APPENDIX 1

SEMANTIC REPRESENTATIONS
FOR AN INTEGRATED DATA SYSTEM -

R. F. Simmons
I. Languages
Semantic Networks evolved primarily to represent the deep logical semantics

of natural language discourse. Consequently communication in English is the

raiéon d'etre of the system and we have previously described interpreters and
grammars that we have developed to translate sehtences and queries in English
into the networks and from network structures back into English (see Simmons, 1977).
The language of semantic relations ané predipates evolved as a linear ex-
pression of the networks, and statements in it may be used as arguments of the
functions, ASSERT, QUERY and DELETE to communicate directly with the system.
This language is an alternate notation for predicate logic and it is fu-ly
quantified and includes logical functions - AND,.OR NOT, and IMPLIES -— and
can include general functions (see Simmons and Chester, 1977).
The user may prefer for some purposes to use a simpler laﬁguage offtuples.
A predicate logic in this form was introduced to computation by F. Black (1964)
and has been further developed by Kowalski (1974). A simple assertion such as:
"the pencil is in the desk', is represented in Kowalski's notation as: (IN PENCIL
DESK)<. The transitivity of "in" is expressed as: (IN X Z)«(IN X Y) (IN Y Z),
i.e. if X is in Y and ¥ is in Z, then X is>in 7, where X, Y, and Z are free
variables. The tuples to the left of the arrow are consequents, to the right
are antecedents. A query has the form, <(IN PENCIL Y). Both Black and Kowalski
show that this is a complete logical system. This language translates easily

into semantic networks. An example will illustrate:

 (IN PENCIL DESK)+ == (ASSERT(IN R1 PENCIL R2 DESK))
(IN X Z)«(IN X ¥Y) (IN Y Z)=
(ASSERT(IN R1 X R2 Z ANTE ((IN R1 X R2 Y)(IN R1 Y R2 Z))))

<(IN PENCIL X) => (QUERY (IN Rl PENCIL R2 X))
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The logic of answering questions inlseméntic-networks is similar to the logic
of Kowalski's system which he has shown is very powerful for solving problems
and even for evaluating programs. |
Of primary interest to data management, special functions are introduced
for asserting, querying and deleting tables. ASSERTAB as exemplified in a
following section, takes a tablename, a list of headings,.and a list of
tuples as arguments:
(ASSERTAB TABLE COURSE#*TAB
FORM (COURSE STUDENTS)
DATA ((CS343 23)(CS375 37)...(CS399 9)) )
The result of ASSERTAB is to construct a network representing the table.
DELETAB is provided to delete all or parts of a table. Although the ordinary
ASSERT, DELETE and QUERY functions work on tables, a special quantified func-

tion is provided in the following form:
(FOR QFY CLASS PARTITION OPERATION),
an example call might be:

(FOR SOME STUDENTS COURSE*TAB (IF (GR STUDENTS 5)
(PRINT COURSE STUDENTS)))
The operation can be any program in a language decided to be suitable for the
user. It is of particular importance that the operations include the capability

of constructing new tables, e.g.

(FOR SOME NAMES EMPLOYEE*TAB (IF (GR SALARY 20000)
(ASSERTAB NAME TEMP*TAB
FORM (NAME SALARY DEPT)
DATA (NAMES SALARY DEPT))))
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This will construct the new table, TEMP*TAB selecting NAMES, SALARY and DEPT
from the old one when entries have a salary greater than 20000.
Additional functions ASSERTEXT, DELETEXT and KEY* are provided for intro-

ducing text to the semantic networks and for retrieving bestmatching strings

from it.
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II. Basic Structures

Semantic networks can be viewed as a representation that reduces all data
to sets of binary relations. A semantic network can be drawn as a directed
graph in which each arc represents a relation term and the two nodes* which
it connects are the arguments. Since a node can participate in many binary
relations, a node, its arcs and the nodes to which they directly connect it

comprise a set of binmary relations. A simple example follows:
"Five students enrolled in CS381."

enroll student

~
iSUP /\SUP

esroll] —ACT y STUDENTL —2R—) 5
l————ﬂ— cS381%1—2— 5381

The subscripted terms, e.g. enrolll, studentl, etc. can be seen as a special
encoding for instances of the concept to which they are in a SUP relation. The
arcs are relation names which in this example are derived from the names,

Agent, Theme, Number and Superclass. Each arc is understood to have an inverse

as follows:

SUPerclass~-INSTance
AGT--AGT#*
TH-- TH*
NBR-~-NBR#*

*%In fact, in our implementations, an arc connects a node to a set of nodes,
e.g. stately and graceful ceconut palm is represented as
(PALM MOD  (STATELY GRACEFUL)). This proves most economical for representing
tables and texts. 7 :
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The unsubscripted concept is also in relation to other concepts; e.g. ENROLL
SUP JOIN, STUDENT SUP PERSON, CS381 SUP COURSE, etc., thus classifying the
vocabulary of ;he system. |

The above graph can be represented also as triples which is an attractive

form at the machine implementation level.

(ENROLL1 SUP ENROLL) ~ (CS381* SUP €S381)
(ENROLL1 AGT STUDENT1) , (CS381*1 TH* ENROLL)
(ENROLL1 TH CS381%*1) ‘ (5 NBR* STUDENTL)

(STUDENT1 SUP STUDENT)

(STUDENT1 NBR 5)

(STUDENT1 AGT* ENROLL1)
The triples facilitate implementation in that they reduce any form of data to
a fixed dimension array. Their use of indirect reference is advantageous for
defining recursive and iterative inference procedures but results in signifi-
cant difficulties in terms of the number of auxiliary storage accesses that
they may imply.

Most of our work locally has been accomplished in a LISP 1.5 environment
in which the semantic networks are conveniently represented as property list
structures. A property list can be viewed as a node associatv. set of
pairs. The first member of a pair is the name of an arc or relation and the
second is the name of the node that it connects. For the above graph or set

of triples a property list structure appears as follows:

\

(ENROLL1 SUP ENROLL AGT STUDENT1 TH CS381%1)
(STUDENTL SUP STUDENT AGT* ENROLL1 NBR 5)
(CS381*%1 SUP CS381 TH* ENROLL1)

(ENROLL SUP JOIN INSTANS ENROLL1)

The LISP environment is additionally helpful in providing a transformation from

linear machine organization of memory to a logically organized memory in which
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the names of atoms and lists point to their addresses. This list organization
represents a difficult problem when auxiliary storage is required as in a

large data management system.

-



Page ©

ITI. Tuples and Tables

In ordinary conventions of mathematical notation a statement such as our
example, "Five students enrolled in CS381", might be represented as the fol~-

lowing data 2-tuple:
(Cs381 5).

The author of such a tuple would remember that he is talking about a course and

its enrollment of students. His understanding of the tuple can be represented

by a corresponding form 2-tuple, (COURSE STUDENTS). These two forms may be

combined into a semantic network representation: (COURSE 381 STUDENTS 5) thus

making explicit the form that is requifed to understand the original 2-tuple.
If he wishes to organize or present data for several courses, he may

construct a table such as the following:

TABLENAME COURSE*TAB
HEADINGS COURSE STUDENTS

CS381 5

DATA cS382 7

Alternatively, he can present the same.information in semantic network

. form.

(COURSE*TAB INSTANS (COURSE#*TABl, COURSE*TAB2))
(COURSE*TABl SUP COURSE*TAB COURSE CS381 STUDENTS 5)

(COURSE#TAB2 SUP COURSE*TAB COURSE CS382 STUDENTIS 7)
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The tablename, COURSE*TAB, is a partitioning -of the semantic network that
organizes assertions about courses and students into a subnetwork thatAis
easily accessible by the name, COURSE*TAB. Additional specifications of the
kind of data in the partition can be associated with the tablename to
facilitate retrieval or to insure accuracy of its entries as in the following
example:
(COURSE*TAB ARCS(COURSEvSTUDENTS) ACCESS UNRESTRICTED
ENTRIES 2
COURSE NAME .
STUDENTS (NBR LS 500))
So the node, COURSE*TAB specifies that its headings are COURSE and STUDENT,
its access is unrestricted, it has 2 entries, COURSE is a NAME and STUDENT a
NUMBER less than 500. The INSTANS arc as scen earlier indexes the entries.
Various ordering arcs can be provided to subset large tables into alphabetic
or numerical cafegories.
Interpreters for two forms of query can be prqvided. The first is the

standard form called a Case Relation query:
(QUERY (Y COURSE CS381 STUDENTS X))

where the argument of ASK is a partial specification of a case relation and

X is a variable that matches the value associated with the matching case
relation. The value returned by ASK is (COURSE*TAB1l COURSE CS381 STUDENTS 5).
The partial specification succeeds by finding the instances of CS381 aﬁd
discovering if any have the arc, STUDENTS. If we knew that courses were par-

titioned in COURSE*TAB, we might have asked:
(QUERY (COURSE*TAB COURSE CS381 STUDENTS X))

and retrieved the same answer by examining the instances of COURSE*TAB. The
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value returned in this case would be (COURSE*TABl1 COURSE CS381 STUDENTS 5).
The second general type of query is a quantified form, similar to formal

data management languages;
(FOR QFY CLASS PARTITION OPERATION)

FOR establishes an iteration where QFY specifies the number of instances de-
sired, e.g. 1,17, some, all; CLASS specifies an arc name OT a function on its
values, PARTITION specifies a partition or table if any and OPERATION is a
set of procedures to be accomplished on the set that has been specified. We
might wish to ask COURSE*TAB for all courses with more than 5 students;
(FOR SOME STUDENTS COURSE*TAB (IF STUDENTS GR 5
(PRINT COURSE STUDENTS)) )
The OPERATION argument accepts a program of procedures in a data language
convenient for the user.
The interpreter must also accept Assertions and Deletioms. A set of
predicates may be asserted to the network with the following command:
(ASSERT ((COURSE#TAB COURSE 375 STUDENTS 7)
(COURSE*TAB COURSE 343 STUDENTS 23)) )
The result of the ASSERT is to create INST and SUP arcs from COURSE*TAB to
COURSE*TAB3 and COURSE*TAB4, and to create the arcs COURSE, COURSE*, STUDENTS
and STUDENTS* between the data items. Convenient brief forms such as
ASSERTAB can also be provided, e.g. (ASSERTAB TABLE COURSE*TAB

FORM (COURSE STUDENTS)
DATA ((CS375 37)(343 23)) )

DELETE can accept the same forms as ASSERT and delete them from the network.
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In some applications where many small tables characterize the data,
it may prove desirable ( in order to save memory) to avoid indexing the values
of data in the tables. In this event the semantic network form of the table
is exactly the same as the argument form of ASSERTAB. For example the unin-
dexed form for COURSE*TAB appears as follows:

(COURSE*TAB FORM (COURSE STUDENTS)

DATA ((CS380 5)(CS381 7)) )

Since this is a well-formed semantic network, it may be directly Asserted.

A variation of the quantified FOR statement, FOR¥, can be provided to query

unindexed tables.
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IV. Text

In its printed forﬁ a text is an ordered set of word symbols. For -
retrieval purposes it is best represented as an index of Word-types and a list
of occurrances of Tokens. Consider the sentences, "Big fish eat little fish.
Little fish eat littler fish." The representation as types and tokens is

shown below.

TYPES INDEX ) TOKENS
1 Big (1) (123424235 2)
2 Fish (2,5,7,10) .
3 Eat (3,8)
4 Little _ (4,6)
5 Littler (9

The tokens are references to entries in the type list wﬁich for each word-
type shows a list of its occurrences as sequence numbers referring to the
string of.tokens.

For retrieval from such a structure, any list of words may be taken as
a request and the Token substrings containing hits can be returned as answers
ordered by the number of hits in each substring. This is the general approach
to keyword retrieval as used in many kinds of system.

This approach is adapted easily to representation in semantic networks
almost literally as shown below:

(BIG NBR 1 TEXT1 (1)) (TEXT1 SEQ (1 2 342 4 2.352))

(FISH NBR 2 TEXT1 (2 5 7 10)) :

(EAT NBR 3 TEXT1 (3 8))

(LITTLE NBR 4 TEXTL (4 6))
(LITTLER NBR 5 TEXT1 (9))
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If we query with the procedure KEY* to retrieve what it said about "little-

fish";
(KEY* (LITTLE FISH))

under the requirement of returning sentences as answers, both sentences would
be returned. In the process the tokens weuld be translated back to words. The
procedure for retrieval operates wholly on the index to deﬁermine an ordering
of the sentences in the text, then reconstructs those sentences from the token
list.

Many heuristics have been developed as variations on this simple retriéval
scheme to improve the ordering of answers. If the text is large its token list
can be subcategorized by volume, chapter, parégraph and sentence so that the
index numbers each become tupies and the search through the texﬁ string is
shortened to any extent desirable. TFor example, if we partition the text by

sentences marking each sentence in TEXT1 with parenthesis,

BIG TEXT1_(1.1)

. FISH TEXTL (1.2, 1.5 2.2 2.5)
EAT TEXTL (1.3, 2.3)

. LITTLE TEXTL (1.4, 2.1)

. LITTLER TEXTL_(2.4)

Wi o~ Wy

TEXTL SEQ ((1 2 3 4 2)(4 2 3 5 2))

we then use 2-tuples 1X, 1Y as indexing numbers. If we wished to further
partition the text to chapters and paragraphs we'woqld use a 4~tuple as ar

index number:

chapter*paragraph*sentence-sequence-



The network representation for text is designed to minimize storage
requirements by representing each text as a vector of tokens where each word-
type occurring in the text references the vector locations of its occurrences.

As with tuples and tables, the procedures ASSERTEXT and DELETEXT can be

defined.



V. Discussion

A core~limited prototype of the proposed system exists innLISP 1.5 on
both the CDC and DEC10 systems. As it stands it can translate English state-.
ments and questions into semantic network forms. A translator is provided to
enable a user to use Kowalski's form of predicate logic motation. Our
experimentation with this system has been primarily oriented toward insuring
that the semantic network representation is logically complete and that its
proof procedures for answering questions are adeﬁuate. Tables can be directly
asserted to this system as it is and their contents éan be queried.

Procedures for interpreting the quantified FOR statement are not yet
developed. Additional procedures are needed to provide for storing and
querying unprocessed text.

If a large INTERLISP system were available, with its pagiﬁg control as
a disc memory manager, the prototype could deal successfully wi;h'several
million words of data. In the local environmment it is limited to about
300K words for system and data and is expected to be useful primarily for

developing data structures and language interpreters.
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APPENDIX 2

TOWARD A DESIGN METHODOLOGY FOR DBMS:

A SOFTWARE ENGINEERING APPROACH

by

Raymond T. Yeh and Jerry W. Baker

A design methodology for DBMS is presented. The methodology consists of
three interacting models: a model for the system structure, a hierarchical
performance evaluation model, and a model for design structure documentation,
which are developed concurrently through a top-down design process. Thus,
using this methodology, the design is evaluated and its consistency checked
during each phase of the design process. It is shown that systems designed
using this methodology are reasonably independent of their environments,
reliable, and can be easily modified.- A‘modest example is used to illustrate

the methodology.
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Thus, using this methodology, the design is evaluated

It is shown that

systems designed using this methodology are reasonably independent of their environments,

reliable, and can be easily modified.
ology.

INTRODUCTION

The eunvironment of a DBMS can be partitioned
into three categories of things: machines, data,
and applications (or users). Furthermore, they
are dynamic and constantly changing., Thus, it
seemg reasonable to require that the design of a
DBMS be such that the resulting system i3 as
independent of its environment as possible so
that it can evolive along with its environment.

Although 2 significant amount of research
has been dedicated to specific aspects of data
base systems (data models, query languages,
performance modeling, ete.), relatively little
has been accomplished in the way of integrating
these ideas ianto a design methodology which can
be used to systematically construct data base
systems for large classes of applications. Part
of the reason for the lack of a design methodology
for DBMS is,; we believe, due to the complexity of
its environment. For example, the environment of
an operating system only consists of machines
{processes) and data (resources). Since the de-
sign problems for a2 DBMS are diverse, we believe
that appropriate knowledge from other disciplines,
especially in softwaré engineering, can contribute
toward a unified design methodology for DBMS.

In this paper we shall describe a design
methodology for DBMS. Our basic phdlosophy is
that the design process can be grossly described
by three models: a model for the system being
designed, a wodel for system design evaluation,
and 2 model for design structure documentation.

The system structure is modeled by a set of

o+l abstract wmachines, Ha’ Mn~l"""0 connected by

a set of o Implementation programs, In’ I
Il' |
"view" of the system at a particular level of

=1t
Each machine in the hierarchy represents a

® This research is supported by AFSOR under contract
AFOSR-77-3409 and by ARPA under contract
 R00039-77-C-0254 and by an IBM Pre-Doctoral
Fellowship to the second author,

A modest example is used %o illustrate the method-

abstraction and, moreover, constitutes a refine-
ment of the previcus (higher) level in the sense
that its data abstractions are used to "implement"
those of the previous machine.

In order to minimize the system redesign ef-
fort, we believe that design must be evaluated
during the design process. To do 30, we propose
a2 hierarchical performance evaluation model which
is to be developed top-down alongside the develop=~
ment of system structure. Its main function is to
provide feedback to the designer as to which alter-
natives at the current level can satisfy the per-
formance constraints. However, even with perform=-
ance evaluation provided, backtracking is inevi-
table. It would be very desirable to know during
backtracking why some of the previous alter-
natives were not chosen. Thus, a language for
documenting the design structure is desirable and
will be discussed in a later section.

In summary, we will introduce a design method-
ology for DBMS which allows constant revaluation cof
the system as the design unfolds.

DESIGN OF HIERARCHICALLY STRUCTURED DBMS

In this section we present a methodology in
which we borrow heavily from software engineering.
This methodology provides for the systematic de-
sign, specification, and implementation of a re-
liable DBMS such that integrity and security con-
straints can be automatically included and that
correctness proofs can be established for the
resulting system. Using this methodology, a DBMS
can be described and structured in a hierarchical
fashion. The design is top-down and the resulting
system will consist of multiple levels ~ each
level being described by a self contained specifi-
cation.

.Abstraction, Stepwise Refinement, and DBMS Design

One of the most powerful tools in software
development is abstraction. The use of abstrac-
tion allows a designer to initially express his
solution to a problem in a very general term and

**This pape% was invited for the VLDB held in Tokyo, Japan, 1977. v
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with very little repard for the details of imple-
mentation.  This initial solutlion may be refined

in & step by step wanner by gradually introducing
more and more details of implementation. The
process continues until the solution is finally
expressed within the framework of some appropriate
“target"” language. This combination of abstraction
and stepwise refinement enables the designer to
overcome the problem of complexity inherent in the
construction of systems by allowing him to concen~
trate on the relevant aspects of his design, at any
given time, without worrying about other detalls.
An important result of this approach is the devel-
opment of a hierarchically structured system
{function abstraction) such that each level con-
sists of a number of mwodules (data abstractions).
Thus, the system is both horizontally and vertically
modular.

The notion of abstraction is also impor-
tant from the standpoint of protection. Through
data abstraction a designer may limit the access to
a data object through a specified set of well~
defined operations. Likewise, by hiding the

implementation of a data abstraction from its users

the designer protects them from any changes which
might occur in that implementation.

We envision the design of a DBMS as a step-
wige refinement procegs of functional abstraction
which begins with the construction of a "top~
level” abstract machine, M_, satisfying the
functional requirements of some high level require-
ments specification. This machine consists of a
set data abstractions represented by formal module
specifications. Each module specification is self-~
contained in the sense that {t specifies the com~
plete set of operations which define the nature of
the data abstraction. Collectively, these data
abstractions define the data model which is visible
to the user of the machine.

In the next step of the process, another

abstract machine, Hh—l’ representing a "refinement"
of Hh is designed. 1Its data abstractions are chosen

in such a way that they can "implement" those of
Hn. Basically, this fmplementation consists of a

set of abstract progsrams each of which defines an
operation of Ha in terms of accesses to functions

of machine Mn~ A verification process can then

1
be used to ensure that the implementation is con-
sistent with the specification of both machines

{the implementation and verification processes are
described in more detail in a later section).

This stepwise process of machine specification,
implementation, and verification proceeds until, at
some point, the data abstractions of the lowest
level machine can be ecasily implemented on a speci-
fied "target” machine, which may be the data ab-
stractions of some programming language, a low-level
file management system, or the operations of some
sppropriate hardware configuration. This design
process results in a DBMS structure counsisting of
a hicrarchy of abstract machines, or levels,
Hn'"n~1""’“0 tonnected by a set of n programs

Yﬁgghui,n.ogikw Each machine Mi

represents a complete “'view” of the DBMS at a par-
ticular level of abstraction while the corresponding

in the hierarchy

program Ii(ljjgp) represents the {mplementation of

that view upon the next level machine Hi-l'

Module Specification

The method of module specification used in
this hierarchical approach is based upon the work
of Parnas [1972] and Robinson and Levitt [1977]
with slight modifications (see Baker & Yeh,[1977]).

" The specification of each module defines two types

of access functions, SV and ST. SV functions
return values and the set of all SV functions of a
machine 1s said to characterize the machine's
abstract “state". ST functions, on the other hand,
produce a state change in a machine. The state
change which a function produces in a machine is
defined in an EFFECTS section of the module
specification. Each "effect' is an assertion
defining the change in the value of an SV function
of the machine when the ST function iIs success-
fully invoked. The only observable change in the
state of the machine produced by the execution of
the ST function is that defined in the EFFECTS
section.

The specification of each module also includes
a set of exception conditions each of which
defines a condition about which the invoker of an
operation must be notified. An exception condi~
tion definition consists of a name with a formal
parameter list and a predicate using the SV
functions of the module and the formal parameters.
The specification of each function in the module
coutains a list of exception conditions with the
parameters of the function call appropriately
substituted for the formal parameters of the
exception condition list. If any predicate de-
fining an exception condition in the list is true
when the function is invoked, then a specified
action is taken by the system. If the exception
condition is "fatal" and the function is of type
ST, then the effects specified in the function
definition will not be observed and the user is
appropriately notified. If the function is of
type SV, then the value(s) returned is (are)
undefined. For a "non-fatal" exception condition
a simple warning message is issued.

Implementation and Verification

The implementation between two adjacent
machines Mi and Mi-l is the process by which the

i are defined in terms of

the data abstractions of M .
1,2 11

Fi = {fi’fi""’f§) is the set of module functions
for Mi
defined by

k)

1 2
11 {ﬂirpi,Piv--"Pi

data abstractions of M
More formally, if

then the implementation of Hi by Mi~1 is

where ”1 is a mapping from the states of Mi—l to
b

the states of M, and p3 is an abstract program

i 1

which fmplements the function f{

The wmapping function 61 has the effect of "bindiag"

on machine H1~1'

each state of M1 to a state or set of states of

-Hi—l' That is, if S1 and 81_1 are the state sets

)4»/1.4’.



of Mi and ﬁi-i’ respectively, then the mapping
§1 15 defined such that for every state s, ¢ 5,
ve have 8, = 61 (si-l) for some state 8, , of 8.1

The mapping function is actually constructed by

expressing each SV function of H1 as an expression
containing the SV functions of M, .. Each such

expression is referred to as a partlal mapping
function and the set of all.partial mapplng func~
gions for Hi comprises the mapping ﬁi. )
The purpose of abstract program py is to
express the function fi of Mi in terms of the
functions of Mi—l' Thus, the program is constructed

using well-defined control constructs and the func-
tion set Fi-l' This implementation process must

be consistent with the formal specifications of
Hi and Mi—i' That is, the following commutative

diagram must be satisfied!

. fj '
81 i 81 1
8 i T sy
i-1 Py . 1-1
Fig. 1

- 9
where sy and sy are states of Mi and Si1 and

§ are states of Hi—l'

i-1 .
The verification of the implementation Ii

a8

requires a formal proof thét the commutatiée dia-
gram of Fig. 1 is satisfied for every abstract

program pi. This verification process is basically
a standard inductive assertfon proof (Hoare,[1970])
on pi and we, therefore, only give a brief descrip-

tion of it. However, the reader 1is referred to
Robinson and Levitt [1977] which contains a de-
tailed discussion of the hierarchical proof tech~
niques used in the methodology. .

In general, the precondition for each abstract
program pi is true because the program contains its
own mechanisms for exception handling. The output
assertions for pi are derived from the assertions
4n the EFFECTS scction of the specification for

function fi and from the mapping function ﬁi. Each

output assertion is obtained by taking an EFFECTS
assertion ard replacing each reference to an SV ¢
function by the instantiation of the appropriate
partial mapping function of ﬂi.

Inductive assertions for pi can be taken
directly from the EFFECTS sectlons of the ST
operations used to construct the program. Verifi-
cation conditions can then be derived and used to
establish the validity of these assertions. The
verification of the output assertions then follows.,

Design and Specification - An Exémple

The concepts discussed in the previous section
can perhaps be best understood by looking at a
DBMS designed using this hierarchical approach.
A partial outline of such a system is shown in
Tables 1 and 2. Table 1 contains a brief descrip~-
tion of the nature of each system module, while
Table 2 outlines the basic properties of the
different level machines.

Table 1. A description of the system modules.
Only a partial 1list is given for each level.

Level 5

UNIV ~ Defines operations for recording
and accessing information about
university departments and
professors.

Level 4

REL - Defines the concept of a relation
through relational algebraic
operations.

INT - Specifies operations for creating
and enforcing "integrity assertions”
which specify allowable data values
for relations.

. AUTH - Defines operations for creating and
enfercing "authorizations" which
specify allowable interactions for
users..

Level 3

RT ~ Defines operations for creating,
updating, and accessing logical
"record tables"..

RDIR - Represents a directory of existing
record tables.

FNT - Defines tables containing information
about: field values for each existing
record table.

TDS - Specifies operations for creating and
accessing sets of record identifiers.
Used to implement the councept of a
cursor (Astrahan [19761).

IMAGE - Represents logical reorderings of
records {(Astrahan (1976]).

IMCAT - Defines a catalog of existing images.

SEL -~ Specifies operations for creating,
maintaining, and accessing partial
indexes to record tables,



Teble 1 {Cont'd.)

Represents a catalog of existing par—

Level 2 (Qont'd.)

SLCAT = .RBDX -~ Specifies operations for creating and
~tial indexes, using directories to RBLK structures.
LWK - Defines operations for creating, main- RIDX ~ Represents fixed-length blocks of
taining and using logical associations record pointers. Used to implement
between records of different record the TDS, SEL, and LNK modules of
tables. Level 3,
LCAT -~ R sents 8 cat f associati .
epre alog of asso ons Level 1
Level 2 VP - Defines the c¢oncept of a virtual page
BIR ~ Defines the concept of a B-tree. Bpace.
Used to implement the IMAGE module 0
of Level 3. Level 0
. RBLK -~ Represents fixed-length blocks of Machine hardware
? records. Used to implement the FT
and LNK modules of Level 3. . .
Table 2. A brief description of six levels in a hierarchically
structured DBMS, The actual system contains eight levels.
However, for purposes of presentation, several levels were
combined.
: _ Concepts Hidden
Level ¥isible Concepts Operations By Level

5 entities (university operations corresponding logical structure of
departments, professors, to real-world transitions data
etc.}, and their ("hire", "terminate", etc)
attributes aud queries ("get_salary”,

"get age', etc.)

4 relations, tuples, cursors, algebraic relational access paths, record
authorization and integrity| = operations, creatiom table structure, record
assertions and enforcement of identifiers

authorization and
integrity assertions,
cursor creation and
sequencing operations

3 record tables, records, creation, access, aund record block structure,
images, partial indexes, maintenance of record implementation of access
record table associations, tables, access paths, paths
record i1dentifier sets and record identifier

sets

2 fixcd-length record and record block access, bit representation of
pointer blocks, B-trees, B-tree operations information, distribution
iinks between record of record block and B-tree
blocks nodes on virtual memory

pages

1 virtual page space bit and byte extraction distribution of pages

and encoding in memory devices

0 @rimary and sccondavry paging operations

memory devices




The top-level machine, NS. vepreseats an appli-

cation view of the system. The UNIV module pro- .
vides operations for recording and accessing infcor-

mation about university departments and professors.
Specifically, the information represented includes

the following:

1. the name, social sccurity number, age
salary, rank, and department of afl
professors employed by the university,and

2. the chairman, number of professors, and
average salary for each university depart-
ment .

The ST operations of the module are semanti-
cally meaningful - each corresponding to a real
world transiticn. They include "hire", "terminate",

“promote’, '"raise_salary", and ' 'change chairman"
Ihe SV functions of the module include "get salary
“get_chairman”, and "get_rank". At this level of
interaction a user is well-protected from organi-
zational changes in the database system because no
physical (access paths, storage structures, etc.)
or logical {relations, etc.) structures are visible.
Rather, the user is aware only of very abstract
- relationships and transitions which may occur in
his applicarion.

The operations of the UNIV module are imple~
mented on the next level machine, M,, which repre-
sents a velational algebrz view of the database
system. The REL module, for example, defines the
concept of a relation in terms of relational alge-
braic operations while the RDIR module represents a
relation directory which contains information about
all existing relations. The two other modules
shown, INT and AUTH, relate to the concepts of
integrity and authorization and are described in
more detail in a later section. We note that at
this level of interaction the concept of an access
path is completely hidden from the user. That is,
the operations at this level provide no mechanisms

for defining, deleting, or using any type of access

path.
At the level of machine M3 the DBMS represents

‘a gomewhat different view. A user of this level
can create and manipulate logical record tables

(RT module) and a directory (RDIR module) to record
information about existing record tables. Also,
several modules - IMAGE, LINK, and SELECTOR - make
it possible to create fast access paths to records
‘of existing record tables. The implementation of
Hé by ﬁ3, of course, consists of programs which

impiement the module functions of M4 in terms of

the module functions of M Thus, for example,
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the relational algebraic operations of the REL
module are implemented in terms of record table
operations and calls to the appropriate functions
of the fast access path modules.

As the DBMS 1s viewed at lower levels'the data
sbstractions become more "physically” oriented un-
1% the jevel of the machine hardvare is reached.
Missing Is the sharp transition from logical to
physical representation found in many systems.
Rather, there is a gradual progression from a very
abstract view to machine hardware oecurring in a
sequence of discrete steps.

Levels of Abstraction and DBMS Design

We observe that the notion of levels of
abstraction translates to a natural interpretation
within the context of database systems. That is,
it can be expected that any Integrated data base
will have a wide varfety of users whose views of
the system and access requirements will be quite
different. Through the hierarchical design ap-
proach different levels of design may be con-
structed to accommodate this variety of views and
access requirements (Fig. 2).

The design of the system shown in Tables 1 and
2 illustrates how different users may be accom-
modated through hierarchical design. At the
highest level of abstraction, for example, is the
casual user who 1s concerned primarily with acces-
sing the information relevant to his application
with as little trouble as possible. He 1is uncon-
cerned about efficiency and organizational
properties of the data and, therefore, is provided
with a set of high-level, semantically meaningful
operations which hide such details,
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Fig. 2. A hierarchy of formally specified
machines showing modularity. Levels may
be constructed to accommodate the different
views required by various users.

) The privileged programmer, while sti1ll being
concerned with the information relevant to his
application, is also concerned with the efficiency
of his interactions with the system. Thercfore,
he may be willing to sacrifice a certain amount of
data independence for increased efficiency. A
privileged programmer may therefore require access
to levels 3 or 4. '

The application programmer's job is to create
interfaces for new applications when they arise.
This may require a modification to the top-level
machine or possibly the specification of new
machines to be implemented on existing levels.

The application programmer would most likely
}equire interaction with levels 3, 4 and 5.



The access path programmer has the task of
creating fast access paths for the system. Like
the spplication programmer he is not interested in
the information content of the system, but rather
in defining access paths which enhance the effi-
ciency of other users. The access path programmer
would thus fnteract at level 3,

Finally, the storage structure development
programmer interacts with the system at level 2.
His task is to ensure that logical access paths
are implemented as efficiently as possible.

Our mention of the different levels of users
is neither intended to be exhaustive or even the
best possible. We merely wish to emphasize that
the hierarchical desipgn approach can be used to
construct levels which correspond directly to the
views of the system desired by different types of
users and that this is a useful way of partitioning
the different interfaces required. We do not mean
to imply, however, that every level in a hierarch-
ically structured system will correspond to a type
of user. Different levels may in fact be intro-
duced during the design process merely as an aid
to the designer himself.

Design of Authorization and Integrity Mechanisms

Protecting a data base from semantic errors
and from use by unauthorized persons is, of course,
an important function of any DBMS. The develop-
ment of. integrity and authorization subsystews,
then, is an integral part of the DBMS design
process. Through the use of exception conditions
the hierarchical design approach provides a reliable
mechanism for handling such problems. Exception
corditions provide a means by which the designer.
can specify that 2 function cannot be successfully
invoked when certain integrity or authorization
conditions are not satisfied.

) Consider, for example, the "hire' function of
the UNIV module of level 5. This function requires,

among other things, the specification of values for

the parameters rank and salary. The function has

a fatal exception condition

BAD SALARY (salary,rank)
which is defined as

BAD SALARY(s,r):
case v of
Yassistant professor”: g>18000;
Yassociate professor™: §>24000;
“professor": s>40000;
end.

Therefore, if the "hire" function were invoked with
salary=19500 and rank="assistant professor’ then
the effects of the function (as stated inm the
module specifications) would not be observed. That
is, the function would have no effect on the state

of machine MS' :

The approach is similar at lower levels of the
design. The design of the INT module, for ‘example,
provides for operations which enable the creation
of "integrity assertions” which define the semantic
vorrectness of existing relations. Moreover, the
module contalns certain SV functions which can be
used to determine if a particular update operation
would viclate defined inteprity assertfons. This
module combined with the appropriate exception

false otherwise,

conditions in the RFL module can be used to ensure
that any update function which would violate de~
fined integrity assertions cannot be executed.

For example, the function

insert_tuple(r,R)

of the REL module has the effect of inserting
tuple r into relatfon R. One fatal exception
condition for this function is

BAD_TVAL(x,R)
which is defined as

BAD_TVAL(t,T): 31(l<i<ncomp(t))
{check val(domain(i,T),T,t(1))=
false]

where ncomp(t) returns the number of components
of tuple t, t(1) is the ith component of tuple t,

- and domain(i,T) returns the name of the ith domain

of T. Also, check val(d,S,v) is a boolean
function of INT which returns true {f v is an
acceptable value for domain d of relation S and
This specification indicates
that the operation insert_tuple(r,R) cannot be
executed if the tuple r contains data values
which are non-allowed by any defined integrity
assertions. Moreover, the verification process
ensures that the abstract program implementing
the insert_ tuple function satisfies this specifi-
cation. .

Protecting data objects from unauthorized use
can be handled in a similar manner. For example,
the AUTH module enables the creation of "authori-
zations'" which define the allowed accessed to
level 4 data objects. Also, an SV function can
be used to check i1f a user has a certain access
to a data object. Each module function of level 4
contains an exception condition which prevents
unauthorized access from occurring. For example,
the insert_tuple(r,R) function has the exception
coundition

NO_AUTH(uid,R, 'INSERT')

which is defined as

where uid is the identification number of the user
invoking the function and check auth(id,S$,op) is

a boolcan function of AUTH which returns true if -
user "1d" has "op" access to relation S. Again,
the verification process can be used to ensure
that the implementation of insert tuple satisfies
this specification.

An Assessment of the Methodology

The methodology presented in this section is
but a small step in the development of a design
theory for DBMS. This approach has several
advantages over ad hoc methods currently used.

We summarize a few of the most important ones here.

1. Reliability of Design

The multi-level design process enables the
designer to concentrate on the relevant

. aspects of ecach level without worrying
about implementation details. Also,
because the implementation occurs in small

steps the probability of design errors {is
reduced, ‘

[
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3.

5.

Hachine, Applicotion, and Data

The horizontal and vertical modularity
provided by this approach to DBMS design
enhances machine, application, and data
independence of a system. Machine inde-
pendence is enhanced because the infor-
mation hiding properties of each level
1imit the effeocts of modifications to
hardware architecture. Vertical modu~
larity provides a degree of application
independence because the additicn and
deletion of applications can be accom-
modated through changes in columns
{modules and their vertical refine-
ments) but not the whole system.

It should also be clear that each
level of a hierarchically structured
system provides a measure of data
independence. That is, each level tends
to hide from its users t.uae organizational
properties of lower levels. Providing a
hierarchical structure can thus be useful
in protecting the system itself from the
effects of internal modifications.

Pormal Consistency Proofs

The hierarchical nature of the iwmplemen-
tation reduces the verification of the
eantire system into a sequence of the
hierarchical proofs designed to insure
the consistency of the specification and
implementation of adjacent levels. Be-
cause the verification proceeds in
sequence with the design process,
implementation errors can be detected

at the same level in which they are
introduced.

Localized Effects of Modification

A database system is a dynamic entity which
tequires constant modification and mainte-
nance. Even after the system is installed
and operating, frequent modifications may
be required to correct pregramming errors
or to increase system efficiency. Like-
wise, design changes may be necessary to
adapt the system to changing user require-
ments or to a new operating environment.
If the system is poorly designed then the
impact of such modifications may be so
great that maintenance is a significant
part of the overall development cost.

At each level of a hierarchically
structured, modular system, an abstract
concept is realized by a formally speci-
fied module. Because the module structures
hide 81l aspects of the implementation,
modifying a machine design or implemen-—
tation requires only locallized changes

in the system.

Understandability

The hierarchical desipn process allows the
designer to understand the operation of
the system at cach level of abstraction
before proceeding with the implementation.

.

6. Formal Specificatfon of Exception ¢
Londitions

The hierarchical nature of the system
structure enables the specification of
exception conditions at the most
appropriate level of abstraction, As

a result, integrity and security checks
can be easily specified.

There are, of course, many difficult problems
remaining to be tackled in order for the method-
ology to be effective. We will point out a few
here. ‘

1. The mcthodology needs to be extended to
incorporate the concept of multiple users
and concurrent access.

2. There needs to be additional design
tools for testing formal specification
so that a designer is reassured that a
lengthy formal statement is "consistent"
with his intuition.

3. Development of hierarchical performance
models for design evaluation. The per-
formance modeling subsystem not only
should be able to predict the gross
system performance characteristic at
each level, but should also be able to
provide guidelines for structuring data
bases which can best fit the system. An
informal approach will be presented in a
later section. )

4, There is a great need for methods and
automatic aids to document the design
structure. This is important for
generation and evaluation of altermative
designs. We will present an approach in
the next section.

_DESIGN STRUCTURE NOCUMENTATION

The tole of specifications in the development
of large software systems is certainly an importaut
one. Specifications are used not only as a means
of communication between members of the design
team, but also serve to enhance the understanda-
bility of the syszem. This is important both for
users of the system and for future design teams
which must perform modifications.

The previous sections have described certain
"1ocal” specifications which are required in the
hierarchical design approach ~ module specification,
abstract programs, and mapping functions. Each
such specification describes in detail the nature
of a very small part of the total system. Yet
these specifications are inadequate for purposes
of understanding the system as a whole or for
explaining why a particular design was developed.

There exists the need, then, to document the
system desipn and the design process at a much
higher level of abstraction. Such documentation
would suppress details ~ concentrating rather on
the global properties of the system design and the
design structure.

The following sections briefly describe a
System Desfgn Lanpuage (SDL) which can be used to
document the design process and record information

’%/,LA 4



about the decision-making processes that occur
during it. The features of the SDL described
in the following sections include methods for:

single component has been constructed which
encompasses, directly or indirectly, every module
of the initial set. This final component specifi-
cation is then the starting point for the develop~
ment of possible alternatives for level 1-1.

The process of component construction and
alternative design formation for level 3 of
Table } can be illustrated by the following example.

1. specifying the design alternatives at
each level,

2. specifying the hierarchical relationships

betuween system modules, and

3. specifying the structure of each system
level. :

Specification of Alternative Designs

One aspect of the hierarchical design approach
which has yet to be emphasized is that of developing
alternative designs at each level. In general a
module at level i may be implemented in many dif-
ferent ways and, therefore, at level i-1 the
designer may specify various alternative modules
to accomplish this task. There exists the need,
then, to document exactly how the various alter=~
pative modules for implementing the data abstrace
tions of level { may be combined to form designs
for level i-1. The designer may then choose the
wmost appropriate alternative design as part of the
system (based perhaps upon expected performance).

Ysing the SDL the designer may accomplish this
task of specifying the various alternatives through
& process of comstructing level components. The
syntax of component specification is defined
formally in the following BNF grammar:

<gompname> ::= C<integer>
<modliist> ::= <modname> ‘ <modname? ,<modlist>
<complist> 3:= <compname>
’ <compname>,<complist>
<compdef> 3:= <modlist> | <complist> ]
<compdef>,<modlist> I
<compdef>,<complist>
<etype> t:= REQ | ALT | OPT
<cspec> ::= <compname>: (<ctype>,{<compdef>})

The simplest type of level component is a single
module. However, more complex components can be
constructed by combining modules or previously
defined components.

Associated with each component constructed
is a component type specification (<ctype>) which
indicates how "members’ of the component way be
gombined or used in any alternative design. The
meanings of the three component types are as
follows:

i. REGQ ~ each member of the compoﬁent must
be included in any design.

2. ALT - exactly one member of the component
must be included in any design.

3. OPT - exactly one subset of the members
of the component must be present in any
design (this includes the null set).

Formation of alternative designs begins when
the designer has developed all alternative modules
for jmplementing ecach data abstraction of level 1.
The designer then begins to construct a hierarchy
of components - each component in the hierarchy
being a composition of lower level components.
This process of composition contlinues until a

C1: (REQ,{IMAGE,IMCAT})

€2: (REQ,{LKK,LCAT})

€3: (REQ,{SEL,SLCAT})

C4: (REQ,{INDEX,INDCAT})

Cc5: (ALT,{C1,C4))

c6: (opr,(C2,C3,C5))

€7: (REQ,{RDIR,FNT,RT,TDS,C6})

This specification indicates, among other
things, that

1. components RDIR, FNT, RT, TDS, and C6
must be in every altermative design for
level 3,

2. any subset of {C2,C3,C5} may be present
in a design for level 3 (because C6 is
of type "OP"), .

3. 4f C5 is chosen to be in an altermative
design then exactly one of Cl or C4 is
to be in the design, and

4. 4f Cl is chosen to be in the design then
: both IMAGE and IMCAT must be in the
desiga.

Each component of type "OP" or type “ALT"
represents a decision for the designer regarding
the structure of the alternative design. Different
alternative designs may thus be formed by following

. gifferent decision pathways.

Specification of Hierarchical Relationships

The next important aspect of the SDL is that
of specifying capability relationships between
modules of adjacent levels. These capability
relationships define the hierarchy which exists
between the different modules of the system.
Three types of relationships are of interest.

The has access relationship indicates the
ways in which a module m can obtain access to
instances of a module m'. We distinguish between
three different types of allowable access:

1. Creation access (C) -~ m obtains access
to instances of m' by virtue of its
ability to invoke operations to create
such instances.

2. Indirect access (I) - m obtains access
to instances of m' indirectly by using
another module m''.

.3. Clobal access (G) ~ m is "aware" of every
instance of m' or is provided with infor-
mation from a higher level module which

. enables it to access instances of m'
*without the need to use other modules,

The uscs relationship indicates the means by
which a modute m may usc instances of a module o'
to which it has access. We also distinguish

between three different types of usage:

)
1.

1
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i. Read (R) - m can invoke the SV operations
of m', .

24 write {4y - m can invoke the ST operations
of &' to modify instances in some way.

3. Create {C) - m can use ST operations to
create instances of m',

The provides relationship indicates what types
of module instances a module m may obtain by
sccessing another module o',

Formally, a capability set for levels i and
4-1 1is defined as a triple {A,U,P} where A, U, and
P are scts of triples defined as follows:

A: {a]a eM, X {C,G,I} X M }
}

1-1
vt {uloer, X {RM,CH XM,

?: {plp €M, X M, X LAY

Fig. 3 4llustrates the capability relation-
ships which exist between some modules of levels 3,
4 and 5 of the system design of Table 1.

Fig. 3a. The has access relationship between
several modules of Table 1. The
types of access are Global (G),
fndirect (I), and Creation (C) .

IMACE

. Fig. 3b. The uses relationship between several
modules of Table 1. The types of
usape ave Read (R), Write (W), and
Create (C).,

- Fig. 3c. The provides relatiocnship between
tome modules of Table 1. °

A specification of capability relatlonships
can be useful in enforcing restrictions on com-
munication between modules. It can also aid the
designer in assessing the impact of modifications
to system design.

Specification of Level Structure

The final aspect of the SDL which we wish to
mention is that of specifying machine structure.
It may be useful to allow a limited hierarchy
within a particular level and hence the SDL
enables the designer to specify the global proper-
ties of such a hierarchy.. The level structure
specification of the SDL indicates, for any level
design, the modules which form the level interface
(those visible to users of the level), those
modules which are hidden (from users of the level),
and those modules which must use the interface of
the next level (i.e., those modules which are not
completely implemented within the level). The
level structure specification also defines the
hierarchical relationships which exist between

‘modules of the level.

Assessment

The development of SDL presented here is
motivated by the need of providing a tool to
designers to specify global or macro properties
of various system designs. It should be emphasized
however, that SDL is meant to be an integtal part
of the design process, and not merely a specifi-
cation tool to be used "after the fact”. While
much of our motivation for developing the SDL is
the same as that behind the Module Interconnection
Language (MIL) of DeRemer and Kron [1976], there
are some fundamental differences:

1. The MIL is concerned with documenting
system designs but not the whole design
~structure (or process). Thus, it does
not support the notions of alternative
designs, backtracking, etc.

2 ’,; i
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2.. In MIL, 8 module i8 a smwall program. In
$pL, we consider a module to be the
functional specificatlion of a resource
type or ahstract data type.

3., Our module interconnections are based
strictly upon the "uses" concept of
Parnas [1974] while this 18 not the case
in MIL.

tluch, of course, needs to be done in order
for SDL to be 8 truly useful tool. Extension to
include various concepts, such as concurrency,
locking, boacktracking, etc., is necessary. Auto-
matic aids will be needed for this tool to be
practical.

HIERARCHICAL PERFORMANCE EVALUATION

The success or fallure of any DBMS, of course,
depends greatly upon the level of performance which
the system achieves during actual operation. Based

~upon the results of current resear :h efforts,
however, it would seem that our approaches to
performance evaluation are somewhat less than
satisfactory. This section contains a very general
description of a performance evaluation technique
which can be used with the hierarchical design
approach and which seems to have several advantages
over current performance evaluation procedures.
This technique involves the construction of a
hierarchical performance evaluation model. The
purpose of this model is two-fold:

i. to provide the designer with feedback
at each step of the design process as
to the performance characteristics of
his design, and

2. to provide a basis for choosing between
alternative designs at each level.

In this approach the designer develops the
DBMS design and evaluation model in parallel - the
evaluation model being constructed so that it
represents the relevant performance aspects of
the current DBMS desiga. The evaluation model
provides constant feedback to the designer at all
levels of design as to the performance character-
istics of the system. Through constant interaction
between designer, the DBMS design, and the evalu-
aticn model, it is hoped that a reasonably efficient
system can be developed with a minimum of back-
tracking and redesign.

Fvaluation Hodel Structure

The structure of a hierarchical evaluation
model reflects that of the DBMS design itself.
Corresponding to the ith level is a set of
performance paramcters, Pi’ which represents the

relevant performance aspects of the machine at that

level. Data structure pavameters represent infor-
mation about the abstract data objects of the
jevel {e.g., number of relations, average number
of vecords per block, ete.). While function para-
meters characterize the operations of “i in terms

of expected execution speed and expected fréquency
or probability of access. Parameters may also be
classified as design parameters or scenario

parameters. Design parameters are varfables whose
valucs may be changed by the designer to determine
the effects of varlous database desipns and imple-
mentations upon the performance of the system. ‘
Scenario parameters, however, represent an expected
usapge of the system in terms of the operations and
data objects of level i. Their values are deter-
mincd by the values of parameters of P1+1 according

to a performance parameter mapping set Ti+l' Each

mapping in this sect defines a performance parameter

of P1 as a function of the parameters of Pi+1' A

set of values for the scenario parameters of level
1 is called a scenario for level {i.
The values of scenario parameters of Pn are

determined by an application scenario supplied as
part of the high level requirements specifications.
The application scenario is a statement of the
expected use of the DBMS in terms of the operations
and structures of machine Mn' The requirements

specification also contains a performance assertion
which specifies the level of performance expected
from the system for the given scenario. This
performance assertion, by its structure, will in-
dicate the measure to be used in analyzing system
performance. Various performance measures might
include:

1. 'mean response time for a given 1oad,

2. expected total execution time for a
specified mix of operations,

3. total storage requirements, or
4., a suitably weighted mixture of the above.

The specification of this performance assertion
gnables the designer to construct a cost function,
Qﬁ,'for Mn‘using the parameters of Pn' This cost

fﬁnction may be used by the designer to éstimate
the performance characteristics of M .
Construction of the Evalqatiou Model

The construction of the evaluation mndel pro-
ceeds top-down with the design of the DBMS. After
the design of a machine at level n-1 and the cor-
responding evaluation wodel parameter set Pn—l’

it is necessary to construct the mapping set Tﬂ.
Those mappings of Tn which correspond to parametets

defining abstract data structure characteristics
can be easily constructed from the mapping function
of the implementation In. However, Tn must also

. contain mappings which define the probability (or

frequency) of access of the opcrations of Mn*l

as a function of the probability (or frequency) of

.access of operations of Mn.

These mappings can be coustructed using a
technique for the formal verification of perfor-
mance properties of programs which is based on
the method of inductive assertions (Wegbreit [1976].
In this approach an input assertion defines the
probability distribution of the input data to o
program. From this input assertion various
inductive assertions describing the distribution

.
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of data at various points in the program are
devlved. Verification conditions are then con-
srvucted which enable the proof of the inductive
assertions. It is then pousible to derive
branching probabilities of various program state-
ments and the expected mean and maximum number of
loop iterations for all loops in the program. This,
in turn, yields the expected mean and maximum
aumber of executions of each ‘operation in the pro-
gram text glven that the Input data is correctly
deseribed by the input assertion,

Applying this techniqué to the abstract
programs of In enables the derivation of the

necessary parameter mappings of Tn. The input

assertions for these programs can be derived from
the application scenario of the requirements speci-
fication. It is then possible to compute the
expected mean or maximum number of calls to each
operation of Mn_l for each call to a given operation

of Hn. A set of equations can then be derived,

each of which expresses the expected probability (or ,

frequency) of access of each operation of Mn-l

és a function of the expected probability (or fre-
quency) of access to the operations of Hn

The application scenario, which is defined in
terms of level n structures and operations, can
thus be "mapped down” to level n-1 via the mapping
set Tn to provide a scenario for the system in

terms of level n-1 structures and operations. The
designer may then construct a cost function, cn—l’

for this level to obtain & more accurate estimate
of system performance. By varying the design para-
meters of Pn~1 the designer may derive a system

configuration which yields a reasonable cost func-
tion value and thus determine if the design is
capable of satisfying the performance assertiom.

Alternative designs at level n-1 may be
treated the same way. That 1s, cost functions wmay
be constructed and evaluated for each alternative.
This information may then be used by the designer
as a basis for deciding which design path(s) to
follow,

The process of evaluation is repeated at each
level of the design with the uncertainty of the
evaluation model results diminishing at lower levels.
The designer may use the information from the
evaluation model at any level as a basis for back-
tracking to a previous level and following a new
design path. Likewise, the information may allow
the designer to choose one {or more) design paths
to foliow from a set of alternatives. The end
resuit of this design/evaluation process 1s a tree-
i1ike structure of machine designs and a correspond-
ingly structured hierarchical evaluation model
(Fig. 4).

Assessment

The proposed wethod of performance evaluation
seems to have several advantages over current
approaches:

1. ‘Understandability

Performance related lasuecs are distributed

Fig. 4. A hierarchical DBMS design and the
' correspondingly structured performance
evaluation model. Unlabeled nodes re-

present unused alternative designs.

over many levels. Hence the designer may
-deal with these issues as they occur in
the natural hierarchy of design. The
hierarchical structure of the model
should thus facilitate its use and under-
standing.

2. Flexibility

The designer can model each level design
in as much detail as desired. Moreover,.
the approach does not limit the designer
to models of specific’architectures -
models for any alternative design may be
developed.

3. Immediate Feedback

" At each level the designzr receives feerd-
back frcm the evaluation model. This,
hopefully, can limit the amount of
redesign and backtracking which is
necessary.

4. Data Base Design

The evaluation model used for DBHUS design
may be used to facilitate the data base
design. The process would be top~down.
At each level the cost function would be
vsed to determine a performance-cffective
data base structure for that level.

CONCLUDING REMARKS

The methodology presented in the previous
sections is, of course, a first attempt toward a
comprehensive approach to design problems. We
have assessed the three models in the methodology
at the end of appropriate sections. However, one
point that should be stressed is that the method-
olopy provides for the development of a family of
desipns rather than a single design., Such a

documentation will certainly be of immensc help

.

/:,/ / -

{



to nan evolving system.

The methodology still lacks engineering
flavor. 7To make it complete, additional tools
will be necessary. In this aspect, we would 1like
to mention that the notion of a "mock-up" model
should be part of this design methodology. We
think that in this context we should develop
computer processable specification so that
performance evaluation not only can be done by
mathematical modeling as we have discussed here,
but also by actual or symbolic execution of the
specification (of the mock-up model). Such a tool
woul allow a designer to tinker with his design
(c.g., to make sure that formal specification is
consistent with the more informal requirements)
vntil he is satisfied. Furthermore, this would

“provide users with earlier warnings if any
inadequacies were discovered in the requirements.
At the University of Texas at Austin, we are in
the process of developing such tools.
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APPENDIX 3
Dan Chester

The specifications in this appendix are for a relational data base system
that stores explicit relation on sequential files such as tapes. The time to
retrieve the n-tuples in an implicit relation is expected to gfow at a rate
that is much less than NZ, where N is the number of n~tuples that can be formed
from the individuals named in the data base.

The first specifiéation is a function module modelling the whole data
base system. It exhibits the basic behavior of the system without making
commitments to performance aspects. Each function is defined by an expression
in the following format:

function: <function name> <argument pattern> = <value pattern>

effects:

<stat§ment>
<statément>

The effect statements are optional. When present the function is computed
by making the statements true and returning the value indicated by the <value

pattern>.



P & 1%
tuncrion: @ataisal) = X
function: aefine(R{X(1),eee,X(iN)),X) = N2l
etiecti:

gerinition(K(AC(L1),swesd(N}),¥) = LIUue,

gerinedir) = true,
junction: defined(Xx) = X
function: definition(Xx,¥Y) = 4
function: insertikK(X(1),eee,X(N))) = nil
eftect:

datalelall),eeerX(N))) = true,

tor all 1 sucn tnat 1 <= 1 <= n: universe(Xx(i)) = true,
tunctions Lisg(Rk) = (X(l)ooo-IX(M))
ettect:

for all L,J such that 1 <= 1,Jd <= M3
1L not 1 = J tnen not X(l) = x(J),

tor ald 1 such that 1 <= | <= M3
for soae Y(lJ)seswrs¥{NI2
X(L1) = R(Y(1),eess¥(i)) ana tempdatal(x(l)) = true.

$0r aibl 1(l)seens({N) sUCh Lhat tempaata(k(Y(1),...,¥{(N)J)) = true:
for some 1 X(I) = B(Y(1),aeersY(N)).

fOor all KyA(Ll)reess,X(N) such that ‘deilned’(R) = nil
tempaclalK{X(1),ene s AlN))) = ‘aata® (R(X(1)yeaesni il

e

FOT all KeAQl)rewsseX(1),5,Y(1),,e.,¥0J) sucn that
't.‘ie;‘ﬁ_li"z.itiuh'(R(}’i(l):-.-;X(l));Siiil);.o.,Y(J))) = Lrue.
FOT dhl 281)rewer2lids tempaatal{iR{Z{ll,eeerdill))) = true iti
s0l some Ull),eesrUld) such that
tor ail K,Ls 1i Yiw) = y(L) tnen ULK) = U(L), ana
if Y(K) = X(w) tnen ULK) = Z(LJ);3
tEil)L)Ofita(S(U(l)lcQQIULJ))) = true, .

tor all H,A{l),.w.;X[l)r JY(1),eassXJ) sucn tnat
fgetinition?® (R(th)....,&(l)) NOL S(Y(1)seserf¥ld))) = LTUECS
ior a&itl L(l)to-OIA(l)'
tempdata(R{Z(1),eea,Z(1))) = Ltrue itt
for ail K such that 1 <= K <= L: ‘universe’(zZ(K)) = true;
tor all U(1),eeer,Uld) sucnh tnat
tor all k,Ls 1f Y(K) = ¥Y(L) then U(K) = U(L) 4na
1f Y(K) = X(L) then ULK) = Z(LJ);



Lelipddalaiw v alronwpiswil) = aiiie

£07 adli KpX{1)reeesX01) 8, Y010 eeertCu),T,2({1),se0sss(K) sUCH
e L1n1tlon " R{XUL) s eeerXC)2),5(¥(1),eeea,r,¥tJd)) and
1(&(1),-..:2(}\))) = true: :
tor ail U{l)seee UL
tewpuatal(rR{U(1l),eea,UlI))) = true ift
07 $0ine VI{1)seeesV{d),W(1),eeesrWiK) such that
tor all m,Ng

1E Y(M) = Y{(h) then V(®M) = VIN) ana

it Z(M) = Z(N) then wiM) = wiN) and '

1f Y(M) = X(n) then VIM) = U(N) and

1f Z(M) = A(N) tnhnepn w(s) = U(N) and

1t Y(M) = Z{(N) then V(M) = U(i);:
tempdata(sS(vil),see,Vidl)) = true and
tempdata(l(w(l),.ae,wl(K))) = true,

tunctions remove(R{(X{1),.eersX(N))) = nil
efiect:

data(rix{l),..s,X(N))) = nil,

for alli 1 sucn that 1 <= 1 <= Wi
11 tor all 5,¥(1l),eee,¥{M) such Lhet
gatalS(Y(l),eae, X tii}d} = Crueld
tor all J such that I <= J <= i not x(I) = Yidli;
then universe(x(1lJ)) = nil.

functions teinpaatal(Xx)

H 1]
34

function: undeftine(R) = nil
etiects

W)= nil.

tnat

0. i A1) eer s X(N), ¥ cefinitlon(k{X(1),eae,a(N)),Y) = nil,

tunction: universe(Xx) = ¥



module: DBS

procedure: imsert (R(X(1),...,X(N)))
definition:
include (R, (X{1),...X(N)))
for I = 1 to N step 1 do
increment ("universe', X(I))

procedure: remove (R(X(1),...,X(N)))
definition:
exclude (R, (X(1),...,X(N)))

procedure: define (R(X(1),...X(N)),Y)
definition:
include ("definitions:, (R, (X(1),...X(N)),Y))
include ("defined",R)

procedure: undefine (R)

definition:
let X = find ("definition",1,R)
exclude ("definition",X)
exclude (‘'defined",R)

procedure: 1list (R)
definition:
let X = relations (R)
while X # nil do
begin
makefile (head (X))
let X = tail (X)
end
print (R)

procedure: relations (R)
definition:
if find ("defined",0,R) then
begin
let Z = find ("definition',1,R)
let (R,X,Y)=Z
if let SMW(),...W(N)) = Y then
return append (relatioms (S),(R))
else
if let not SW(1),...,WN)) = Y then
return appenc (relatioms (S),(R))
else
if let S(W(L),...,W)) and T(V(1),...,V(M)) = ¥
then :
return append (relations(S), append (relations (R), (Y))
end
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procedure: makefile (R)
definitdion: :
if find ("defined",0R) then
begin
let Z = find ("definition",1l,R)
let (R,X,Y) = 2
if let S(W(@),...,W)) = Y then
begin
erase (R) :
project (R,X,S, (W(1),...W(M)))
end
else if let not (S(W({1),...,W(M)) = Y then
begin '
erase (R)
complement (R,X,S, (W(1l),...,W(M)))
end
else if let SW(1),..., W) and T(V{1l),...,V(N)) = Y
then ’
begin
erase (R)
join (R,X,8, (W(L),eee,WN)),T,(V(1),...,V(N)))
end

procedure: find (X,I,Y)

definition:
rewind (X)
repeat
let Z = next (X)
until

Z = nil or
(I = 0 AND Z = Y).or
return Z

procedure: increment (X,Y)
definition:
let Z = find (X,1,Y)
if Z = nil then begin include (X, (Y,1))
else
begin .
let (Y,M) = Z
let N=M+1
replace (X, (Y,N))
end

procedure: decrement (X,Y)
definition:
let Z = find (X,1,Y)
if Z # nil then
begin :
let (Y,M) = 2
let N=M -1
if N = 0 then begin exclude (X, (Y,M))
else replace (X, (Y,N))
end



procedure: include (X,Y)
definition:

rewind (X)

repeat

let 2 = next (X)

until

Z = nil or

Z =Y

if Z = nil then extend (X,Y)

procedure: exclude (X,Y)
definition:
let Z = "time"
erase (Z)
rewind (Z)
rewind (X)
repeat
include (Z,next (X))
until pointer (X) = nil
erase (X)
rename (X,Z)

procedure: project (R,X,S,W)
definition:

rewind (S)

repeat

let Z = next (S)

if Z # nil then

include (R,bind (Z,W,X))

until Z = nil

sort (R,X,X)

procedure: complement (R,X,S,W)
definition:
let V = "time"
erase (V)
project (V,X,S,W)
rewind (V)
startgen (X)
repeat
let Z = next (V)
repeat
let U = nextgen (X)
if U# nil and (Z =nilor U =2 )
then include (R,U)
until U = nil or U = Z
until Z = nil
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procedure: join (R,X,S,W,T,V)
definition:
let Z = common (W,V)
sort (X,W,Z)
sort (T,V,Z)
rewind (S)
rewind (T)
erase (R)
let S1 = next (S)
let T1 = next (T)
repeat
if less (bind (S1,W,2),bind (TL,V, Z))
then let S1 = next (S)
else if blnd (S1,W,Z) = bind (Tl v,Z)
then
begin
erase(S2)
let S3 =
erase (T2)
let T3 = Tl
repeat
include (52,83)
let $3 = next (S)
until S3 = nil or (bind (S1,W,Z) bind (83 W,2)) -

repeat

include (T2,T3)
let T3 = next (T)
antil T3 = nil or bind (T1,V,2) bind (T3,V, Z)
let S1 = S3

let Tl = T3

rewind (82)

repeat

let S3 = next (S2)
rewind (T3)

repeat

let T3 = next (T2)
include (R, bind (append (S3,T3), append (W, vy,X))
until T3 = nil
until 83 = nil
end
until S1 = nil or Tl = nil
sort (R,X,X) ’

[
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procedure: soOrt (R,X,Y)
definition:
let S
let T
let N
repeat
rewind (r)
erase (8)
repeat
let J =1
erase T
repeat
include (T,next (R))
J=J+1 -
until J > N or pointer (R) = nil’
if J >N then begin '

"temp"
"tempZ"
1

tou o

rewind (T)
let I =1
repeat

let W = next (T)

let V = next (R)

repeat

if W = V then let W = next (T)
else if bind (W,X,Y) < bind (V,X,Y)
then begin

include (S,W,)

W = next (T).

end

else begin

include (8,V,)

V = next (R)

end

I=1+1

until V = nil or W = nil
if W # then

repeat

include (S,W)

W = next (T)

I=1+1

until W = nil

if I < 2N and V # @il then
repeat

include (S,V)

V = next (R)

I=1+1

until I > 2N or V = nil
‘until V = nil

rename (R,S)

let N = 2N

end

until JX'N

It

i
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module: files
function: file (X) =Y

function: pointer (X) =Y
function: rewint (X) = nil
effect: pointer (X) = 'file'(X).

function: next (X) =y

effect:
for some 2(1),...,Z(N) such that
'pointer' (X) = (Y,Z2(1)yese2(N)): ‘
pointer (X) = (Z(1),.0e5Z(N)).

function: erase (R) = nil
effect:
file (R) = nil.
pointer (R) = nil.

function: replace (X,Y,) = nil
effect:
for some Z{(1),...,Z(M),I such that
"file'(X) = (Z(1),...,Z(M)) and
'pointer' (X) = (z¢1),...2M)):
file (X) = (Z(l),...,Z(I—L),Y,Z(I+l),...Z(M)) and
pointer X)=(Y,Z(I+1),...2(M)) .

function: extend (X,Y,)= nil

effect:
if 'pointer'(X) = nil then
for some Z(1l),...,Z(M) such that
"file'(Y) = (Z(l),...,Z(M)):
file (X) = (Z(1),...,2(0,Y).

function: rename (X,Y) = nil

effect:
file(X) = "file'(Y). '
file (¥) = nil. Nodvl: R cordy

function: current (X) =Y

function: append ((X(l),...,X(M)),Y(l),...,Y(N)))=
(KLY 5o e s X)X (L) 500 e s (1DN))

function: head ((X(1),...,X(N))) = X(1)

function: tail ((X(L),...,X(N)) = (X(2),...X(N))



kG U AL e )

function: ~bind ((X{L),:..,X{)),
(Y(),...Y(M),
(Z(1)y e e 2(N))) = (U(L),...,U(N))

effect: _ v

- for all I,J such that I < I, J < N:

if Y(I) = Z (T) then X(I) = U(J) and
if Y(I)

L

Y(J) then X(I) =X (J).

function: startgen ((X(1),...,X(N))) = nil
effect:

for some Y(1),...,Y(N) such that

for all I such that 1 < T <N:

Y(I) = Y(I + 1);:

for some Z(1),...,Z(M) such that

Toblist!' = (Z{1),...,Z2(M)):

for all I such that 1 < T < M:

Y (1) £ Z (D)

current (X(1),...,X®)) = @@),...,Y(N))

function: nextgen ((X(1),...,X(N))) = (Y(),...,Y(N))

effect:

for some Z(1),...,Z{N) such that
Teurrent' (X(1),...,XQD) = (2(1),...,2{N)):
current (X(1),...,(Y(1),...,Y(N)) and
for some I such that 1 < I-< N:

for all J such that 1 < J <I3

AQ) = Y(W);

for some W(l),...,W{(M) such that
oblist = (W(l),...,WM)):

for all J such that I <J < N:

for all 1 such 1 <1 <M:

Y (3)<W(K) 3

for some 1 such that 1 < 1< < M:
Y(J) = W(K);

for all J such that 1 < J < M:

Y(I) < W(I);
- 2(I) <Y (1).

function: common ((X(1),...,X(D),
(Y(l),...Y(N)))— (2(1),...52(1<))
effect:
for all I such that 1 < I <
if for some J such that 1 <
%(L) = Y(J); then
for some J such that 1 <'j <<1 :
X(I) = 2(J3);
for all I such that l < I <1<
for some J,H such that "1 < J <M and
1 <H<N: Z(I)=X(J) and Z(I)—Y(H),
for all J such that 1 < J < L% and I # J:
Z(I)#2(J).

M:
J <M



function: oblist = X

function: tooblist (X) = nil

effect:
for some Y(1),...,Y(N) such that
toblist' = (Y(1),ee.,Y(N)):
oblist = (X,Y(1),.--,Y(N)).

function: fromoblist (X) = nil

effect:
for some Y(1),...,Y(N),T such that.
'oblist' = (Y(l),...,Y(I),X,Y,(I+l),...,Y(N)):
oblist = (Y(1)yeee ¥ (N)).



APPENDIX 4

A METHOD FOR CONTROL OF THE
INTERACTION OF CONCURRENT PROCESSES
by

M. H. Conner

It is the objective of this research to explore a method for controlling
the interaction of concurrently executing processes. The nature of my approach
is to observe that processes exhibit an external behavior in the form of calls
to operations to shared data objects. My basic premise is that by placing
various external controls on this behavior one can usefully control the inter-
action of concurrent processes. I examine this premise by giving a model of
computation in which the external behavior of processes is well defined.

I then introduce the notion of behavior controllers to conmstrain the external

behavior of processes.



In the following, I present a model of computation which I call the

structured environment. I chose this name since it reflects my desire to

define a model which is both sufficiently and appropriately structured for
rigorous identification of the interaction between control and data. As
the name "structured environment' connotes, it is my intention to incorporate
several of the notions associated with "'structured" programming. Namely, the
model incorporates the notions of one entry/one exit control structures and
abstract data objects.

In order to motivate some of the concepts used in the structured environ-
ment model, I present the following informal analysis of a Turing machine.

Even the most casual analysis of a Turing machine must note its decom-
position into two primary parts. Namely, a Turing machine consists of a
finite state control (or control part) and a tape (or data part). As soon as
this decomposition is noted, it is reasonable to consider how these parts
interact. At first glance one might say that the parts interact via the
positioning and writing operations which the finite state control causes to
be performed on the tape. In fact, this is sufficient to describe the
mechanism by which the tape is modified. However, these operations do not
describe the mechanism by which the finite state control receives information
from the tape. Typically, this interaction is described by specifying that
the domain of the finite state control's state transition function inéludes the
value of the symbol currently under that tape head. Let me propose a slightly
different view. Suppose one associates two "local' data objects with the finite
state control: a current state data object and a current symbol data object.
Further, suppose that one adds to the operational repertoir of the Turing
machine an operation which transfers the value of the finite state control's

current symbol data object to the position on the tape which is currently under



the tape head. Also, add an operation that does the inverse. It is now
possible to restrict the domain of the state transition function entirely to
the values of the finite state control's two local data objects if one assumes
that each step of the computation proceeds as follows:

1) Transfer symbol under tape head to current symbol data object.

2) Compute new value for current state data object and for current

symbol data object based on the present values of these two object.
3) Write value of current symbol data object to the tape.
4) Perform desired operation to reposition to the tape head (e.g.,
Move left, No move, or Move right);

Clearly, these modifications to the traditional notion of a Turing machine
have no effect on its computational power. In fact, in most formal definitions
of a Turing machine it would not be necessary to make any change in the tuple
which describes a particular Turing machine. One would only have to change
the definition of the configuration of the Turing machine to incorporate the
value of the current symbol data object and then make the obvious change to
the relation between two configurations (i.e., redefine a computational step
as specified above). However, these changes do have one very important effect.
They demonstrate that one can view a Turing machine as composed of two separate
parts, a control part and a data part, and that interaction between these parts
can be defined to occur only through an identifiable set of operations. Thus,
these operations precisely define the interface between the control part and
the data part of the Turing machine.

This precisely known interface is very important for at least the
following two reasons:

1) Since the only means of information flow between the process and



data parts is some known set of operations, each part is effectively
insulated from the representation (or implementation) details of the
other. This property is of course quite unimportant in the normal
context of Turing machines, but is very important in the normal con-
text of programming. In fact, this property forms the basis of the
information hiding that is so important in the work on modules and
abstract data types.

2) It is frequently valuable to constrain the access a process may have
to data objects. If the only access a process has to some data object
is through some set of operations, then there are many constraints
that may be converted into simple restrictions on the set of sequence
of operations the process may perform on the data object. This is
certainly the underlying notion in the work concerning capabilities,
monitors, path expressions, etc.

I have presented this example to illustrate the relation between control
and data that underlies the structured environment model. Namely, I maintain
that there must be some small amount of data which is actually a part of the
control in some intuitive sense. I will refer to such data as local data.
However, it seems that there exists a natural decomposition between the control
and a large portion of the data. I will refer to such data as external data.
In fact, this example and our intuition suggest that one can reduce the local
data to an almost arbitrarily small amount. This then is an intuitive Justi-
fication for only constraining the interaction between control and external
data.

I am now prepared to introduce the structured environment model. My
presentation will be heirarchical and I will only present a very abstract view

to begin with.



The first three components that I wish to discuss are:

1) Processes

2) Operations

3) Data Objects.

Abstractly, a data object 1s an entity with an associated property usually
referred to as a value. But a value is just a property, it is derived by the
interpretation of a representation. Thus, a data object is really an incap-
sulation of a representation which if interpreted properly yields meaningful
information. It is the representation incapsulated in the data object that must
be manipulated to extract or change the information contained in the data object.
Since a data object is just the incapsulation of a representation of informationb
it is necessarily a static object. That is, a data object does not change in
any way unless its representation is manipulated by some other object. 1In
this model there are two classes of objects that may manipulate the representation
of a data object. These are the operations and processes mentioned above.
However, I will consider that data objects are divided into two classes: 1local
data objects and external data objects. Processes may directly manipulate local
data objects only, while operations may directly manipulate data objects of
both classes. The reason for this distinction will be brought out when pro-
cesses are discussed below.

At this point, I wish to be somewhat vague concerning operations. I will
simply say that operations are performed on data objects. The effect of per-
forming an operation on a data object is to manipulate directly the represen-
tation of the data object's associated wvalue, possible causing some change in
the information contained in the data object. For any given data object only

one operation may be performed on it at a time. That is, as far as data objects



are concerned, the performance of an operation is an indivisible operation.
An operation may only manipulate the representations of the data objects on
which it is performed. Since operations are the only class of objects allowed
to manipulate the representation of external data objects and since the only
way to extract or change the information in an external data object is to
manipulate its representation, it follows that the only way to extract or
change the information is an external data object is to perform an operation
on it. (The above discussion makes more sense if the reader considers that
the data objects on which an operation is performed may be a subset of the
data objects which one would normally refer to as the paraméters of the
operations. I will discuss this much more fully later.)

So far I have described data objects for storage of informatiom and
operations for the transformation of information stored in data objects.
All that remains in order to have a complete computational model is some way
to meaningfully sequence the performance of operations on data objects.
This is precisely the role of processes. That is, processes are the control
units of the model; they each cause a sequential sequence of actions to take
place in order to effect some computation. There are precisely two types of
actions a process may cause:

1) A process may directly manipulate the representation contained in

a local data object.
2) A process may sequentially perform operations on both local and
external data objects.

In particular, no process may directly affect another process., Thus, two
processes can only communicate through data objects. I will say that data
acted on by more than one process are shared by all those processes that act
on them. (By "act", I am referring to the two types of actions allowed to

processes as described above.) I will also make the restriction that no



local data object may be shared. This has a very important implication: two

processes may communicate only by sequentially performing operations on shared

external data objects. This is the result tﬁat I believe justifies the structured
environment model as presented so far.

In sumﬁary, I have started to present a model of computation that allows
multiple interacting processes but restricts their interaction to the perfor-
mance of operations on shared data objects. I have given an intuitive argument
for the feasibility of such a restriction by examining a Turing machine and
showing that one can take the view that the finite state control only interacts
with the tape by the performance of certain operations. In Figure 1, I present
a decomposition of a Turing machine along the lines of the structured environment
as presented so far.

1 wouid like to use this figure to review several important points:

. The process component, which I called FINITE_STATE_CONTROL in
the figure, is strictly sequential in its interaction with the
external data objects (in this case there is only one, TAPE).

I.E., It may perform exactly one operation at a time.

No restrictions are placed on the interaction between the FINITE
STATE_CONTROL and its local data objects, CURRENT SYMBOL and
CURRENT_STATE. Nor is anything said about how FINITE_ STATE
CONTROL is implemented, except that it is sequential in its
interaction with data objects.

. No restrictions are placed on the operations except to say on
which objects they are "performed", i.e, which objects they may
manipulate directly. In fact, I have not prohibited operations
from perforﬁiﬁg other operatioﬁs (this topic will be dealt with

later).



Process: FINITE STATE CONTROL

Data Objects:
Local: CURRENT SYMBOL, CURRENT STATE
External: TAPE

Operations:

WRITE (CURRENT SYMBOL,TAPE): Copies the symbol contained in CURRENT _
SYMBOL to position on the TAPE which is currently under the
tape head.

READ (CURRENT SYMBOL,TAPE): Copies the symbol currently under the tape
head on the TAPE into CURRENT_ SYMBOL.

MOVE LEFT (TAPE): Moves the TAPE's tape head left.

MOVE RIGHT (TAPE): Moves the TAPE's tape head right.

FIGURE 1. Structured environment model of a Turing

machine.

In Figure 2, I graphically depi-t the communication allowed in the structured
environment model. In order to illustrate some of the communication problems
that arise in such an environment, I would like to consider an example.
Suppose one had a system consisting of several processes énd a shared
output device which I shall model as a data object. Now suppose that one
wished to insure that the following two properties held in this system:
-1) Proper use: Before actually sending data to be output to the
device it must be readied for use. (Consider a printer where
certain forms controi and heading information might need to

precede the actual text to be printed.)
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2) Proper synchronization: Only one process should be using the
device at a time. I.E., after setting up the device for use,
the same process should retain control of the device until it
has completed its output task.
How can these properties be insured? First of all, one might note that these
are properties concerning the interaction betwéen the processes and the output
device (an external data object).
in the structured environment model there is only one way a process may
interact with an external data object. This requires that such actions as
setting up the output device, writing to it, etc., must be incapsulated in
operations to be performed on the device. But then it should be possible
to translate the above properties into properties concerning the sequence in
which operations are performed. First, I will propose a set of operations
that may be performed on the output device; The following three operations
seem to sufficient.
1) OPEN - Prepares the output device for the next output task
2) WRITE - Causes one unit of data to be outﬁut
3) CLOSE ~ Signals the completion of an output task.
The above properties can now be restated in terms of the operations as follows:
1) Proper use:  Each process will always perform operations on the
output device in the order: OPEN, any number of WRITEs, CLOSE.
This sequence may be repeated any number of times. No process
will perform any other operations on the output device.
2) Proper Synchronization: Once one process has performed an OPEN
no other process will perform any opération on the output device

until the first process performs a CLOSE.



Consider Figure 3, depicting the communication paths in the structured environ-
ment model for a two process version of this example.

Now consider how one might insure that the restated properties hold.

The proper use property could be insured by examining each process in
the system and verifying that each process would only perform the allowed set
of operations and then only in the allowed sequence. This method has two
outstanding drawbacks.

First of all it can be very difficult. 1In fact, it is clear that the
rigorous verification of this property coul& be as hard as the rigorous veri-
fication of any other property of a process. A very difficult task indeed!

Secondly, this method requires that the definition of all processes
(current and future) be available for examination. However, it is frequently
desirable in a multiprocess environment to be creating new processes some of
which may have been unavailable for examination. (Consider an operating
system running user processes.)

The only general solution to both these drawbacks seems to require some
sort of external constfaint on the operations a process may perform on shared
data objects.

‘In fact, the notion of capabilities can be viewed as a very limited form
of such a constraint. A capability for a data object defines the set of
operations a process may perform on a data object. This, of course, still
leaves the very difficult problem of insuring that processes perform the proper
sequence of operations. I suggest that one needs a general mechanism to con-
strain the sequence of operations performed by a process on a data object. I
therefore add to thé structured environment model a component which I call a

rights controller.




FIGURE 3. Structured environment model of a two
process version of the output device
exanmple.



A rights controller is simply a finite state acceptor over the sequences
of operations that may be performed by a particular process on a data object.
That is, each rights controller defines a set of sequences of operations that
may be performed on a particular data object.

In order to make the rights controllers effective, there must be some way
in the structured environment model to require the process to observe the con-
straints of the appropriate rights controllers. I achieve this through the
notion of an environment, where an environment is defined to be a sequence of
rights controllers with the constraint that there cannot be two rights con-
trollers in the same environment controlling the performance of operations on
the same data object. I then specify that there be associated with each
process a single unique environment and that a process may only perform an
operation on an external data object if it is allowed by the appropriate
rights controller in the process's environment.

Since a rights controller is a finite state acceptor of the sequences'of
operations that a process may perform on a data object, one obvious way of
describing a rights controller is a state graph with arcs labeled by operations.
Figure 4\describes an appropriate rights controller for the processes in the
output device example. Figure 4 also shows how this rights controller might
be described by a regular expression over operations. The specification of
the structured environment model says nothing about how rights controllers are
to be inplemented, but it does say that a process may only perform the operations
allowed by its rights controllers. Therefore, it would seem that a véry reason-
able way to achieve this effect would be through a runtime monitor (i.e., an
active finite state acceptor). Thus, I prefer the state graph description for

its dynamic connotation.
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Returning to the output device example, consider the situation of each
process that shares the output device having a copy of the rights controller
- described in Figure 4 as an element of its enviromment. Figure 5 depicts a
two process version of such a situation. (Note that any other elements in
the process's environment cannot directly affect its interaction with the
output device because of the requirement that only ohe rights controller con-
strains access to the same data object in any one environment.) In Figure 5,
I have interrupted the lines connecting the processes with the output device
to indicate that the only interéction each process may have with the output
device is the performance of the operations allowed by the rights controllers.
This will be the normal way I indicate a process's environment in subsequent
figures. Thus, Figure 5 indicates that each process can only interact with
the output device in precisely the manner required by the proper use property
given above. However, it should be clear that even though each process is
trying to make proper use of the output device, there is no guarantee that
the processes will synchronize their performance of opérations properly to
achieve the proper synchronization property given above. For example.
Process 1 might perform an OPEN followed by several WRITEs and then Process 2
might perform an OPEN which clearly violates -the proper synchronization
property. Clearly, the notions of environments and‘rights controllers are
not enough to directly handle the problem of process synchronization.

Consider, for a moment, the structured environment model as it stands so
far. T have constrained the interactions of processes to a single mechanism,
namely the performance of operations on shared data objects.

Suppose I refer to the performance of operations on external data objects
as the behavior of a process. Then one can think of a rights controller as

defining allowable behavior. It follows then that a process's environment
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defines the totality of a process's allowable behavior. However, there are
two possible ways to control behavior:

kl) At its source, the process

2) At its destination, the data object.

Thus, I suggest that the problem of synchronization be dealt with as the behavior
arrives at a data object. To this end, I add to the structured environment

model a class of components I call synchronizing controllers. A synchronizing
controller will synchronize the operations that may be performed on a data

object in order to achieve a particular sequence of operations. Thus, the
description of a synchronizing controller is very similar to that of a rights
controller. Namely, it consists of a specification of the sequence of operations
that it allows to be performed on its associated data object. Note, however,
that there is a considerable difference of interpretation. A rights controller
defines the allowable behavior for a process. I1f the process violates its
allowable behavior then it is outside of the structured environment model, i.e.,
it is in error and must be aborted or something. However, a synchronizing
controller will actively attempt to achieve its required sequence of operations
by delaying processes.

I have referred to the synchronizing and delaying of processes above with-
out describing how this is done. Let me do so now.

Recall that the primary defining characteristic of a process is that‘it
performs a sequential sequence of actions. Thus, once a process begins to
perform an operation the process is essentially inactiveb(it cannot interact
with any data object) until the operation is completed. With this in mind I
will decompose the performance of an operation into three phases:

1) scheduling

2) execution

3) completion.



These phases must occur in the order shown above. The scheduling phase con-
sists of the operation being scheduled by the synchronizing controller associ-
ated with each of the data objects on which it is to be performed. The execution
phase occurs after the scheduling phase has completed and consists of the
actual transformation on the data objects. The completion phase occurs after
the execution phase has completed. This phase marks the completion of the
operation. That is, the process that performed the operation becomes active
again at the completion of the completion phase and is only then able to cause
more actions.

This decomposition allows me to fully explain the action of a synchronizing
controller as follows.

The synchronizing controller has one active function: it schedules
operations to be performed on its associated data object. The synchronizing
controller is an event driven component, with the following two significant
events:

1) An operation to be performed on the synchronizing controller

associated data object entering its scheduling phase,

2) An operation that is being performed on the synchronizing

controllers associated data object entering its completion
phase.

In the first event the operation will be immediately scheduled if and only
if no other operation is currently scheduled or executing on the synchronizing
controllers associated data object and the performance of the operation would
not violate the sequence of operations the synchronizing controller is trying
to achieve. ,

In the second event the synchronizing controller will schedule one of the
operations pending on its associated data object that is currently allowed in

the synchronizing controllers prescribed sequence of operations, if there are



any such operations.

Note thét only one operation will be scheduled or executing at a time
under the above rules.

Now let me return to the output device example and show how a synchronizing
controller can be used to insure the specified synchronization property.

Figure 6a shows the two process version of this exémple which retains the
rights controllers (drawn in rectangles) developed earlier plus a synchronizing
controller (drawn in a triangle).

Consider how this system would work. Initially I assume there are no
operations pending (waiting to be scheduled), scheduled or executing on the
output device (as indicated in Figure 6a). Now suppose Process 1 attempts to
perform an OPEN operation. Since'there are no other operations scheduled or
executing on the output device and since OPEN is currently allowed by the
synchronizing controller, the OPEN operation would be immediately scheduled,
thus allowing it to execute and complete. This results in the situation shown
in Figure 6b. In this situation Process 1 can perform either a WRITE operation
or a CLOSE operation, either of which would be immediately scheduled and allowed
to execute and complete., However, Process 2 can only perforn an OPEN operation
which would not be scheduled since OPEN is not currently allowed in the
synchronizing controller's prescribed sequence of operations, Thus, if Process 2
performs an OPEN operation, it (the process) will be suspended until a CLOSE -
operation is performed by Process 1. Figure 6c shows the semetric situation
where Process 2 has gained control of the output device. In fact, Figures 6a,
6b and 6c show the only three situations that are possible in this simple example.
Thus, it is quite clear that no matter how many prdcesses shared the output
device, the proper synchronization property would hold as long as each process

had a rights controller equivalent to the ones described in these figures.



FIGURE 6a
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Thus, by the combination of rights controllers and synchronizing controllers,
I am able to insure both of the properties concerning the sharing of the output
device. Note that the synchronizing controller by itself would not have insured
the proper synchronization property. For example, if the process yere able to
perform the operafions in any sequence, then Processyl might have performed an
OPEN operation, after which any process in the system could perform WRITE or
CLOSE operations becéuse the synchronizing controller is not concerned with
which process is performing the operations.

I would now like to consider some extensions to the output example which
I believe will help to show how truely flexible these behavior controllers are.

Let us suppose that our output device is used for messages to the machine
operator as well as user output. Now, suppose some operator messages need to
be output immediately, i.e., before the end of some user output task. Figure 7
shows how the synchronizing controller for the output device might be modified
to allow processes that have the proper '"rights" to "preempt" the output device
from another process. In Figure 7, I also describe the two reasonable rights
conttrollers to go along with the amended synchronizing controller. Figure 8
shows how these rights controllers might be distributed in a three process
system. In a system with such controllers, no matter what state the synchro-
nizing controller is in due to a process with "regular rights', a process with
"priority rights' can perform a PREEMPT operation. This will put the synchro-
nizing controller in a state where only PWRITE and RELEASE operations may be
scheduled, thus effectively preempting the output device. However, among
processes having the "priority rights" preemption cannot occur.

Note that the change to the synchronizing controller and the addition of
the new rights controller would not require any changes to the processes that
continued to use the "regular' rights controller.

Let me continue to add complexity to this example by suggesting that
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after our hypothetical system has been in use for some time, one of the system
users might come in with the complaint that his output has operator messages
in it. Now suppose that this user's output involves the use of expensive
registered forms (e.g., payroll checks) and the system manager decides to
protect the user from preemption.

Figure 9 shows the set of controllers that could be used to effect this
change. Note that the "regular" and "priority" rights controllers are unchanged,
thus no changes would be required in the processes which continued to use them.
The chaﬁge is simply to add a nonpreemptable state to the synchronizing
controller along with operations to effect the transition into and out of this
state. Note that the "nonpreemptable' rights controller still requires the OPEN
operation first. Thus, the processes with this rights controller must still
wait their turn for initial access to the output device. That is, it was not
necessary to give these processes any special rights except the ability to
prevent preemption during critical parts of their output.

I think that this solution compares very favorably to a more traditional
solution involving conventions over semaphores or such. I find especially
impressive the way one is able to modify the constraints concerning the sharing
of a data object without affecting those processes which do not wish to take
advantage of the new features.

In summary, I have presented a model which I called the structured environ-
ment. In this model processes may only interact via the performance of operations
of shared data objects. I refer to this interaction as the behavior of the
processes and have shown that two types of behavioral constraints, rights
controllers and synchronizing controllers, can be used to usefully control the
interaction of the processes in a system. Some of the benefits that I feé;

arise from this approach to concurrent process control are listed below:
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Simpler context for verification: Certainly the restrictions on
process interaction along with the external behavior controllers
makes the verification of certain properties much simpler than it
would be in a model that required one to examine the definition of
each process.

Localized scheduling of process: All scheduling in this model occurs
in the event driven synchronizing controllers, This seems to be a
much simpler concept to implement than say a system involving con-
ditional critical regions or predicate locks.

Greater reliability through external constraints: Since the constraint
placed on a process by its rights controllers is independent of the
definition of the process, it should be straightforward to implement
a run—time check to enforce the rights controllers. Thus, this
insures that even in a system with incorrect processes, errors would

not propagate.



