NSPIV: A FORTRAN Subroutine
for

Gaussian Elimination with Partial Pivoting
by

Andrew H. Sherman

January, 1977 TR-65
CNA-118

This work was supported in part by the National Science
Foundation under grant NSF DCR 73-07998 and by the Energy
Research and Development Administration under grant US
ERDA E911-1) 2383. It is being released jointly with the
Center for Numerical Analysis at The University of Texas
at Austin under the number CNA-118.

Department of Computer Sciences

The University of Texas at Austin

NSPIV: A FORTRAN Subroutine for Sparse

Gaussian Elimination with Partial Pivoting*

Andrew H. Sherman
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Keywords and phrases: sparse Gaussian elimination,
sparse linear systems,
linear equations, partial
pivoting algorithms

CR Categories: 5.14

Language: FORTRAN

* This work was supported in part by the National Science Foundation
under grant NSF DCR 73-07998 and by the Energy Research and
Development Administration under grant US ERDA E(11-1) 2383.

Description

1. Introduction

NSPIV is a FORTRAN subroutine which solves a sparse system of
linear equations

Ax = b
by sparse Gaussian elimination with partial pivoting. More precisely,
it performs Gaussian elimination with column interchanges on the nonsingular
N x N matrix A to effectively obtain a factorization of the form

AQ = LU, (1)
where L is lower triangular, U is unit upper triangular, and Q is a
permutation matrix corresponding to the column interchanges. To conserve
storage, only the factor U is retained, so during elimination, operations
are performed on the righthand side to obtain the solution y of the system

Ly = b,

Once U has been obtained, x is computed by solving the upper triangular
system

UQTx =y,

The following sections of the algorithm description discuss the
computational method and usage of NSPIV. No test results have been included
because they already appear in [4]. Those test results show NSPIV to be some-
what more efficient than other currently available software for sparse

Gaussian elimination with pivoting.

2. Method
The algorithm used by NSPIV is a row-oriented version of Gaussian
elimination with column interchanges. It consists of N steps, during each

of which one row of A is processed. When processing the k-th row at the k-th

step, a list Ik is used to hold the indices of all columns containing nonzeroes
in the k-th row. Then, in increasing order, for each index m < k in Ik’ a/
multiple of row m of U is subtrécted from row k to annihilate the corresponding
nonzero. This may cause fill-in, i.e., the introduction of new nonzero elements
in the k-th row, so the list Ik must be updated. Finally, when all m < k

have been processed, Ik contains the indices of columns which contain nonzeroes
in the portion of the k-th row lying in the upper triangle of U. Since A is
nonsingular, Ik will not be empty, and the algorithm selects a remaining nonzero
element with maximum modulus and interchanges its column with the k-th column.

That the NSPIV algorithm is numerically stable can be shown quite
easily by relating it to the application of standard Gaussian elimination with
row interchanges to AT. In fact, assume that such a procedure produces a
factorization of AT as

pal = L U, (2)
where i is unit lower triangular, 6 is upper triangular, and P is a permutation
matrix corresponding to the row interchanges. Then we can show that the
NSPIV algorithm produces the factorization (1) of A with L = 6 , U= iT, and
Q = PT. Since the computation of (2) is numerically stable (cf. [2]), that of
(1) by the NSPIV algorithm is also.

The keys to efficiency in NSPIV lie in the methods used to store and
update the list I,+ In [4] several different methods were implemented and
compared, and the best one, "run insertion," is used in NSPIV. The list Ik
is stored as a linked list in increasing order relative to the current column
ordering at the k-th step. Similarly, the columns of eéch previous row of U
are arranged in increasing order relative to the column ordering at the time

the row was computed. (It is important to note that subsequent interchanges may

mean that these columns are not in increasing order relative to the current

column ordering at the k-th step.)

To update Ik for column index m, the list of nonzero columns for row m
of U must be merged with Ik' In NSPIV, this is done as a linear merge, except
that each out-of-current-order column in the list for row m causes a return
to the beginning of Ik. This is equivalent to splitting the list of indices
for row m into its component increasing runs (cf. [3], p. 34) and merging each

run separately with I, using a linear merge. (Hence the name "run insertion.")

3. Matrix Storage

The matrix A is stored in sparse form using the three arrays IA, JA, and
A. The array A contains the nonzeroes of the matrix row-by-row, not necessar-
ily in increasing column order. The array JA contains the column numbers

corresponding to the nonzeroes in the array A (i.e., if A(K) = a 7° then JA(K) = J).

I
Finally the array IA contains pointers to the rows of nonzeroes and column numbers
in the arrays A and JA (i.e., the I~th row occupies positions IA(I) through
IA(I + 1) - 1 of the arrays A and JA, with IA(N + 1) set so that this holds

for row N.)

4. Usage

The calling sequence for NSPIV is
CALL NSPIV (N,IA,JA,A,B,MAX,R,C,IC,X,ITEMP,RTEMP,IERR)

with (arguments preceded by an asterisk are altered by the subroutine):

N An integer specifying the number of equations and unknowms.
IA An integer array of N + 1 entries containing row pointers to A.
JA An integer array with one entry per nonzero in A, containing the

column numbers of the nonzeroes of A.

A A real array with one entry per nonzero in A, containing the actual
nonzeroes. .

B A real array of N entries containing the righthand side data.

MAX An integer specifying the maximum number of off-diagonal nonzeroes of
U which may be stored.

R An integer array of N entries specifying the order of the rows of
A (i.e., the elimination order of the equations).

*C An integer array of N entries. On input, C specifies the order of
the columns of A. On output, C specifies the order of the columns of U.

*TC An integer array of N entries which is the inverse permutation of C
(i.e., IC(C(1)) = I).

*X A real array of N entries which contains the solution on output.

*ITEMP An integer array of 2N + MAX + 2 entries which is used for temporary
storage by NSPIV.

*RTEMP A real array of N + MAX entries which is used for temporary storage
by NSPIV.

*1ERR An integer which indicates error conditions or (on successful termi-
nation) the number of off-diagonal entries in U. The comments in the
code describe the values assigned to IERR.

The actual numerical computations are performed in an internal subroutine
NSPIV1, which is written to perform all computations in single precision.
Conversion to double precision may be accomplished simply by changing REAL
declarations to DOUBLE PRECISION declarations in both NSPIV and NSPIV1, and
by changing the calls to ABS into calls to DABS.

In practice, the efficiency of NSPIV may be affected by the initial order-
ing of the rows of A, (cf. [1,4]). One strategy which has been found to be
helpful is to order the rows of A'by increasing numbers of nonzeroes. Providing
such an initial ordering to NSPIV is accomplished by setting the array R
appropriately; no actual changes in the arrays IA, JA, and A are required. In

this case, row R(1) will be the row with the fewest nonzeros, and row R(N) will

be the row with the most nonzeroes.

[2]

(3]

(4]

A. R. Curtis and J. K. Reid. The Solution of Large Sparse Unsymmetric

Systems of Linear Equations. Information Processing 71, pp. 1240-45, 1971.

G. E. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic

Equations. Prentice-~Hall, 1967.

D. E. Knuth. . The Art of Computer Programming, Volume 3: Searching and

Sorting. Addison-Wesley, 1973.

A. H. Sherman. Algorithms for Sparse Gaussian Elimination with Partial
Pivoting. University of Illinois Department of Computer Science report

UIUCDCS-R-76-817, 1976.

Algorithm 6

SUBROUTINE NSPIV (NesIAsJAsABIMAXIRICIICoXs ITEMP+RTEMPy IERR)

NSPIV CALLS NSPIV] WHICH USES SPARSE GAUSSIAN ELIMINATION WITH
COLUMN INTERCHANGES TO SOLVE THE LINEAR SYSTEM A X = B, THF
ELIMINATION PHASE PERFORMS ROW OPFRATIONS ON A AND B TO OBTAIN
A UNIT UPPER TRIANGULAR MATRIX U AND A VECTOR Y, THE SOLUTION
PHASE SOLVES U X = Y,

INPUT ARGUMENTS==-

N INTEGER NUMBER OF EQUATIONS AND UNKNOWNS

IA INTEGER ARRAY OF N+1 ENTRIES CONTAINING ROW POINTERS TO A
(SEE MATRIX STORAGE DESCRIPTION BELOW)

JA INTEGER ARRAY WITH ONE ENTRY PER NONZERO IN As CONTAINING
COLUMN NUMBERS OF THE NONZEROES OF A. (SEE MATRIX STORAGE
DESCRIPTION RELOW) .

A REAL ARRAY WITH ONE ENTRY PER NONZERO IN As CONTAINING THE
ACTUAL NONZEROES. (SEE MATRIX STORAGE DESCRIPTION BELOW)

B REAL ARRAY OF N ENTRIES CONTAINING RIGHT HAND SIDE DATA

MAX INTEGER NUMBER SPECIFYING MAXIMUM NUMBER OF OFF-DIAGONAL

NONZERO ENTRIES OF U WHICH MaY BE STORED

R INTEGER ARRAY OF N ENTRIES SPECIFYING THE ORDER OF THE
ROWS OF A (J.E.s THE ELIMINATION ORDER FOR THE EQUATIONS)

c INTEGER ARRAY OF N ENTRIES SPECIFYING THE ORDER OF THE
COLUMNS OF A, C IS ALSO AN OUTPUT ARGUMENT

IC INTEGER ARRAY OF N ENTRIES WHICH IS THE INVERSE OF C
(I.Eee IC(C(I)) = I)e IC IS ALSO AN OUTPUT ARGUMENT

ITEMs INTEGER ARRAY OF 2%#N + MAX + 2 ENTRIESs FOR INTERNAL USE

RTEM> REAL ARRAY OF N + MAX ENTRIES FOR INTERNAL USE

OUTPUT ARGUMENTS==-

C INTEGER ARRAY OF N ENTRIES SPECIFYING THE ORDER OF THE
COLUMNS OF U. C IS ALSO AN INPUT ARGUMENT

IC INTEGER ARRAY OF N ENTRIES WHICH IS THE INVERSE OF C
(I+Ees IC(C(I)) = 1)s IC IS ALSO AN INPUT ARGUMENT

X REAL ARRAY OF N ENTRIES CONTAINING THE SOLUTION VECTOR

IERR INTEGER NUMBER WHICH INDICATES ERROR CONDITIONS OR
THE ACTUAL NUMBER OF OFF~-DIAGONAL ENTRIES IN U (FOR
SUCCESSFUL COMPLETION)

IERR VALUES ARE=---

0 LT IERR SUCCESSFUL COMPLETION., U HAS IERR
OFF-DIAGONAL NONZERO ENTRIES

2ieleleNoNeNoReXe e ReoNeNe s Ne Xelo e s Re o R o iaRe R Ne Re Ko

e NoNe]

OO0

HelslsleoNeNeloNaoNaoNoNoNe o Ko

IERR = 0O ERROR., N = 0

-N LE IERR LT O ERROR. ROW NUMBER IABS(IERR) OF A IS
IS NULL

-2%N LE IERR LT =N ERROR. ROW NUMBER IABS(IERR+N) HAS A

DUPLICATE ENTRY

=3%*N LE IERR LT =-2#N ERROR. ROW NUMBER IABS(IERRe+2#N)
HAS A ZERO PIVOT

-4#N LE IERR LT -3*N ERROR. ROW NUMBER IABS(IERR+3xN)
EXCEEDS STORAGE

STORAGE OF SPARSE MATRICES==-

THE SPARSE MATRIX A IS STORED USING THREE ARRAYS IAs JAs AND A.

THE ARRAY A CONTAINS THE NONZEROES OF THE MATRIX ROW-BY=-ROW, NOT
NECESSARILY IN ORDER OF INCREASING COLUMN NUMBER, THE ARRAY JA
CONTAINS THE COLUMN NUMBERS CORRESPONDING TO THE NONZEROES STORED

IN THE ARRAY A (I.E.s IF THE NONZERO STORED IN A(K) IS IN

COLUMN Js THEN JA(K) = J)e THE ARRAY IA CONTAINS POINTERS TO THE
ROWS OF NONZEROES/COLUMN INDICES IN THE ARRAY A/JA (l.E.»
ACTACI))/Z7JA(TIACI)) IS THE FIRST ENTRY FOR ROW I IN THE ARRAY A/JA).
TIA(N+1) IS SET SO THAT IA(N+1) = IA(1) = THE NUMBER OF NONZEROES IN A

REAL A(1)9eB(1)eX(1)sRTEMP(])
INTEGER TA(1)eJA(1)9R(1)9sC(1)sIC(L1)oITEMP(])
INTEGER IUsJUsUsYP

SET INDICES TO DIVIDE TEMPORARY STORAGE FOR NSPIV1

1
Y +« N
1
P o+« N +]
IU +«+ N + 1

U
»
T
JuU

Hou

CALL NSPIV]1 TO PERFORM COMPUTATIONS

CALL NSPIV]1 (NsIAs JAsAsBIMAXIRICYICIXIRTEMP(Y)SsITEMP(P) s
C ITEMP(IU) o ITEMP (JU) «RTEMP (U) o IERR)

Re TURN

£:0

SUBROUTINE NSPIV1 (NeTAsJA9AsBIMAX9RsCoICoXeYsPsIUsJUsUsIERR)

NSPIV1 USES SPARSE GAUSSIAN ELIMINATION WITH

COLUMN INTERCHANGES TO SOLVE THE LINEAR SYSTEM A X = B, THE
ELIMINATION PHASE PERFORMS ROW OPERATIONS ON A AND B TO OBTAIN
A UNIT UPPER TRIANGULAR MATRIX U AND A VECTOR Y, THE SOLUTION
PHASE SOLVES U X =Y,

SEE NSPIV FOR DESCRIPTIONS OF ALL INPUT AND OUTPUT ARGUMENTS
OTHER THAN THOSE DESCRIBED BELOW

INPUT ARGUMENTS (USED INTERNALLY ONLY) ===

Y REAL ARRAY OF N ENTRIES USED TO COMPUTE THE UPDATED 8
RIGHT HAND SIDE

P INTEGER ARRAY OF N¢1 ENTRIES USED FOR A LINKED LIST,
PIN+1) IS THE LIST HEADERs AND THE ENTRY FOLLOWING
P(K) IS IN P(P(K))se THUSs P(N+]1) IS THE FIRST DATA
ITEMy P(P(N+1)) IS THE SECONDs ETC. A POINTER OF
N+l MARKS THE END OF THE LIST

IU INTEGER ARRAY OF N+l ENTRIES USED FOR ROW POINTERS TO U
(SEE MATRIX STORAGE DESCRIPTION BELOW)

JU INTEGER ARRAY OF MAX ENTRIES USED FOR COLUMN NUMBERS OF
THE NONZEROES IN THE STRICT UPPER TRIANGLE OF U. (SEE
MATRIX STORAGE DESCRIPTION BRELOW)

U REAL ARRAY OF MAX ENTRIES USED FOR THE ACTUAL NONZEROES IN
THE STRICT UPPER TRIANGLE OF U. (SEE MATRIX STORAGE
DESCRIPTION RELOW)

STORAGE OF SPARSE MATRICES==-

THE SPARSE MATRIX A IS STORED USING THREE ARRAYS IAs JAs AND A.

THE ARRAY A CONTAINS THE NONZEROES OF THE MATRIX ROW-BY-ROWs NOT
NECESSARILY IN ORDER OF INCREASING COLUMN NUMBER. THE ARRAY JA
CONTAINS THE COLUMN NUMBERS CORRESPONDING TO THE NONZEROES STORED
IN THE ARRAY A (l.E.+ IF THE NONZERO STORED IN A(K) IS IN

COLUMN Js THEN JA(K) = J). THE ARRAY IA CONTAINS POINTERS TO THE
ROWS OF NONZEROES/COLUMN INDICES IN THE ARRAY A/JA (I.E.»
ACIACI))/JACIACIY) IS THE FIRST ENTRY FOR ROW I IN THE ARRAY A/JA).
TA(N+1) IS SET SO THAT TA(N+l) = IA(1) = THE NUMBER OF NONZEROES IN
A. IUs JUy AND U ARE USED IN A SIMILAR WAY TO STORE THE STRICT UPPER
TRIANGLE OF Us EXCEPT THAT JU ACTUALLY CONTAINS C(J) INSTEAD OF J

OOOOOOOOOOOOOOOO()()GOOOOOOOOOO()OOOOOO

~EAL A(1)eB(1)oil(1)eX(1)eY(])

REAL DKoLKIsONE s XPVsXPVYMAX YK 9 ZERQD

INTEGER C(1)sTA(1)oIC(1)oIUCL)9JA(L1)sJU(L) 4P (1)sR(1])
INTEGER CKePKePPKsPVeVeVIeVJeVK

C
C .
IF (N +EOe 0) GO TO 1001
C
NNE = 1,0
ZFRO = 0,0
C
C INITIALIZE WORK STORAGE AND POINTERS TO JU
C
DM 10 J=1eN
~ X(J) = ZERO
10 CONT INUE
Iii(l) =1
JUPTR = 0
C
C PERFORM SYMBOLIC AND NUMERIC FACTORIZATION ROW BY ROW
C VK (VIsVJ) IS THE GRAPH VERTEX FOR ROW K (IsJ) OF U
C
D170 K=1eN
C
C INITIALIZE LINKED LIST AND FREE STORAGE FOR THIS ROW
C THE R(K)-TH ROW OF A BECOMES THE K-TH ROW OF U.

DOOOOO0

20

OO0

30

40

C
C
c

50

oNeoNeNe]

o000

o NeoNeNe]

OOO0O0O0

P(N+1) = N+1
VK = R(K)

SET UP ADJACENCY LIST FOR VKes ORDERED IN
CURRENT COLUMN ORDER OF U, THE LOOP INDEX
GOES DOWNWARD TO EXPLOIT ANY COLUMNS

FROM A IN CORRECT RELATIVE ORDER

JMIN = TA(VK)
JMAX = JTA(VK+1) - 1
IF (JUMIN «GT. JUMAX) GO TO 1002
J = JUMAX
JAJ = JA(D)

VJ = IC(JAY)
STORE A(Ke+J) IN WORK VECTOR

X{(vJy = A(D)
THIS CODE INSERTS VJ INTO ADJACENCY LIST OF vK
PPK = N+1
PK = PPK
PPK = P(PK)
IF (PPK = VJ) 3041003440

P(VY) = PPK
P(PK) = VJ
J=J -1

IF (J «GEs JUMIN) GO TO 20

THE FOLLOWING CODE COMPUTES THE K-TH ROW OF U

VI = N+l

YK = B(VK)

VI = p(vI)

IF (VI «GE. K) GO TO 110

VI LT VK =< PROCESS THE L(KsI) ELEMENT AND MERGE THE
ADJACENCY OF VI WITH THE ORDERED ADJACENCY OF VK

LKT = - X{(vT])
X(VI) = ZFRO

ADJUST RIGHT HAND SIDE TO REFLECT ELIMINATION

YK = YK + LKI # Y(VI)
PPK = VI
JMIN = Tu(vI)
JMAX = TH(VI+l) - 1
IF (UMIN .GT. JMaX) GO TO S0
DO 100 J=JMINsJMAX

JUJ = JU(D)

VJ = IC(JUD)

IF VU IS ALREADY IN THE ADJACENCY OF VK,
SKIP THE INSERTION

IF (X{(VJ) NE. ZERO) GO TO 90

INSEXT VJ IN ADJACENCY LIST OF VK,

RESET PPX TO VI IF WE HAVE PASSED THE CORRECT
INSERTION SPOT. (THIS HAPPENS WHEN THE ADJACENCY OF
VI IS NOT IN CURRENT COLUMN ORDER DUE TO PIVOTING.,)

IF (VJ = PPK) 60+90+70
60 PPK = VI
70 PK = PPK

PPK = P(PK)

IF (PPK = VJ) 70990480

80 P(VJ) = PPK
P(PKY = vJ
PPK = vJ
C
C COMPUTE L(KsJd) = L(KeJ) = LIKsI)#U(IsJ) FOR L(KeI) NONZERO
C COMPUTE U®(KeJ) = U (KeJ) = L(KeI)®U(IsJ) FOR U(KeJ) NONZERO
C (UR(KoJd) = U(KsJ)I*D(KWK))
C
90 X(VJ) = X(VJ) + LKI #* U(Y)
100 CONTINUE
GO T0 S0
Cc
C PIVOT=-INTERCHANGE LARGEST ENTRY OF K=-TH ROW OF U WITH
C THE DIAGONAL ENTRY,
C
C FIND LARGEST ENTRYs COUNTING OFF-DIAGONAL NONZEROES
C
110 IF (VI .GT« N) GO TO 1004
XPVMAX = ABS(X(VT1))
MAXC = VI
NZCNT = 0
PV = VI
120 V = PV
PV = P(PV)

IF (PV «GT. M) GO TO 130
NZCNT = NZCNT + |
XPV = ABS(X(PV))
IF (XPV .LE. XPVMAX) GO TO 120
XPVMAX = XPV
MAXC = PV
MAXCL = V
GO TO 129
130 IF (XPVMAX .EQ, ZERO) GO TO 1004

IF VI = Ko THEN THERE IS AN ENTRY FOR DIAGONAL
WHICH MUST BE DELETED. OTHERWISEe DELETE THE
ENTRY WHICH WILL BECOME THE DIAGONAL ENTRY

OO0O00O0

IF (VI JE0. K} GO TO 140
IF (VI .EQ. MAXC) GO TO 140
P(MAXCL) = P(MAXC)
GO TO 150
140 VI = P(v])
C
C COMPUTE D(K) = 1/L(KeK) AND PERFORM INTERCHANGE ,
C
150 DK = ONE / X{(MAXC)
X(MAXC) = X(K)
I = C(K)
C(K) = C(MaxC)
C(MAXC) = 1
CK = C(K)
JIC(CK) = K
IC(I) = MAXC
X{(K) = ZERO

C UPDATE RIGHT HAND SIDE.
Y{K) = YK % DK

COMZUTE VALUE FOR JU(K+1l) AND CHECK FOR STORAGE OVERFLOW

(o]

IU(K+1) = TU(K) + NZCNT
IF (IU(K+1l) .GT. MAX+1l) GO TO 1005

MOVE COLUMN INDICES F20M LINKED LIST TO JU.
COLUMNS ARE STORED IN CURRENT ORDER WITH ORIGINAL
COLUMN NUMBER (C{(J)) STORED FOR CURRENT COLUMN J

OO0O000

IF (VI GTe« N) GO TO 170
J = VI
160 JUPTR = JUPTR + 1
JUGJUPTR) = C(D)
UIJUPTR) = X(J) # DK
Xx(J) = ZFRO
J = P(J)
IF (J «LFe N) GO TO 160
170 CONT INUE
C
C BACKSOLVE U X = Ys AND REORDER X TO CORRESPOND WITH A
C
K = N
DO 200 I=1eN
YK = Y{(K)
JMIN = TU(K)
JMAX = TuU(K+l) = 1
IF (JMIN .GT¢ JMAX) GO TO 190
DO 180 J=JUMINsJMAX
Jud = Jutd)
Jud = IC(JUJ)
YK = YK = U(y) # Y(JUD)

180 CONT INUE
190 Y(K) = YK
CK = C(K)
X(CK) = YK
K = K=l
200 CONT INUE
C
C RETURN WITH IERR = NUMBER OF OFF-DIAGONAL NONZEROES IN U
C
IERR = JU(N<+1l) - T4(l)
R TURN
C
C ERROR RETURNS
c
C N =0©
C
1001 IFRR = O
RETURN
c
C ROW < OF A IS NULL
c
1002 IfERR = K
RETURN
C
C ROW K OF A HAS A DUPLICATE ENTRY
C

1003 IFRR = «(N+K)

C
c
C

C
c
C

RFTURN
ZERO PIVOT IN ROW K

1004 IFRR = = (2#%N+K)
RETURN

STORPAGE FOR U EXCEEDED ON ROW K
1005 IFRR = = (3#N+K)

RF TURN
Enn

12

Appendix A

The code in this appendix illustrates the use of NSPIV.

system is of the form

where A is an 10x10 block tridiagonal matrix with 10x10 blocks.

C D
B C
A= B\

with
-1
-1
B =)
4
-1 4
Cc = -1
and
-1.5
-1.5

13

The linear

Specifically,

This example is chosen for its simplicity; it does not exercise the algorithm,

since A is a strictly diagonally dominant matrix.

OOOOOOOOOO0O0ON

e NeNe]

C

THIS PROGRAM ILLUSTRATES THE USE OF NSPIV BY SOLVING THE 14
SYSTEM OF LINEAR EQUATIONS

A X =8B

WITH A AN NG X NG BLOCK TRIDIAGONAL MATRIXs WITH NG X NG BLOCKS,
THE DIAGONAL BLOCKS OF A ARE LOWER BI-DIAGONAL (ENTRIES ARE 4,0
ON THE DIAGONALs =1.0 ON THE SUBDIAGONAL)s AND THE OFF-DIAGONAL
BLOCKS OF A ARE DIAGONAL (ENTRIES ARE =1.0 IN THE LOWER TRIANGLE»
-1.5 IN THE UPPER TRIANGLE.) X IS CHOSEN TO BE A VECTOR

OF ALL ONESs AND B IS COMPUTED ACCORDINGLY.

INTEGER TA(101)+JA(400)9R(100)9C(100)+IC(100)sITEMP(597)
REAL A(400)+B(100)+X(100)+RTEMP(495)
DATA MAX/395/9NG/10/+N/7100/

SET UP PROBLEM

K = 1

1a(l) = 1

IAPTR = 1

DO S5 I=1eNG

DO 5 J=14NG

BK = 0,
IF (I «EQe 1) GO TO 1
JA(IAPTR) = K = NG
A(TARPTR) = =1,

BK = BK - 1,

IAPTR = TAPTR + 1}

IF (J «EQ. 1) GO 10O 2
JA(TAPTR) = K - 1
A(IAPTR) = =1,

BK = BK - 1,

IAPTR = IAPTR +]
JA(IAPTR) = K
A(IAPTR) = 4,

BK = BK + 4,

IAPTR = JAPTR + 1

IF (I EQe ~G) GO TO 4
JALTIAPTR) = K + NG
A(IAPTR) = =1,5

BK = BK = 1.5

IAPTR = IAPTR + 1
B(K) = BK

K = K + 1

TIA(K) = JAPTR
CONTINUE

CALL PREORD TO ORDER ROWS OF A BY INCREASING NUMBERS OF NONZEROES
ColLlL PREORD(NsIAWRsCeIC)
CALL NSPIV TO SOLVE SYSTEM

CALL NSPIV(NsIA9s JAsAsBIMAXIRsCoICoXs ITEMP4yRTEMPy IERR)
WRITE (6+101) IERR

101 FORMAT (8H IERR = ,110)

OO0

O

10

20

30

40

C
c

10

20

CALL RESCHK TO COMPUTE MAX=NORM AND 2-NORM OF RESIDUAL
CALL RESCHK(NsIAsJA9A9BIX)
STOP

END
SUBROUTINE PREORD(NsIAsRsCeIC)

15

PREORD ORDERS THE ROWS OF A BY INCREASING NUMBER OF NONZEROES.
THE ROW PERMUTATION IS RETURNED IN R. C IS SET TO THE IDENTITY.

INTEGER IA(1)sR(1)sC(1)sIC(1)

D01 I=leN
R(I) 1
cC(I) I
IC(I) = 1
CONTINU

DO S
c(1) .

DO 10 K = 1N
KDEG = IA(K+]l) -~ TA(K)

IF (KDEG +EQ. 0) KDEG = KDEG + 1
IC(K) = C(KDEG)

C(KDEG) = K

CONT INUE

I1 =20

DO 30 J = 1N
IF (C(J) +EQ. 0) GO TO 30

C(J)

I + 1

) = K

1C(K)
IF (K oGTs 0) GO TO 20
CONTINUE

DO 40 1 = 1leM
ct1) =1
IC(I) =1
CONT INUE

Rf TURN

EMD

SUBROUTINE RESCHK(Ne+IAesJAsA9BoeX)

|10}

E
1eN
0

fnu

o= i

K
I
R(
K

RESCHK COMPUTES THE MAX-NORM AND 2-NORM OF THE RESIDUAL.

DOUBLE PRECISION IS USED FOR THE COMPUTATION,

INTEGER TA(1)+JA(])
REAL A(1)+B(1)eX(]1)
DOUBLE PRECISION RESIDsRESIDM+ROWSUM
RESID = 0.
RESIDM = 0,
DO 20 I=1.N
ROWSUM = DBLE(B(I))
JMIN = TA(])
JMAX = TA(I+]1) - 1
DO 10 JU=JMINsJIMAX
JAJ = JALD)
ROWSUM = ROWSUM -~ DBLE(A(J)) # DBLE(X(JAJ))
CONTINUE

IF (DABS(ROWSUM) .GT., RESIDM) RESIDM = DABS (ROWSUM)

RESID = RESID + ROWSUM##2
CONTINUE

RESID = DSQRT(RESID)

WRITE (6¢25) RESID

FORMAT (22H 2-NORM OF RESIDUAL
WRITE (6+30) RESIDM

FORMAT (24H MAX NORM OF RESIDUAL
RFTURN

£D

0014.7)

+D14.7)

16

