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ABSTRACT

This report demonstrates the feasibility of sharing a Nova 3/D
minicomputer at the level of the basic machine interface
(hardware/firmware environment). Sharing 1is made possible by the
creation of a privileged software nucleus called a virtual machine
monitor. Virtualization of the Nova is shown at three levels: theory,
design, and implementation.

Chapter 1 defines the concept of a virtual machine monitor,
demonstrates the theoretical feasibility of virtualization, discusses
the history and utility of virtualization, and specifies the Nova 3/D
virtual wmachine. Chapter 2 discusses initial design considerations,
describes the top level decomposition of the monitor, discusses the
notion of virtual processor states and their transitions, and describes
some monitor components referenced in later decomposition. Chapter 3
describes the decomposition of a single top level component, the trap
process, which handles all real machine traps. Chapter 4 describes the
decomposition of all other top level components.

Chapter 5 concerns implementation. It describes the systems
programming language used, describes needed systems variables and
tables, and explains the function of all required programs.

Three appendices are provideds The first describes how to run a
systems program on the Nova using the facilities provided by RDOS (real
time disk operating system). The second demonstrates how to run the UT
virtual machine monitor. -~ The third presents the monitor command
language syntaxe.

This report is a revision of a Master’s Thesis of the same title.
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CHAPTER ONE

Prospects for a Virtualized Nova

1.1 Introduction.

This chapter explores the possibility of virtualizing a Nova 3/D
(with Memory Management and Protection Unit). First, the notion of a
virtual machine monitor is defined and a demonstration of the
theoretical feasibility of virtualizing a Nova is presented. Next, a
discussion of the history and utility of virtualization is given.
Finally, a specification for the Nova 3/D virtual machine is stated.

1.2 Definition And Function Of A Virtual Machine Monitor.

A virtual machine monitor (WM) is a privileged software nucleus
which creates copies of the basic machine interface on which it runs
[4]. These copies are called virtual machines. A basic machine
interface is defined by Buzen and Gagliardi [4] as "the set of all
software visible objects and instructions that are directly supported by
the hardware and firmware of a particular system." Figure 1 depicts
this virtual machine architecture.

In order to distinguish WMs from system software with similar
functionality, several authors [2] [15] have cited three defining
requirements. These are:

1. The Equivalence Requirement. Virtual Machines must be
logically equivalent to real machines. Software designed for
execution on the real machine must also execute on the virtual
machine and produce equivalent results with the exception of
timing considerations.

2. The Efficiency Requirement. The performance of a virtual
machine should be degraded only by the need for resource
sharinge. Efficiency is a primary goal of VMMs; all
instructions which may be safely interpreted in hardware
(firmware) must be.

3, The Resource Control Requirement. The VMM must control
allocation of all system resources (processors, memory,
devices) and enforce isolation between virtual machines. A
virtual machine may not interfere with another virtual machine
or the WM in any way, except as stated by the Efficiency
Requirement.

A virtual machine monitor may also be defined as a collection of
processes which create virtual processors and virtual devices. This
definition serves to make two points. First, a WM need not be a single
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sequential computation; rather, it 1is a collection of independent
computations which could execute concurrently. Second, the mnotion of
virtual machine may be decomposed into the notions of virtual processor
and virtual device.

In order to determine the precise function of a wvirtual machine
monitor, it is helpful to consider the relation between real and virtual
processors (devices). A real processor (of the type this report
concerns) 1is composed of two kinds of resources: actions and store.
The store serves to hold machine state and consists of main memory and
special registers. Actions cause state to state transitions and include
facilities such as instruction interpretation, interrupts, and traps.
The relation between real and virtual processors is indicated with
respect to these two resources.

The store of a virtual processor is logically equivalent to the
store of a real processor in that it defines an equivalent state space.
However, there are physical differences. Special registers of the
virtual processor are not necessarily supported by real special
registers; rather, they may be maintained as virtual special registers
in the main memory of a real processor. Likewise, the main memory of a
virtual processor may be maintained as a virtual memory on a backing
store such as a disk or in real main memory. In order for the actions
of the real processor to cause state to state transitions on the virtual
store, it is necessary to copy portions of the virtual store into their
logical equivalents in the real store. When this occurs, those portions
of the virtual store that have been copied in are said to be realized or

mapped.

Actions of a virtual processor consist of those actions of the real
processor which cause state transitions on the realized virtual store as
well as actions, supported by the VMM, which cause transitions in the
virtual store.

Real devices are also composed of actions and store. A device
store 1is a set of registers visible to software running on the real
processor which controls the device and holds device state. In this
context, memory associated with a device is not considered part of the
store. Device actions cause state transitions on the device store
corresponding to the operation of a real device. A virtual device store
may be directly supported by the real store or may be maintained in main
memory of the real processor. In both cases, access to the virtual
device store by software running on a virtual processor constitutes a
virtual processor action supported by the VMM, Virtual device actions
are also supported by the WM and correspond to the operation of a
virtual device, which is mapped to a real device or simulated.

From the previous discussion, it is apparent that a virtual machine
monitor must function in two fundamental ways. First, it must allocate
the resources of the real machine. This means creating and maintaining
a virtual store for each virtual processor, creating virtual devices,
mapping virtual devices to real devices, and assigning the real
processor(s) to virtual processor. Second, the VMM must support actions
of the virtual processors and devices which cause transitions directly
in the virtual store. This  includes interpretation of some
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instructions, simulation of traps and interrupts, and simulation of the
actions of virtual devices.

1.3 Feasibility Of Nova 3/D Virtualization.

Intuitively, a real machine is virtualizable if all instructions
which may potentially disrupt the system can be arrested before
execution and if the state of the real processor before the arrest can
be recovered. In this way, a virtual processor which is assigned the
real processor may be prevented from interfering with other virtual
processors or the VMM, To demonstrate feasibility, it 1is first
necessary to indicate which instructions are disruptive. A formal model
of Popek and Goldberg [15] is presented which identifies potentially
disruptive instructions and defines a formal requirement for
virtualization which the dinstruction set must meet. Next, the
architecture of the Nova 3/D is reviewed in the context of the formal
model., The Nova 3/D instruction set is then inspected; it is shown
that the Nova 3/D nearly satisfies the formal requirement and that
problems may be overcome with only a small loss of equivalence.
Finally, it is shown that the Nova 3/D provides for the recovery of real
processor state after a potentially disruptive instruction is arrested.

1.3.1 Formal Model. -

The model of Popek and Goldberg concerns machines having address
translation hardware and more than one mode of operation. Address
translation is a prerequisite for virtualization since a virtual
processor requires a logical address space equivalent to that of a real
processor. Logical addresses are those generated by a running program.
Modes provide a mechanism for partitioning the instruction set. The
requirement for virtualization suggested by the model concerns the
manner in which the instruction set is partitioned.

According to Popek and Goldberg [15], machine state is specified by
the following four componentse.

1. Executable Memory (E). The portion of the store used to hold
data or addresses (logical addresses or displacements) needed

to access data. This portion includes main  memory,
accumulators, index registers, carry bits, link bits, and stack
pointers.

2. Program Counter (P). The register which holds the logical
address of the next instruction.

3. Relocation Registers (R). The registers which implement the
mapping of logical to physical addresses. The activation of
this mapping may may depend on processor mode.
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4., Mode Register (M). The register which indicates the current
processor mode. In one mode (named supervisor, master,
executive, kernel), all machine instructions may be executed.
In the other mode(s) (named user, slave, program,
unprivileged), only a subset of the machine instructions are
available.

In the Popek and Goldberg model, special registers associated with
devices and the CPU were excluded for simplicity. They will be included
here for completeness. To do so does not diminish the model’s validity.
Hence, a fifth component of state is:

5. Special Registers (I). The registers of the store wused to
control the processor, operate devices, and buffer data between
processor and devices. These registers include interrupt
system control registers, device control registers, and
input/output data buffers. They may also include other CPU
special registers such as the on/off switch, data switches, and
protection control registers.

In summary, the state of a computer is specified by the five tuple

S = <E, P, M, R, I>.

Before proceeding to the requirement for virtualization, several
definitions are required. An instruction is said to trap when

1. executable memory is not altered with the exception of status
information storage, and

2. the program counter is redefined and processor mode is changed
to supervisor.

Status information is normally defined as the address of the
instruction causing the trap, the address which actually caused the
trap, and the condition which caused the trap. An instruction 1is said
to be privileged if it executes in supervisor mode and traps in user
mode. An instruction is said to be sensitive if it is either control
sensitive or behavior sensitive. Control sensitive instructions are
those which alter M, R, or I. Instructions are behavior sensitive if
their execution is dependent upon their location in physical memory or
upon processor mode. An instruction which is not semnsitive is said to
be innocuous.

Assume a computer exists whose state is specified by the above five
components and which has both innocuous and sensitive instructions, some
of which are privileged. Is this machine virtualizable? Popek and
Goldberg have shown that it is only if the set of sensitive instructions
is a subset of the privileged instructions. Informally, this means that
user mode programs cannot issue halt commands, change mode except
through traps, alter relocation registers, control devices, or alter any
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component of I. An attempt to do so should always result in a trap.

1.3.2 Architecture Of The Nova 3/D. -

In the context of the formal model, the architecture of the Nova
3/D may be reviewed. For a complete description of the hardware, refer
to Data General manuals [5], [6], and [7].

1.

2.

3.

Executable Memory (E). The Nova 3/D has 32K (expandable to
128K) sixteen bit words in main memory and four sixteen bit
accumulators. Accumulators two and three may be used as index
registers., Two fifteen bit registers, the stack and frame
pointers, are provided for stack operations. Locations 20 to
27 (octal) are auto-incrementing when addressed indirectly.
Similarly, locations 30 to 37 are auto-decrementing. A carry
bit is also provided.

Program Counter (P). The Nova 3/D has a fifteen bit program
counter.

Relocation Registers (R). The Memory Management and Protection
Unit (MMPU) provides four sets (maps) of thirty-two registers
which implement translation of logical page addresses to
physical page addresses. Page size is 1024 words. Two maps
are dedicated to user programs and two are used by the data
channel. Map selection for user programs is under program
control. When a map is enabled, the high order five bits
(logical page address) of a memory address are used as an index
into the map. These five bits are replaced by seven bits
(physical page address) from the selected map register. Only
one program map may be enabled at a time; activation of data
channel maps are independent from that of user maps. When
mapping is disabled, logical addresses are equal to physical
addresses.

Mode (M). The Nova 3/D operates in two modes, supervisor and
user. Whenever program mapping is enabled, the processor is in
user mode; otherwise, it is in supervisor mode. Mode changes
from supervisor to user when appropriate bits in a status
register are set and a defer (indirect address) cycle is
executed. Transition from user to supervisor mode occurs in
response to a trap or interrupt. The MMPU (MAP) busy flag
serves to indicate mode.

Special Registers (I). Special registers of 1I/0 devices are
busy flags, done flags, interrupt disable flags, and 1/0
buffers, which may serve as control registers or data buffers.
Setting a busy flag to one and done to zero normally starts a
device and permits an interrupt to occur upon completion.
Device completion normally sets done to one and busy to zero.
The device interrupt disable flags make possible a priority
interrupt scheme having sixteen levels.
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Special registers of the central processor are the on/off
switch, the interrupt enable flag (CPU busy flag), the power
fail flag (CPU done flag), data switches, and the interrupt
request line, which holds the addresses of all devices
requesting interrupts. Special registers of the MMPU other
than the relocation registers are the status register, which
contains mode, protection, and map selection flags; the
violation data register, which dindicates the condition(s)
causing the last trap; the violation address register, which
indicates the 1logical address of the instruction causing the
trap, the page check register, which is used to determine the
contents of a map register; and the MMPU done flag, which
indicates a protection violation during data channel mapping.

Protection flags of the status word are used to enable
traps when user mode programs execute I/0 instructions, use
auto-increment/decrement locations, write or access protected
pages, or execute more than fifteen consecutive defer cycles.
Write and access protection is specified on a page by page
basis by setting bits in the relocation registers. Auto
location protection permits instructions, which indirectly
address logical addresses 20 to 37 (octal), to be trapped.

1.3.3 Feasibility Demonstration. -

Having reviewed the Nova 3/D architecture, it 1is appropriate to
examine the instruction set, identify sensitive instructions, and verify
that they are privileged. Should all sensitive instructions be
privileged, then the formal requirement will be met and one aspect of
feasibility will be demonstrated. The Nova 3/D with MMPU has seven
classes of instructions: memory reference, arithmetic and logical,
stack, trap, device I/0, CPU control, and MMPU control. The latter two
classes are forms of the device I/0 instruction, however, it is useful
to consider them separately. In the following discussion, the assembly
language mnemonic for each instruction is given in parentheses.

l.3.3.1 Memory Reference Instructions - This class includes those
instructions which reference main memory and accumulators (E). They
are:

l. load accumulator (LDA).
2. store accumulator (STA).
3. increment memory and skip on zero (ISZ).

4., decrement memory and skip on zero (DSZ).
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5. Jjump (JMP); load program counter from memorye.

6. jump to subroutine (JSR); store old program counter in
accumulator three and load program counter from memory.

Because only eight bits are available for a memory address,
addressing is done either directly to the first 256 words of memory or
relative to the program counter or an index register. Relative
addressing ranges between a minus 128 or plus 127 word displacement.
Indirect addressing is also provided.

Since memory reference instructions do not alter M, R, or I, they
are not control sensitive. If they do not indirectly address the auto
increment/decrement registers, they are also not behavior sensitive and,
hence, are innocuous. Indirectly addressing the auto locations
constitutes a behavior sensitive instruction because the outcome depends
upon mode., In supervisor mode, the results are as expected. However,
in user mode, proper incrementing or decrementing will mnot occur if
logical addresses 20 to 37 (octal) are not mapped to physical addresses
20 to 37. In this case, the sensitive instructions are also privileged
because the MMPU can trap attempts to access these locations indirectly
while in user mode.

1.3.3.2 Arithmetic And Logical Instructions - Operations on the
accumulators, the carry bit, and the program counter, display no
behavior sensitivity, and are, therefore, innocuous. They include:

1. formation of one’s complement (COM).

2. formation of two’s complement (NEG).

3. transfer between accumulators (MOV).

4. increment accumulator (INC).

5. addition (ADD).

6. subtraction (SUB).

7. addition to one’s complement (ADC).

8. logical and (AND).

In a single instruction, the source and destination accumulators
are specified and the initial value of the carry bit is given. Also,
options are available for shifting one place to the right or left,

swapping bytes (high or low order eight bits), not loading the results,
and skipping the next instruction conditionally or unconditionally.
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The Nova 3/D also provides two additional instructions. These are:
l. integer multiplication (MUL).

2. integer division (DIV).

1.3.3.3 Stack Instructions - These instructions access only the stack
pointer, the frame pointer, accumulators, and main memory. They display
no behavior sensitivity and are, hence, innocuous. The stack pointer
points to the top of a stack maintained in main memory. The frame
pointer points to the last return block pushed. A return block consists
of accumulators =zero, one, and two, the previous frame pointer, the
carry bit, and accumulator three (old program counter stored by JSR
instruction). The stack instructions are:

l. move to stack pointer from accumulator (MTSP).
2. move to frame pointer from accumulator (MTFP).
3. move from stack pointer (MFSP).

4, move from frame pointer (MFFP).

5. push accumulator (PSHA).

6. pop accumulator (POPA).

7. push a return block (SAV).

8. pop a return block (RET).

1.3.3.4 The Trap Instruction., - The trap instruction allows explicit
trap by a user mode program. It is control sensitive since it alters M,
however, it is also privileged since a trap results, The trap
instruction may specify one of 128 trap numbers. It is of the form:

1. trap (TRAP).

1.3.3.5 1I/0 Instructions - These instructions are of two types. The
first permits transfer of data and control pulses between the processor
and 1/0 devices. A single instruction specifies a device address, an
accumulator, a data buffer of the device, the direction of transfer, and
a control pulse. The latter concerns setting and clearing the busy and
done flags which control device operation. The first type of I/0
instructions are:
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1. no operation (NIO).
2. data in (DIA, DIB, DIC).

3. data out (DOA, DOB, DOC).

The no operation command may also be used with I/0 instructions
addressing the CPU or MMPU. In the data in and data out instructions,
the A, B, and C variations refer to data buffers. The control commands
start (S), clear (C), and pulse (P) may be used with any I/0
instruction. Depending on the device addressed, the interpretation of
an 1/0 command is different. Because I/0 commands can alter I, they are
control sensitive. However, they are also privileged since the MMPU can
trap I/0 instructions while in user mode.

The second type of I/0 instructions are those which alter the
program counter based on the state of the busy or done flags of I/0
devices, the CPU, and the MMPU. For the moment, instructions addressing
the CPU and the MMPU are considered with those addressing devices for
convenience. Strictly speaking, these instructions are not sensitive as
they only alter P and cannot change I. Nonetheless, they are privileged
since the MMPU can trap I/0 instructions. These instructions are:

1. skip if done is zero (SKPDZ).
2. skip if done is one (SKPDN).
3. skip if busy is zero (SKPBZ).

4., skip if busy is one (SKPBN).

1.3.3.6 CPU Instructions - These are I/0 instructions addressing the
CPU that serve to control the interrupt system, read data switches, and
halt the machine. They are sensitive since they alter I and privileged
as the MMPU traps I1/0 instructions. These instructions are:

1. read switches (DIA).

2. interrupt acknowledge (DIB); fetch address of the closest
device on the interrupt request line which is requesting an
interrupt.

3. mask out (DOB); set selected interrupt disable flags to one.

4. clear I/0 devices (DIC); clear all busy, done, and interrupt
disable flags.

5. halt (DOB).
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If the control command S is issued with any instruction addressing
the CPU, the CPU busy flag is set to one and interrupts are enabled.
Similarly, if a C command is issued, the busy flag is cleared and
interrupts are disabled. The done flag (power fail indicator) is also
cleared.

1.3.3.7 MMPU Control Instructions - These are I/0 instructions
addressing MAP and MAPl, the devices which correspond to the MMPU. They
reference the relocation registers, the status register, the wviolation
data register, the violation address register, and the page check
register and serve to control the address translation and protection
facilities. Since they reference R and I, they are sensitive, however,
they are also privileged as they are I/0 instructions. These
instructions are:

1. load map (DOB MAP).

2. initiate a page check (DOA MAP1).

3. page check (DIA MAPI1).

4, read MMPU status register (DIA MAP).

5. write MMPU status register (DOA MAP).
6. read violation data register (DIB MAP).

7. read violation address register (DIB MAPl).

If a C control command is issued with an instruction addressing
MAP, the violation data register and the MMPU busy and done flags are
cleareds If a P is issued, mapping is enabled for the next data fetch.
IF a C is issued with an instruction addressing MAPl, all internal MMPU
logic is initialized.

One instruction not covered explicitly by the MMPU commands is mode
change from supervisor to user, To change modes, the program map enable
flag (bit 0) of the MMPU status register is set to one and the mapping
inhibit flag (bit 2) 1is set to zero. Mode change occurs on the next
defer (indirect address) cycle, which should be a jump indirect through
a user program counter. The jump instruction is sensitive as it alters
M, however, it is not privileged.

le3.4 Summary. -

The preceeding review of all instructions has shown that the
virtualization requirement of Popek and Goldberg is almost satisfied.
Only the jump to user mode instruction creates a virtualization problem.
If this problem can be overcome, the first aspect of feasibility is
demonstrated.



Page 12

1e3.5 Solutions To The Virtualization Problem. -

There are several solutions to the virtualization problem created
by the mode switch instruction. First, the VMM could simply fail to
support the virtual MMPU facility. This is extremely easy to implement
but would result in an unacceptable loss in equivalence. Second, every
instruction following the status word change could be interpreted by the
MM. No alterations 1in real processor hardware or virtual processor
software would be required, however, the VMM could become large and
complex. Third, the real processor could be altered to trap on defer
cycles. No changes in virtual processor software would be required;
however, the dimpact on other operating systems using the same real
processor would be unpredictable. Finally, virtual processor software
could be required to 1issue a special explicit trap instruction
immediately before the jump to user mode. No hardware changes would be
required; however, a small loss of equivalence to the real processor
would exist.

0f these four solutions, the last is chosen due to its relative
ease of implementation and minor loss of equivalence. Existing programs
may be altered with small complication since defer cycles following
status word changes may be easily detected. Trap number 127 is used to
indicate mode switch and should not be wused by virtual processor
software for any other reason. This number is selected because it is
the largest and perhaps the least likely to be used by virtual processor
software.

le3.6 State Restoration Verification. =-

In order to give a complete demonstration of virtualization
feasibility, it 1s necessary to show that the state of the processor
before the trap may be recovered after the trap. Relevant processor
state is defined by the program counter, the carry bit, the
accumulators, the stack pointer, and the frame pointer. Traps
correspond to violations due to 1I/0 protection, auto location
protection, access (validity) protection, write protection, and defer
protection. In all cases, the program counter prior to the trap is
saved in the MMPU violation address register.

Whenever a trap occurs, the instruction causing the trap does not
execute, with one exception, An instruction which does not execute
cannot change the relevant processor state other than the program
counter, hence, the state before the trap is recoverable.

The exception concerns the SAV and RET stack instructions. 1In all
stack operations, the stack and frame pointer are not updated until the
operation is completed, thus, there is no danger of losing these
pointers if a write or validity protection occurs during the operation.
However, accumulators and main memory may be altered corresponding to
the progress of the operation before the trap. This is of no
consequence since only the program counter is required to restart the
instruction. Upon restart, the altered components will have their
values recopied.
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1.4 History Of Virtualization.

According to Buzen and Gagliardi [4], the use of I/0 processors and
multiprogramming in the early 1960s created "very serious potential
problems for system integrity.'" The creation of dual state architectures
was a step towards solving these problems. Software could then be run
in two modes: one which allowed access to all machine facilities and
one which allowed only nondisruptive instructions to be executed. Only
a privileged software nucleus which created an "extended" machine was
allowed to run in the privileged mode. This solution created further
problems., Programs designed to run on an extended machine could be
transported only to facilities having an identical extended machine.
More than one copy of privileged software could not be run concurrently,
precluding development and modification of privileged software without a
dedicated machine. Also, hardware test and diagnostic software could
not be run concurrently with privileged software.

A method was needed for sharing a computer at the lowest level, the
basic machine interface. If a single computer presents several basic
machine interfaces which are completely isolated from one another, the
above problems are solved. Transported programs may run on the
appropriate extended machine concurrently with programs running on
different extended machines. Similarly, programs designed to run on the
basic machine interface may be run concurrently.

IBM began development of virtual machine systems in 1964 with the
creation of CP-40 (Control Program 40), which ran on a System/360 model
40 modified to support virtual storage [1l]. The wvirtual machine
created by CP-40 did not support address tramslation. Later, CP-67
emerged, running on a System/360 model 67. This system did support
virtual machines having virtual address translation. A single user
operating system, (MS (Cambridge Monitor System), was developed
concurrently to extend the created basic machine interfaces.

According to Meyer and Seawright [10], IBM’s objectives in this
effort were to research timesharing methods, to examine hardware
requirements for timesharing, to develop an in-house timesharing system,
and to develop performance analysis techniques. A later IBM development
was the W /370 system which created virtual 370s capable of supporting
all the System/360 and System/370 operating systems [8]. TIBM also
developed the virtual machine 1like system M44/44X, which ran on a
modified 7044, and the System 360/30, a single virtual machine system.

Other virtual machine systems are the Michigan Terminal System
(MTS), which supports virtual 360s and runs on the System/360 model 67,
the PDP 10 system, which runs on a modified PDP 10 at MIT [8], the HITAC
8400 system, which runs on a HITAC 8400 (RCA Spectra 70/45) [8], and the
UCLA W system, which runs on a modified PDP 11/45 [16].

1f virtual machine methods are used to implement timesharing
systems, sharing of data between users is prevented. This is because
the virtual machine monitor is aware of all users but has no knowledge
of any file structures. Conversely, user operating systems know about
file structures but are unaware of each other. Several researchers [1]
have developed techniques to permit data sharing in VM/370.
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All virtual machine systems mentioned above, as well as the one
described in this paper, wuse traps and simulation to support virtual
machines. Goldberg [8] has pointed out that these methods are "clumsy
and awkward." He proposes that hardware virtualizers be used to support
virtual machines. These are hardware/firmware devices which provide a
mapping function between virtual resources and real resources. The
hardware virtualizer must store maps, activate virtual machines, compose
maps, and pass control to the VMM after a map fault. A complete
description of this concept is given in [91.

1.5 TUtility Of A Virtual Machine Monitor.

Several authors [3] [8] [10] [11] [16] have enumerated the uses of
virtual machine systems. These ideas are summarized below. Virtual
machine systems provide the capacity

l. to run several operating systems concurrently,
2. to run several stand alone systems concurrently,

3. to develop and maintain operating systems, diagnostic software,
or privileged software without taking over the machine,

4. to add hardware enhancement to the real machine without
updating existing operating systems,

5. to prevent erroneous systems programs from crashing the
machine,

6. to create a high degree of data security between users,
7. to insert software hooks which measure system performance,

8. to give students access to a basic machine environment in an
inexpensive way,

9. to run a virtual configuration different from the real
configuration.

This last use is of particular interest in a research environment.
Virtual configurations are limited by the imagination of the MM
designer. For example, several virtual processors sharing memory could
be created. Also, non-existing I/0 devices or interprocessor links
could be simulated.

1.6 Specification Of A Nova 3/D Virtual Machine.

Before the design of a virtual machine monitor can begin, it is
necessary to give a specification for the created virtual machines.
This specification describes objects visible to software running on a
virtual machine as well as the operation of virtual actions.
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le6.1 The Virtual Store. -

The virtual store consists of the same components as the real
store. Virtual main memory is restricted to thirty-two pages or 32,768
words. Store components include accumulators, stack pointer, frame
pointer, carry bit, CPU busy and done flags, interrupt request line, and
data switches. Store associated with devices and the MMPU is considered
separately.

1.6.2 Virtual Instructions. -

All instructions which may be executed on the real machine may be
executed on the virtual machine, with one exceptions. A jump to user
mode instruction will not execute properly unless it 1is immediately
proceeded by an explicit trap with trap number set to 127.

106.3 The Virtual MMPU- -

The virtual store of the MMPU consists of the same components as
the real MMPU. There are the two program maps, the two data channel
maps, a status register, a violation address register, a violation data
register, a mode switch (busy flag), and a data channel error flag (done
flag). Virtual memory management, that is, address translation directed
by virtual maps, is supported. All five protection features (write,
validity, auto location, I/0, and defer) are also supported. Virtual
violations occur on virtual machines just as real violations would occur
on real machines. The consequences of virtual violations are also
equivalent.

1.6.,4 Virtual Devices. -

The following virtual devices are available. For each virtual
device, the real device which supports it is indicated,

1. card reader (CDR): supported by real card reader
2. line printer (LPT): supported by real lime printer

3. teletype (TTI and TTO): supported by CRT which is connected to
a multiplexer (QTY)

4. second teletype (TTIl and TTOl): supported by the real first
teletype (TTO and TTI)

5. 6030 diskette (DKP: drives 1 and 2): supported by real 6030
diskette (DKP: drives 1 and 2)
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6. 4234 moving head disk (DKP: drive 0): supported by real 4234
moving head disk (DKP: drive 0)

7. real time clock (RTC): supported by real machine real time
clock

Figure 2 depicts the mapping between virtual and real devices, The
virtual store associated with each device corresponds to the store of
the real device. This includes busy and done flags, dinterrupt disable
flags, and device registers. In most cases, the operation of a virtual
device is equivalent to that of the real device. Exceptions are the
virtual card reader and the virtual 4234 moving head disk. Unlike the
real card reader, the virtual card reader cannot lose data. Also, the
virtual 4234 moving head disk has fewer cylinders than the real disk and
cannot achieve all the real disk error states.

The teletype device configuration of a real Nova permits only two
teletypes to be connected directly to device lines. Additional
teletypes (CRTs) must be attached to a multiplexer (QTY) which wuses a
single device line. This organization is reflected in the configuration
of virtual teletypes. A virtual multiplexer is not specified due to a
lack of CRTs in the UT Nova configuration. Similarly, other peripherals
(such as tape drives), which exist but are not present in the UT Nova
configuration, are not specified.

1.6.,5 Virtual Interrupts. -

Virtual interrupts occur in virtual machines exactly as real
interrupts occur on real machines, assuming real processor and device
states are equivalent. The consequences of virtual interrupts are also
equivalent.

le6.6 Virtual Stack Faults. -

A virtual stack fault occurs when virtual interrupts are enabled
and the virtual stack pointer is set to a multiple of 256 during a PSHA,
POPA, SAV, or RET stack instruction. This 1is equivalent to a real
machine stack fault. The consequences of a stack fault are also
equivalent.

le6.7 Virtual Front Panel Switches. -

The functions of virtual front panel switches are provided through
the command language used at the WM operator’s console. These
functions are equivalent to those of the Nova 3/D with one exception.
The memory reference functions are restricted to the first 1024 words of
memory to prevent the possibility of a page fault. Front panel commands
are fully described in Chapter 4.
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VIRTUAL DEVICES REAL DEVICES

CDR CDR

LPT LPT

TTI/TTO QTY

DKP (all drives)’ DKP (all drives)
TTI1/TTO1 + TTL /TTO

RTC RTC

FIGURE 2

Mapping of Virtual Devices to Real Devices
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CHAPTER TWO

Design of a Virtual Machine Monitor for the Nova 3/D

2.1 1Introduction.

The design of a virtual machine monitor is the creation of its
structure and form. The goal of our design 1is to produce a WM
structure which 1is easy to understand and which suggests a
straightforward implementation. Our main concern is with issues which
are directly related to virtualization.

The method used for creating WM structure is top down
decomposition. The monitor is decomposed in an iterative fashion until
an implementation is suggested.

There are two basic issues at the top level of virtual machine
monitor designe. The first issue concerns the initial decomposition of
the monitor into computations, which we call processes. The meaning of
the term "process" in this context is stated below. The mechanism of
process scheduling is also considered as well as the problem of
indivisible operation on shared data objects.

The second issue concerns virtual processors. In order to
understand how the decomposition is to proceed, virtual processor states
are identified and transitions between states are described. In this
chapter, these two 1issues are discussed. The decomposition of WM
processes is described in Chapters 3 and 4.

2.2 Virtual Machine Monitor Processes.

The notion of concurrent processes used in this report is taken
from Brinch Hansen [3]. Essentially, a process is "a sequence of
operations carried out one at a time." Processes are concurrent if
their executions overlap (or interleave) in time., In this report,
processes are our unit of decomposition, serving to organize our system
into logical components. Processes are the entities which are visibly
scheduled for execution, either directly or by interrupts or traps.

2.2.1 Identification And Function O0f WM Processes. =

The following VMM processes may be identified. There 1is one
process associated with each real device, one associated with real
processor traps, one associated with stack faults, an initialization
process, and a dispatcher process.
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The process associated with the multiplexer (QTY) supports virtual
actions for virtual teletype devices (TTI and TTO). The real time clock
(RTC) process supports virtual actions for virtual clocks, provides an
alarm clock function for signaling the end of virtual processor time
slices, and provides a system clock. The disk (DKP) process supports
virtual actions for the virtual 6030 diskette and virtual 4234 moving
head disk. It also assists the support of page fault handling and
command line interpretation (virtual processor bootstrap loading). The
line printer (LPT) and card reader (CDR) processes support virtual
actions for these virtual devices. The teletype (TTI and TTO) processes
support virtual actions for the virtual second teletype device (TTIl and
TTOL1). Finally, the processes associated with the second console (TTIl
and TTOl) provide console communication, system generation, and command
line dinterpretation. Each of the device processes has the additional
function of saving and restoring real machine state upon entry and exit
and supporting the virtual interrupt and stack fault facilities.

The process associated with traps supports the majority of wvirtual
processor actions which operate directly on the virtual store. This
process handles page faults, interprets sensitive instructions, supports
the wvirtual auto increment/decrement facility, provides virtual memory
management and protection, simulates virtual traps, saves and restores
real machine state upon entry and exit, and simulates virtual
interrupts.

The initialization process exists out of necessity and should not
be considered a true process of the WM. It is active only when the
monitor is started and cannot run in parallel with any other process.

The process associated with stack faults supports the virtual stack
fault facility and handles faults which occur during VMM process
execution. It saves and restores real machine state upon entry and exit
and simulates virtual stack faults.

The dispatcher process serves two functions, When no virtual
processors are ready to take over the real processor, it serves as an
idling process and merely waits for an interrupt. If at least ome
virtual processor 1is ready, it composes an address translation map,
realizes a portion of the virtual store, and assigns the real processor
to the virtual one, putting itself to sleep. The dispatcher process may
also initiate simulation of virtual interrupts and stack faults.

2.2.2 Process Scheduling. -

Virtual machine monitor processes are scheduled in three ways.
First, all device processes and the stack fault process are scheduled by
interrupts. This means that, potentially, any combination of these
processes may execute logically in parallel. In practice, some
combinations are explicitly prohibited by interrupt masking. This
prevents undesirable results such as data loss caused by performance
degradation due to processor sharing.
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Second, the trap process is scheduled by real machine traps, which
occur while the processor is assigned to a virtual processor. Because
interrupts may occur during execution of the trap process, it can
potentially run in parallel with device processes or the stack process.

Finally, the dispatcher process is scheduled explicitly by either
the initialization process, a device process, or the trap process. The
scheduling process puts itself to sleep in awaking the dispatcher
process. In the case of a device or trap process, the dispatcher is
awakened when a virtual processor, which was assigned the real processor
when the trap or device process was awakened, is preempted. Again,
because interrupts may occur while the dispatcher process is executing,
it can potentially run in parallel with device processes or the stack
fault process. It cannot run concurrently with the trap process.

With minor exception, all VMM processes execute a sequential
program and wake up another process. One exception is the dispatcher
process which could idle forever in the absence of interrupts. Also,
the dispatcher process does not awaken a WM process; rather, it
assigns the real processor to a virtual processor. Nor does the virtual
processor awaken a WM process; it loses the real processor. For this
discussion, consider a virtual processor to be a null VMM process which
only serves to awaken another process or be awakened when all VMM
processes go to sleep.

The picture of processor sharing one obtains from this design is
quite simple. It is similar to nested subroutine calls of sequential
programs in that the last process to be awakened is the first process to
be put to sleep.

2.2.3 Critical Sections. -

Virtual machine monitor processes perform indivisible operations on
shared variables, hence, critical sections must exist. Critical
sections must execute in a mutually exclusive fashion in order to
prevent unpredictable results [3]. A rather straightforward but
inelegant solution to the mutual exclusion problem may be found by
observing that at least one of the communicating processes is always a
device process, which is scheduled by interrupts. To dinsure mutual
exclusion of critical sections, it is sufficient to disable interrupts
on entry and reenable them on exit, as the Nova 3/D is a one processor
system.

1f more than one processor were available, it would be desirable to
build the WM upon a software nucleus which would hide interrupts and
provide process scheduling as well as synchronization primitives.
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2.3 Virtual Processors.

2.3.1 States Of Virtual Processors. -

From the vantage point of a VMM, a virtual processor assumes four
states corresponding to the running condition of a real processor.
These are called ready, running, interpreting and blocked. There is
also one state, called terminated, which corresponds to the real
processor halt condition. These states have the following meaning:

1. Terminated. The virtual store is not realized with the
possible exception of a portion of virtual main memory. The
virtual processor is not a candidate for real processor
assignment by the dispatcher process. Transitions may continue
in the virtual store due to virtual device actions and in
realized main memory due to virtual data channel transfers,
however, the virtual processor may not responde. A real
processor address translation map is neither composed nor
enabled for the virtual processor.

2. Ready. Same as terminated except that the virtual processor is
eligible for real processor assignment, that is, promotion to
the running state.

3. Running. The virtual processor is assigned the real processor
for the  purpose of innocuous instruction execution.
Occasionally, the real processor may be lost when a trap, stack
fault, or device process 1is scheduled, however, the real
processor is returned unless a preemption occurs. Preemption
means that the virtual processor loses the real processor until
it is returned by the dispatcher process. A real address
translation map is composed and enabled; virtual accumulators,
frame pointer, stack pointer, and carry bit are realized. As
in the terminated state, transitions due to virtual device
actions and data channel and data channel transfers may occur.

4. Interpreting. A form of the running state in which a virtual
processor action is being supported by the WM. A real address
translation map is composed but not enabled; the virtual store
is not realized except a portion of virtual main memory.

5. Blocked. Same as terminated except that the virtual processor
is eligible for promotion to the ready state upon realization
of a portion of virtual main memory.

In summary, interpretation of virtual instructions and simulation
of virtual interrupts, stack faults, and traps occurs in the running and
interpreting states. The ready state exists due to processor sharing;
the blocked state is required for the same reason and because of the
length of time required for virtual memory realization. Virtual store
state transitions caused by virtual devices are independent of virtual
processor state, however, the consequences of these transitions are
significant only when a virtual processor is running or interpreting.
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FIGURE 3

Virtual Processor States and Their Transitions
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2.3.2 Virtual Processor State Transitions. -

Transitions between states of a virtual processor are supported by
VMM processes. Of the twenty possible transitions between five states,
only fourteen exist. Figure 3 shows these transitions. A description
of each transition and its causes is given below.

1.

2.

3.

4o

5.

6.

7.

8.

Terminated to Ready. Caused by the interpretation of a START

or CONTINUE virtual console command by the TTI1l device process.

Ready to Running. Caused by selection of a ready virtual

processor by the dispatcher process. The dispatcher checks for
a pending virtual interrupt or stack fault and simulates it if
appropriate, composes a real address translation map, realizes
virtual special registers, and assigns the real processor.

Running to Interpreting. Caused by a real machine trap while

the virtual processor is assigned the real processor. Virtual
processor state is saved in a local store while the trapping
condition is handled. May also be caused by a stack fault or
an interrupt from a device mapped to the virtual processor.

Running to Blocked. Caused by a real processor validity

violation while a virtual processor is assigned the real
processor. This corresponds to a page fault. The state of the
virtual processor is saved in the virtual store and it is
preempted.

Running to Ready. Caused by termination of a time slice. The

state of the virtual processor is saved in the virtual store
and it is preempted.

Interpreting to Ready. Caused by termination of a time slice

while the VMM is performing an interpretation for the virtual
processor. May also be caused by a virtual mode change due to
execution of a virtual mode change instruction or simulation of
a virtual trap, stack fault, or interrupt. The state of the
virtual processor is saved in the virtual store and it is
preempted.

Interpreting to Blocked. Caused by a page fault during

interpretation of a wvirtual instruction or simulation of a
virtual trap, stack fault, or interrupt. The state of the
virtual processor is saved in the virtual store and it is
preempted.

Ready to Blocked. Caused by a page fault during simulation of

a virtual interrupt or stack fault by the dispatcher process.
The state of the virtual processor is saved in the virtual
store and it is preempted.

Interpreting to Running. Caused by completion of a virtual

instruction interpretation or simulation of a virtual trap,
stack fault or dinterrupt. Appropriate  virtual special
registers are realized and the virtual processor is reassigned
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the real processor.

10. Blocked to Ready. Caused by completion of page fault servicing
by the disk device process.

11. Interpreting to Terminated. Caused by interpretation of a
virtual  HALT instruction. May also be caused by an
interpretation of a virtual STOP or RESET console command by
the TTIl device process. The state of the virtual processor is
saved in the virtual store and it is preempted.

12. Running to Terminated. Caused by interpretation of a virtual
STOP of RESET console command by the TTIl device process. The
state of the virtual processor is saved in the virtual store
and it is preempted.

13. Blocked to Terminated. Caused by interpretation of a wvirtual
STOP or RESET console command by the TTIl device process.

14. Ready to Terminated. Caused by the interpretation of a virtual
STOP or RESET console command by the TTOl device process.

2.4 The Disk Subsystem.

The disk subsystem is a collection of programs shared by three
processes which supports I/0 to the 4234 moving head disk and the 6030
diskette. These programs are executed by the TTOl process to support
virtual processor program loading, by the trap process to support
virtual disk I/0, again by the trap process to support page fault
handling, and by the DKP (disk) process to support the previous three
functions. When the TTOl or trap process requires disk 1/0, it first
acquires a free disk record, generates appropriate information, loads
the record, and passes it to the disk subsystem. The subsystem performs
the 1/0, recovers from certain real disk errors, and signals completion.
A disk record contains the following information.

1. Identification: Specifies the record”s origin, the virtual
processor it is associated with, and its position in a sequence
of related records.

2. Disk Drive: Specifies a drive where 0 is the 4234 moving head
disk and 1 and 2 are the 6030 diskettes.

3, Physical Disk Address. The address on disk to be used in the
transfer is composed of three parts:

l. Cylinder (track): Specifies a real cylinder (track)
address in the range 0..407 if the 4234 is selected and
0..63 if the 6030 is selected.
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2. Surface: Specifies a real surface address in the range
0cee3 if the 4234 is selected.

3. Starting Sector: Specifies a real starting sector address
in the range 0O..l11 if the 4234 is selected and 0..7 if the
6030 is selected.

4. Sector Count: Specifies the number of sectors to be transfered
in the range l..16 if the 4234 is selected and 1..8 if the 6030
is selected.

5. Starting Address: Specifies a logical starting address in real
main memory for the transfer.

6. Read/Write: Specifies the direction of transfer,

7. Data Channel Mapping: Specifies the logical to physical page
address mapping for the data channel transfer. Only five
mappings need to be specified since a maximum of sixteen
contiguous sectors may be transfered in one operation. These
sectors could span five pages.

The disk subsystem is composed of three parts, a disk record
manager, a disk record queuer, and a disk driver. The record manager
has the task of allocating and recovering disk records. The disk queuer
maintains a queue of disk records and passes records to the disk driver
according to a service discipline. Finally, the disk driver must
actually perform the disk I/0 based on the information contained in the
disk record. This involves loading the data channel map, initiating a
seek, initiating a read or write, and signaling completion. Should
errors occur at any stage, the driver must attempt recovery; if the
error is unrecoverable, the driver communicates this condition to the
operator.

The disk subsystem is concerned only with the details of disk
transfers. In the context of WMM design, this is not particularly
relevant. What is more significant is the manner in which disk records
are generated. In closing, recall that the disk subsystem 1is a
collection of programs, not processes; separate activations of the same
program could be executed concurrently by several VMM processes.

2.5 Simulation Of Virtual Interrupts And Stack Faults.

Whenever the virtual processor is assigned the real processor by a
VMM process, a virtual interrupt or stack fault may be pending.
Simulation is required when virtual interrupts are enabled, virtual
mapping is not inhibited, and a virtual interrupt or stack fault is
pending. Virtual interrupts are pending if a least one virtual done
flag is high and interrupts for the corresponding device are not
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disabled. A virtual stack fault is pending if a real stack fault
occurred while the virtual processor was running. Virtual interrupts
are enabled when the virtual CPU busy flag is one and the current
virtual program counter is more than one greater than the address at
which the virtual CPU busy flag was set.

Interrupt simulation begins by fetching the contents of wvirtual
physical location one. This is the address of the virtual interrupt
handler or the beginning of an indirect chain to it. The chain 1is
followed until the end; should a link exist in an unrealized portion of
virtual main memory, a program is entered which realizes the required
virtual store. The contents of the virtual program counter are stored
in virtual location zero. The virtual program counter is loaded with
the address of the virtual interrupt handler. The CPU busy flag
(interrupt enable) and MAP done flag (mode switch) are cleared.

Simulation of stack faults proceeds in the same manner except that
the address of the stack fault handler (or a link to it) is fetched from
virtual physical location three. Virtual stack fault simulation has
precedence over virtual interrupt simulation, reflecting this condition
in the real processor.
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CHAPTER THREE

The Trap Process

3.1 Introduction.

The trap process is awakened by a real processor violation trap or
explicit trap instruction. In every case, the trap process first
determines if the trap corresponds to a virtual trap. If so, a virtual
trap is simulated; otherwise, actions associated with instruction
interpretation or virtual memory are performed.

3.2 Virtual Memory.

In order for a virtual processor to an execute innocuous memory
reference instructions, the addressed portion of virtual main memory
must be realized. The virtual machine monitor must support some form of
memory management, more specifically, a demand paged virtual memory
system. The selection of paging, with page size of 1024 words, 1is
dictated by the Nova hardware; demand paging is appropriate since the
VMM cannot anticipate the addressing behavior of a virtual processor.

3.2.1 Hardware Supporte. =

The memory management and protection hardware of the Nova 3 was
designed with the specific goal of supporting virtual memory. Address
translation for running programs is supported by two thirty-two register
program maps, which map logical page addresses (range 0..31) to physical
page addresses (range 0..127). A logical page may also be mapped into a
validity violation. Any attempt to access such a logical page results
in a real processor violation trap; a validity violation may be
interpreted as a page fault or as a signal to set an access bit
maintained in software. Logical pages may also be individually write
protected. A write violation may be interpreted as a signal to set a
dirty bit maintained in software. When a trap occurs, the real
processor saves the logical address of the instruction causing the trap
and the logical page address of the violation. After a page fault,
these registers indicate where to restart the virtual processor and
which page to realize.

3.2.2 Address Translation And Virtual Memory Management. =

The notion of address translation supported by the WM is twofold.
First, while a virtual processor is running in supervisor mode, virtual
processor physical addresses are mapped to real processor physical
addresses. Second, while the virtual processor is running in virtual
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user mode, the VMM supports virtual memory management and virtual
processor logical addresses are mapped to real processor physical
addresses. This is actually a double mapping; the mapping from virtual
processor logical addresses to virtual processor physical addresses is
determined by virtual program maps. The mapping from virtual processor
physical addresses to real processor physical addresses is determined by
the VWMM. Table 1 summarizes this organization. Composition of a real
processor map of either type 1is performed by the dispatcher process
immediately before a virtual processor is assigned the real processor.

EXECUTION STATE REAL PROCESSOR MODE MAPPING

WM Program Supervisor None

Virtual Processor User Virtual Processor Physical
Supervisor Mode to Real Processor Physical
Program ‘

Virtual Processor User Virtual Processor Logical to
User Mode Program Virtual Processor Physical

to Real Processor Physical

TABLE 1

Memory Mapping Organization

3.2.3 The Page Fault Handler. -

When a validity violation occurs, the trap process 1is awakened.
The trap process must first determine if the wviolation 1is to be
interpreted as a page fault or if it corresponds to a virtual validity
violation, that is, a violation which occurred while a virtual processor
was running in user mode with virtual validity protection enabled on
that logical page. Should the violation correspond to a page fault, a
page fault handling program is executed. This program may also be
entered during a sensitive dinstruction interpretation or during
simulation of a virtual trap, stack fault, or interrupt if an addressed
portion of virtual main memory is not realized.
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The goal of the page fault handler is to redefine the mapping
between virtual processor physical pages and real processor physical
pages (frames) such that restarting the virtual processor will produce a
minimal number of future page faults. This first involves selection of
a frame which is currently unmapped (free) or which is mapped but can be
replaced with minimal unfavorable consequences. In the latter case, a
replacement algorithm is used to select a frame whose contents may need
to be saved in the virtual store (swapping out). Swapping out is
performed by giving the disk subsystem a record with the following
contents:

1. 1Id: page fault / current virtual processor / first record.
2, Drive: O

3. Cylinder: Surface: Sector: disk address for wvirtual
processor physical page being swapped out.

4, Sector Count: 4

5. Memory Address: virtual processor physical page address for
page being swapped out.

6. Read/Write: write.
7. Data Channel Mapping: virtual processor physical page address

for page being swapped out to frame address.

Page fault handling is completed by swapping in the needed virtual
processor physical page and updating status information. Swapping in is
done in the same fashion as swapping out. The record contents are:

l. Id: page fault / current virtual processor / last record.

2. Drive: 0

3. Cylinder: Surface: Sector: disk address for wvirtual
processor physical page being swapped in.

4, Sector Count: 4

5. Memory Address: virtual processor physical page address for
page being swapped in.

6. Read/Write: read.

7. Data Channel Mapping: virtual processor physical page address
for page being swapped in to frame address.

Information which should be updated is the frame table, which indicates
which virtual processor physical page is associated with each frame, the
page descriptors, which tell what frame if any is associated with each
virtual processor physical page, and the dirty bits.
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Dirty bits are maintained to prevent unnecessary swapping out of
frames which have not been altered since they were swapped in. When a
frame is swapped in, its dirty bit is normally set to false and real
processor write protection is enabled. Any attempt to write on the
protected frame causes a trap, awakening the trap process. The trap
process must determine if the write violation corresponds to a virtual
violation. If not, the dirty bit for that frame 1is set to true and
write protection is removed. The virtual processor is then restarted
and the write instruction is allowed to execute normally.

Pages of virtual processors should be realized only in mutually
exclusive partitions of the frames not used by the WM. This prevents
problems associated with frame poaching. Partition size is dinitially
defined during system generation. In order to change partition size,
the system must be regenerated.

3.2.4 The Replacement Algorithm. -

The replacement algorithm is perhaps the most important feature of
a page fault handler. There are several possibilities, such as, first
in first out, least recently used, and random selection. It is not
clear which of these would yield the best performance. In the face of
uncertainty, a modified random selection algorithm is chosen.
Performance measurements would be needed to determine if this algorithm
is the best.

The modified random selection algorithm holds that a frame should
be selected at random from an unlocked subset of the virtual processor’s
frame partition. Frames are locked when it 1is certain that their
replacement would cause a page fault. The following frames are always
locked:

l. Frame containing virtual processor physical page zero.

2. Frame containing the instruction which caused the trap.
3., Frames containing indirect links in a current data fetch.
4, TFrames involved in a virtual data channel transfer.

Locking of frames occurs at the beginning of the replacement algorithm.
The frames holding virtual physical page =zero and the trapping
instruction are easily determined through page descriptors. Others are
harder to identify. Every time a page is swapped in, the corresponding
frame is entered on a locked list for the appropriate virtual processor.
When a replacement is needed, the address of the instruction causing the
fault is compared to the instruction address of the previous fault. If
they are identical, then all frames in the locked list are locked.
Otherwise, the locked list is cleared.

Suppose an indirect chain spanned several pages and each link
reference produced a page fault; the locked list would grow as each
page was swapped in and links would not be swapped out. The list would



Page 31

be cleared when another instruction produced a fault. Should the number
of frames spanned by the indirect chain be greater than the partition
size, all frames will become locked and the virtual processor would be
permanently blocked. This condition is detected in the following waye.
If the number of locked frames equals the frame partition size, the
address chain for data fetch of the current instruction is followed. If
it spans the frame partition, the permanently blocked condition is
present. A message indicating this fact is sent to the VMM operator’s
console.

It is possible to cause the locked list to grow without proper
cause. For example, the instruction sequence

l. address memory indirectly through a pointer.
2. increment the pointer.
3. go to 1.

might produce a page fault from the same instruction every time a page
boundary was crossed. To allow correct execution of such sequences, the
locked list is cleared whenever all frames become locked.

3.3 Control Sensitive Instruction Interpretation.

A primary function of the VMM is to provide virtual processor
actions which correspond to instruction execution. These actions work
on the entire virtual store. In all cases, instructions which require
VWM support are I/0 instructions. They may be addressed to the CPU, to
the MMPU, or to an I/O device. While a virtual processor 1is assigned
the real processor, any attempt to execute an I/0 instruction results in
a violation trap, awakening the trap process. The trap process must
first determine if the violation corresponds to a virtual I/0 protection
violation. If not, the instruction is interpreted. This dis done by
fetching the instruction from the virtual store, decoding it, and
executing an appropriate program.

3.3.1 CPU Instructions. -

Instructions which address the CPU (device 77) function to control
the virtual interrupt facility, read the virtual switches, and halt the
processor. Components of the virtual store referenced by these
instructions are:

1. wvirtual accumulators

2. virtual program counter

3, virtual data switches
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4. virtual busy and done flags for each virtual device

5. wvirtual interrupt disable flag for each virtual device
6. virtual CPU busy flag (interrupt enable flag)

7. wvirtual CPU done flag (power failure indicator)

8. virtual MMPU busy and done flags

The action designated by the transfer field is performed first followed
by that of the control field. If the transfer field is SKP, control
field values are BZ, BN, DZ, or DN. The following virtual actions are
performed corresponding to transfer and control commands.

Transfer:

DIA (read switches): Contents of the virtual console switches are
loaded into the designated accumulator. Virtual console
switches are set by virtual console commands.

DIB (interrupt acknowledge): The done and interrupt disable flags
of each virtual device of the virtual processor are searched
until an interrupt pending condition (done=1, disabled=0) 1is
found. The order of search is DKP, CDR, LPT, RTC, TTI, TTIl,
TTO, TTOl. The device address of the first device meeting the
condition is loaded into the designated virtual accumulator.
If no device meets the condition, zero is loaded.

DOB (mask out): The interrupt disable flags for virtual devices of
the virtual processor are set according to the bits in the
designated virtual accumulator. A flag is set if its mask out
bit is one, cleared if it is zero. The correspondence between
bits and devices is: 7 - DKP; 10 - CDR; 12 - LPT; 13 -
RTC; 14 - TTI and TTIl; 15 - TTO and TTO1.

DIC (clear I/0 devices): The busy, done, and interrupt disable
flags for each virtual device of the virtual processor are set
to zero; the virtual MMPU busy and done flags are also
cleared.

DOC (halt): The virtual processor is preempted.

NIO: No operation is performed.

SKP (skip): Interpret control command as BZ, BN, DZ, and DN,

Control:

S (enable interrupts): Set the virtual CPU busy flag to ome and
save the address of the instruction.
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C (disable interrupts): Set the virtual CPU busy flag to zero.

BN (skip if interrupts enabled): The virtual program counter is
incremented if the virtual CPU busy flag is one.

BZ (skip if interrupts disabled): The virtual program counter is
incremented if the virtual CPU busy flag is zero.

DN (skip if power failure): No operation since there is no virtual
power failure.

DZ (skip if power available): Increment the virtual program
counter.

3.3.2 Skip Tests And NIO. -

I1f the transfer field of an instruction addressing an I/0 device or
the MMPU is SKP, action is determined by the control field. These
actions are:

BZ (skip on busy zero): Increment the virtual program counter if
the virtual busy flag is zero.

BN (skip on busy non zero): Increment the virtual program counter
if the virtual busy flag is one.

DZ (skip on done zero): Increment the virtual program counter if
the virtual done flag is zero.

DN (skip on done non zero): Increment the virtual program counter
if the virtual done flag is one.

T1f the transfer field of an instruction addressing an I/0 device or
the MMPU is NIO, then no action due to the transfer field occurs.
However, action specified by the control field is performed.

3.3.3 MMPU Instructions. -

The MMPU instructions address two devices, MAP (device 2) and MAPlL
(device 3). They function to control the virtual MMPU facility by
reading and writing virtual MMPU registers. Also included is the
explicit TRAP instruction required for virtual mode change. Components
of the virtual store affected by instructions addressing MAP are:

1. wvirtual accumulators
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2. virtual program counter

3, virtual program maps A and B

4, virtual data channel maps A and B

5. virtual MMPU status words (current and previous)

6. virtual MAP busy flag (mode switch)

7. virtual MAP done flag (data channel error indicator)
8. virtual violation data register

The following actions correspond to transfer and control commands
addressing MAP (device 2).

Transfer:

DOB (load map): A virtual map register is loaded according to the
contents of the designated virtual accumulator.

DIA (read MMPU status): The current virtual MMPU status word is
loaded into the designated virtual accumulator.

DOA (write MMPU status): The contents of the current MMPU status
word are copied into the previous MMPU status word. The
contents of the designated virtual accumulator is loaded into
the current virtual MMPU status word.

DIB (read violation data): The virtual violation data register is
loaded into the designated virtual accumulator.

Control:

P (map single cycle): The entire map single cycle sequence must be
completely interpreted. If the next instruction is realized
then it is fetched from the realized virtual store. If not,
the page fault handler is entered. The effective address for
the data fetch of the instruction 1is computed; this 1is a
virtual processor logical address. A corresponding virtual
processor physical address is fetched from the virtual program
map indicated by the single cycle map select bit in the
virtual MMPU status word. Should a virtual validity violation
be present, a virtual single cycle validity violation is
simulated.

If the virtual processor physical address is not
realized, the page fault handler is entered. The virtual
processor physical address is used in software interpretation
of the command., If the command causes writing in the virtual
store and if single cycle write protection is enabled, a
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single cycle write violation is simulated.

If the page fault handler is entered, the map single
cycle instruction is restarted. Should subsequent page faults
occur, needed frames will not be swapped out since they are on
the locked list.

C (clear violation): The virtual violation data register, virtual
MAP busy flag, and virtual MAP done flag are cleared.

Components of the virtual store referenced by instructions
addressing MAPl are:

1. wvirtual accumulators
2. virtual page check register
3. virtual violation address register

The following actions correspond to transfer and control commands
addressing MAP1l (device 3):

Transfer:

DOA (initiate page check): The contents of the designated virtual
accumulator is loaded into the virtual page check register.

DIA (page check): The contents of the virtual map register
selected by the virtual page check register are loaded into
the designated virtual accumulator.

DIB (read violation address): The contents of the virtual
violation address register are loaded into the designated
virtual accumulator.

Control:

C (clear map): All virtual registers associated with the MMPU are
cleared.

Explicit Trap to User Mode. A real processor enters user mode by
appropriately setting bits in the MMPU status word and executing a defer
cycle. As previously discussed, a virtual processor may enter virtual
user mode by executing an explicit trap. The instruction following the
trap should specify a defer cycle. A trap executed while a virtual
processor is running awakens the trap process.

The trap process first determines if the trap corresponds to a jump
to virtual user mode. If not, a virtual explicit trap is simulated.
The previous virtual MMPU status word is compared to the current virtual
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MMPU status worde Action is not taken unless differences are found in
the enable bit, the inhibit bit, or the map select bit. Interpretation
continues only if the enable bit is one and the inhibit bit is zero. 1In
this case, the virtual violation data register is inspected for error
conditions. If any exist, a virtual violation trap should be simulated.
Otherwise, the next instruction is fetched if it is realized. If not,
the page fault handler is entered. This instruction should be a jump
indirect to a virtual processor physical address. If the address 1is
realized, its contents are fetched; if not, the page fault handler is
entered. These contents are either a virtual processor logical starting
address or a pointer to one. In the latter case, the indirect chain
must be followed until the starting address is found.

In mapping virtual logical addresses to real physical addresses, a
virtual validity violation is simulated if a virtual map so indicates
and the page fault handler is entered if a virtual processor physical
page is mnot realized. Once the starting address is determined, it is
loaded into the virtual program counter. The virtual busy flag (mode
switch) for MAP (device 2) is set to one and the virtual processor is
preempted. When it is later promoted to running, virtual processor

logical addresses will be mapped to real processor physical addresses
and a virtual user mode will exist.

3.3.4 TTO And TTI (Teletype) Instructions. -

The WM supports mapping between virtual teletypes and the CRTs
connected to the multiplexer. Hence, all virtual teletype I/0 will
result in multiplexer 1/0 by the WM. Components of the virtual store
affected by instructions addressing TTO or TTI are:

1. wvirtual TTI busy flag

2. virtual TTI done flag

3, virtual TTO busy flag

4, virtual TTO done flag

5. virtual TTI input buffer

6. virtual TTO output buffer

The following actions correspond to transfer and control commands
addressing TTI.

Transfer:

DIA (read character buffer): The contents of the virtual dinput
buffer are loaded in the designated virtual accumulator.

Control:
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S: Set TTI busy to one and TTI done to zero.

C: Clear virtual TTI done and busy.

The following actions correspond to transfer and control commands
addressing TTO.

Transfer:
DOA (write character buffer): The contents of the designated
virtual accumulator are loaded into the virtual output buffer.

Control:

S: Set virtual TTO busy to one and virtual TTO done to =zero.
Issue a multiplexer instruction to send the character in the
virtual output buffer to the appropriate CRT.

C: Clear virtual TTO busy and virtual TTO done.

3.3.5 RTC (Real Time Clock) Instructions. -

All virtual processors have access to a virtual real time clock.
The concept of virtual real time at first seems contradictory. It is,
however, a required facility if virtual processors are to support system
software. Time 1is of interest to a virtual processor only when it is
the running or interpreting states. When it is blocked or ready, time
is at a standstill; this reflects the fact that real processors never
experience time losses due to processor sharing. Transitions through
these states should appear instantaneous in virtual time.

Real time clocks are simulated by counters which decrement only
when a wvirtual processor is running or interpreting. Virtual clock
counters are decremented in response to clock pulses from the real
machine real time clock.

Components of the virtual store effected by instructions addressing
RTC are:

l. wvirtual accumulators
2. virtual RTC output buffer
3. wvirtual RTC busy flag

4, wvirtual RTC done flag
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5. virtual clock counter
The following actions correspond to transfer and control commands.

Transfer:

DOA (set clock frequency): Load the output buffer with the
contents of the designated virtual accumulator. The value in
the output buffer determines virtual clock frequency, that is,
the initial value of the virtual clock counter.

Control:

S: Set RTC busy to one and done to zero, enabling virtual RTC
interrupts.

C: Clear RTC busy and done.

3.3.6 DKP (Disk) Instructions. -

Instructions addressing DKP correspond to virtual disk I/0 commands
for the virtual 4234 moving head disk (drive 0) and the virtual 6030
diskettes (drives 1 and 2). Virtual diskette I/0 is possible only if
the wvirtual processor is mapped to a real diskette drive. 1/0 on a
virtual 4234 is allowed only if the virtual processor has been allocated
real 4234 cylinders. The WMM supports virtual disk I/0 by causing
transitions in virtual DKP registers and by creating disk records
corresponding to the specified commands. When a disk record is
completed, the VMM realizes any unrealized portions of the virtual store
needed for the virtual disk transfer and passes the record to the disk
queuer.

Virtual disks differ from real disks in several ways. Virtual
seeks cause only updating of a virtual register, not a real seek. On
the other hand, a virtual read or write results in a real seek and a
real transfer operation. It may also initiate handling of page faults
associated with unrealized virtual store required in the virtual
transfer. Several errors which are possible during real disk I/0 are
not present in virtual disks. These are the invalid status condition,
unsafe condition, address error, checkword error, and data late error.
The WM recovers from these errors before completing virtual disk I/0.

Virtual disk errors which are possible are the seek error, which
occurs if the specified track or cylinder is out of range, and the end
of cylinder error, which happens if the end of cylinder or track is
reached before the I/0 completes.



Page 39

Software mapping of disk addresses is performed only with respect
to cylinders on the 4234 moving head disk. A virtual 4234 disk has n
cylinders numbered O..n-1l where n < 408-k. There are 408 cylinders on a
real 4234 disk and k cylinders are used by the VMM, When a virtual
processor is allocated cylinders, a base cylinder address is defined
which is the physical address of virtual cylinder zero. Hence, the
physical address corresponding to a virtual cylinder address may be
computed by

phy. cyl. address = virt. cyl. address + base cyl. address.

Components of the virtual store referenced by instructions
addressing device DKP are:

1. wvirtual accumulators

2. virtual disk address and sector count register (DASCR)

3, virtual command and cylinder register

4, wvirtual DKP status register

5, virtual memory address register

The following actions are performed corresponding to transfer and
control commands.

Transfer:

DOC (specify disk address and sector count): the virtual DASCR is
loaded with the contents of the designated virtual
accumulator; if drive 0 is selected, the diskette bit of the
virtual DKP status register is cleared; otherwise it is set
to one.

DIC (read disk address and sector count): the designated virtual
accumulator is loaded with the contents of the virtual DASCR.

DOA (specify command and track): if the command is a seek, the
virtual command and track register is loaded with the contents
of the designated virtual accumulator; otherwise, only the
command field is loaded.

DIA (read status): the designated virtual accumulator is loaded
with the virtual DKP status register.

DOB (load memory address): the virtual memory address register is
loaded with the contents of the designated virtual
accumulator.

DIB (read memory address): the designated virtual accumulator is
loaded with the virtual memory address register.




