symbol

00
01
01
02
02
03
03
04
05
05
05
05
05
05
05
05
05
05
06
06
06
06
06
06
06
06
07
16
11
12
13
14
15

APPENDIX E

MIX SYMBOLIC OPCODES - NUMERIC ORDER

M is the computed effective address
(M) is the contents of location M
* in the field specification means L:R

instruction

00
*

07
*

07
*

07
*

00
01
02
03
04
05
06
10
11
12
00
01
02
03
04
05
06
07

N

¥ * % % ¥ %

NOP
ADD
OR
SUB
XOR
MUL
AND
DIV
NUM
CHAR
HLT
oCT
SSp
SSN
CHS
LNG
XCH
MSK
SLA
SRA
SLAX
SRAX
SLC
SRC
SLB
SRB
MOVE
LDA
Lpl
Lb2
LDb3
LD4
LD5

no operation

add (M) to register A

inclusive or of (M) with A

subtract (M) from A

exclusive or of (M) with A

multiply (M) by A giving AX

logical and (M) into A

divide (M) into AX giving A (quotient) and X (remainder)
10-byte decimal in AX converted to binary in A

A is converted to 10~byte decimal characters in AX
halt the MIX machine

A is converted to 10-byte octal characters in AX

set sign of A positive

set sign of A negative

change the sign of A

complement (bitwise) bytes 1 to 5 of A

exchange registers A and X

create A mask of M bits in A (+ = left-justified, - = right)
shift A M bytes (bits if M negative) left, end-off
shift A M bytes (bits if M negative) right, end-~off
shift AX M bytes (bits if M negative) left, end-off
shift AX M bytes (bits if M negative) right, end-off
shift AX M bytes (bits if M negative) left, circular
shift AX M bytes (bits if M negative) right, circular
shift AX M bits left, end-off

shift M bits right, end~off

move N words starting from M to (Il), add N to Il
load A with (M)

load Il with (M)

load I2 with (M)

load I3 with (M)

load I4 with (M)

load I5 with (M)

=

=58

MIX SYMBOLIC OPCODES - NUMERIC ORDER

16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
47
47
47
47
47
47
47
47
47
50
50
50
50
50
50
50
50
51
51
51
51
51
51
51
51
52
52
52
52

2 2 2 % % % % % % N ok ok ok % % % % ¥ ¥ ¥ ¥ % %

1.D6
LDX
LDAN
LDIN
LD2N
LD3N
LD4N
LD5N
LD6N
LDXN
STA
STl
ST2
813
ST4
ST5
STé6
STX
STJ
STZ
JBUS
10C
IN
ouT
JRED
JMP
JSsJ
Jov
JNOV
JL
JE
JG
JGE
JNE
JLE
JAN
JAZ
JAP
JANN
JANZ
JANP
JAE
JAO
JIN
Jiz
J1p
JINN
JINZ
JINP
JiE
J10
J2N
J2z
J2P
J2NN

“load

load
load
load
load
load
load
load
load
load
store
store
store
store
store
store
store
store
store
store

Jjump
jump
jump
jump
Jump
Jump
jump
Jump
Jjump
jump
jump
Jjump
Jjump
Jjump
jump
Jump
Jjump
Jump
jump
Jump
Jump
jump
jump
jump
Jjump
Jump
jump
Jump
jump
Jump
jump

I6

X
A
Il
I2
I3
14
15
16
X

I
I
I
I
I
I

with
with
with
with
with
with
with
with
with
with
A into
1l into
2 into
3 into
4 into
5 into
6 into
X into

(D
®)
negative
negative
negative
negative
negative
negative
negative
negative
location M
location M
location M
location M
location M
location M
location M
location M

J register into location M
zero into location M

jump to location M 1if unit N is busy
issue I/0 control signal to unit N
start input transfer from unit N
start output transfer from unit N

to location M if unit N is ready

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

R
o

if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if

REERRRRRRERRRERR R AR R R R R R B

=

overflow on

comparison
comparison
comparison
comparison
comparison
comparison
is negat
is zero
is

Page E~2

(but do not change register J)

» turn overflow off
overflow off, turn overflow off anyway

indicator is
indicator is
indicator is
indicator is
indicator is
indicator is
ive

less
equal
greater

greater or equal

not equal
less or equal

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

positive
non-negative
non-zero
non-positive
even

odd

negative
zero
positive
non-negative
non-zero
non-positive
even

odd

negative
zero
positive
non-negative

-59-

MIX SYMBOLIC OPCODES - NUMERIC ORDER

52
52
52
52
53
53
53
53
53
53
53
53
54
54
54
54
54
54
54
54
55
55
55
55
55
55
55
55
56
56
56
56
56
56
56
56
57
57
57
57
57
57
57
57
60
60
60
60
61
61
61
61
62
62
62

04
05
06
07
00
01
02
03
04
05
06
67
00
01
02
03
04
05
06
07
60
01
02
03
04
05
06
07
00
01
02
03
04
05
06
07
00
01
02
03
04
05
06
67
00
01
62
03
g0
01
02
03
6o
01
02

J2NZ
J2NP
J2E
J20
J3N
J3z
J3p
J3NN
J3NZ
J3NP
J3E
J30
J4N
J4zZ
J4P
J4NN
J4NZ
J4NP
J4E
J40
J5N
J52
J5Pp
J5NN
J5NZ
J5NP
J5E
J50
J6HN
J6Z
Jéep
JONN
J6NZ
J6NP
J6E
J6o
JXN
JXZ
JXP
JZRNN
JXNZ
JXNP
JXE
JXO
INCA
DECA
ENTA
ENNA
INC1
DECI
ENT1
ENNI
INC2
DEC2Z
ENTZ

jump to M if
Jjump to M if
jump to M if
jump to M 1if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M 1if
jump to M if
jump to M if
Jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
Jump to M if
Jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
Jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M 1if
jump to M if
jump to M if
jump to M 1if
jump to M if
jump to M if
jump to M if
jump to M if
jump to M if
Jump to M if
jump to M if

increment A
decrement A

I2
I2
12
12
13
I3
I3
I3
I3
13
13
13
14
14
14
14
14
14
14
14
15
I5
15
15
I5
I5
15
I5
16
16
16
16
16
16
16
16

E TR el I

by
by

enter M into A
enter negative of M into A
increment Il by M
decrement Il by M
enter M into Il
enter negative of M into Il
increment 12 by M
decrement 12 by M

enter M into

I2

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
M

M

non-zero
non-positive
even

odd

negative
zero
positive
non-negative
non-zero
non-positive
even

odd

negative
Zero
positive
non-negative
non-zero
non=-positive
even

odd

negative
zero
positive
non-negative
non-zero
non-positive
even

odd

negative
zero
positive
non-negative
non-zero
non-positive
even

odd

negative
zero
positive
non-negative
non-zero
non-positive
even

odd

~60=

Page E-3

MIX SYMBOLIC OPCODES -~ NUMERIC ORDER

62
63
63
63
63
64
64
64
64
65
65
65
65
66
66
66
66
67
67
67
67
70
71
72
73
74
75
76
77

03
6o
01
02
03
00
01
02
03
00
01
02
03
00
01
02
03
00
01
02

03
*

% % % N N % N

ENN2
INC3
DEC3
ENT3
ENN3
INC4
DEC4
ENT4
ENN4
INC5
DEC5
ENT5
ENN5
INC6
DEC6
ENT6
ENN6
INCX
DECX
ENTX
ENNX
CMPA
CMP1
CMP2
CMP3
CMP4
CMP5
CMP6
CMPX

enter negative of M

increment I3 by M
decrement 13 by M

enter M into I3
enter negative of M

increment I4 by M
decrement I4 by M

enter M into 14
enter negative of M

increment I5 by M
decrement 15 by M

enter M into I5
enter negative of M

increment I6 by M
decrement 16 by M

enter M into I6
enter negative of M

increment

enter negative of M

compare A
compare 11
compare 12
compare I3
compare I4
compare I5
compare 16
compare X

X by M
decrement X by M
enter M into X

and
and
and
and
and
and
and
and

),
M),
M),
™),
M),
™),
™),
M),

into

into

into

into

into

into
set
set
set
set
set
set
set
set

-61~

I2

I3

I4

I5

16

X
comparison
comparison
comparison
comparison
comparison
comparison
comparison
comparison

indicator
indicator
indicator
indicator
indicator
indicator
indicator
indicator

Page E-4

