Page 40

Control:

S: Sets virtual DKP busy to one and clears DKP done and the end of
cylinder error flag in the virtual DKP status word. If the
command in the virtual command and track register is
recalibrate, a recalibration flag is set and the action
corresponding to a seek 1is performed (except clearing the
recalibrate flag). If the command is a seek, the recalibrate
flag is cleared and the seek done flag for the selected drive
is set in the wvirtual DKP status word. If drive 0 is
selected, the virtual seek error flag is set if the cylinder
address is out of range. Should drive 1 or 2 be selected, the
error flag is set if the track address 1is greater than 63.
The DKP busy flag is cleared and the done flag is set to one.
If virtual interrupts are enabled for DKP, a virtual interrupt
is pending.

If the command is a read or write, all but the data
channel mapping portion of a disk record is immediately
generated. The record contents are:

1. TIdentification: disk I/0 / current virtual processor /[
last record.

2. Drive: drive field of virtual DASCR.
3., Disk Address.

4., Cylinder: If the recalibrate flag is set, then the
physical track or cylinder corresponding to logical track
(cylinder) zero; otherwise, if drive 1is =zero, then
cylinder field of command and cylinder register plus the
virtual processor base cylinder address; otherwise, the
track field of the virtual command and track register.

5. Surface: if drive is zero, then the surface field of the
virtual DASCR.

6. Starting Sector: if drive is zero, then the starting
sector field of the virtual DASCR MOD 12, otherwise, the
starting sector field MOD 8.

7. Sector Count: if drive is zero, then 16 MINUS the sector
count field of the virtual DASCR; otherwise (16 MINUS
the sector count field) MOD 9.

8. Memory Address: contents of virtual memory address
register.

9, Read/Write: contents of command field of virtual command
and cylinder register.

Page 41

The VMM now determines which portions of the wvirtual
store need to be realized prior to the virtual disk transfer,
realizes these pages, and defines an appropriate data channel
mapping for the virtual disk I/0.

The address in the virtual memory address register
corresponds to a virtual processor logical address only if
virtual data channel mapping is enabled. This is indicated by
bit omne in the virtual MMPU status word. Should virtual data
channel mapping be disabled, the address is physical. Whether
logical or physical, the starting and stopping page addresses
for the virtual disk transfer may be computed by

starting page address = virtual memory address register DIV

1024

[virtual memory address register PLUS
(disk record sector count TIMES 256)]
DIV 1024,

stopping page address

Assuming these are virtual processor physical pages, the page
descriptor for each page indicates if it is realized. If so,
a disk record mapping field may be loaded corresponding to the
page descriptor. If so0, the page fault handler is entered.
Upon completion of the page fault handling routine, the
updated page descriptor is used to load a disk record mapping
field.

If the page fault handler is to be entered, the frames of
all realized pages needed in the virtual disk transfer should
be entered on the locked list to prevent their replacement.
The previous fault instruction should be set to the current
instruction to prevent clearing of the locked 1list on first
entry. Whenever, a frame is swapped in, its frame will also
be placed on the locked list to prevent its replacement.

The VMM can determine if the entire contents of a page is
to be overwritten by a virtual disk read instruction. In this
case, if the page is not realized, the page fault handler does
not mneed to swap 1in the page after it has obtained a free
frame. To do so would be needless since the entire contents
of the page will be lost due to the virtual disk transfer.

If the starting memory address corresponds to a virtual
processor logical address, then the virtual processor physical
address of each page is determined from the wvirtual data
channel map A. If the virtual map indicates a validity
violation for a page, this information is loaded into the disk
record mapping field. Execution of the disk record by the
disk driver will result in a data channel error. This
condition dis detected by the disk process and a virtual data
channel error is simulated. Similarly, if the virtual data
channel map dindicates write protection and the virtual write
protect enable flag is set in the virtual MMPU status word,
this information should be loaded into the disk record mapping

Page 42

field.

If the data channel map contains a virtual processor
physical page address, the page descriptor is wused to
determine if it is realized. If so, the disk record mapping
field is loaded with the double mapping. Otherwise, the page
fault handler is entereds On completion, the updated page
descriptor is used to load the double mapping information.

When the disk record is finally completed, the ready bit
of the wvirtual DKP status word is cleared and the record is
sent to the disk queuer.

C: The virtual DKP busy flag, done flag, all virtual error flags,
and all virtual seek done flags are cleared. Virtual disk
transfers in progress continue.

P: Same action as S except that the virtual busy flag is not
altered and all wvirtual error flags are cleared. A read or
write operation initiated with a P while the virtual busy flag
is zero will not request a virtual dinterrupt upon I/O
completion. This command is normally dissued to initiate a
seek.

3.3.7 CDR (Card Reader) Instructions. -

A virtual processor may perform I/0 on the virtual card reader only
if it 1is mapped to the real card reader. Virtual card readers are
equivalent to real card readers in all respects except for data loss.
potential. In a real card reader, once a card enters the read station,
characters are read every 400 microseconds until the end of card is
reached. Characters must be processed at this rate to prevent data
loss. Because a program executing on a virtual processor cannot be
expected to respond to character input within 400 microseconds, the VMM
must buffer the entire card. Hence, virtual card readers do not lose
data.

When a virtual processor executes an instruction to pick a card and
read the first character, the VMM reads the entire card and stores the
contents in a buffer. Subsequent character reads by the virtual
processor only require the VMM to fetch the next character from the
buffer.

Components of the virtual store referenced by instructions
addressing CDR are:

le virtual accumulators

2. virtual CDR status word

Page 43

3. wvirtual CDR busy flag

4, wvirtual CDR done flag

The VMM also maintains an eighty character input buffer, a buffer
pointer, and a flag which is set when buffering occurs. The component
of the buffer selected by the pointer corresponds to the virtual CDR
input buffer.

The following actions correspond to transfer and control commands.

Transfer:

DIA (read column): if the WM is currently buffering a card or if
the buffer has been read, then the designated virtual
accumulator is loaded with the last component of the character
buffer. Otherwise, the buffer pointer is incremented and the
contents of the selected component are loaded into the
designated virtual accumulator.

DIB (read status): If the WM is currently buffering a card then
the ready bit of the virtual CDR status word is cleared and
the status word is loaded into the designated virtual
accumulator. Otherwise, the real CDR status word is loaded
into both the virtual CDR status word and the designated
virtual accumulator.

Control:

S: The virtual CDR busy flag is set to one and the done flag is
cleared. The buffering flag 1is set, the buffer pointer is
reinitialized, and an attempt is made to read the first
character from the real card reader. If the read succeeds, it
is loaded into the character buffer after the buffer pointer
is incremented. Should the read fail, the buffering indicator
is cleared.

C: Clear the virtual CDR busy and done flag.

P: If the end of buffer has been reached, the virtual CDR busy
flag is cleared. 1In any case, virtual done is set to one. If
interrupts are enabled for this device, an interrupt request
is pending.

Page 44

3¢.3.8 LPT (Line Printer) Instructions. -

A virtual processor may perform I/0 on the virtual 1line printer
only if it 1is mapped to the real line printer. Components of the
virtual store referenced by instructions addressing LPT are:

l. wvirtual LPT busy flag

2. wvirtual LPT done flag

3. virtual LPT character buffer
4., virtual LPT status word

The virtual character buffer and status word for this device are
directly supported by real 1line printer registers. The following
actions correspond to transfer and control commands:

Transfer:

DOA (load character buffer): the real device character buffer is
loaded with the contents of the designated virtual
accumulator.

DIA (read status): the designated virtual accumulator is loaded
with the contents of the real device status register.

Control:

S: The virtual LPT busy flag is set to one and the virtual done
flag is cleared. A real start command is issued to the real
line printer.

C: The virtual LPT busy and done flags are cleared. A real clear
command is issued to the real device.

3.3.9 TTI1 And TTOl (Second Teletype) Instructions. -

A virtual processor may perform I/0 on the virtual second teletype
only if it is mapped to the real teletype (devices TTO and TTI).
Components of the virtual store referenced instructions addressing TTIl

are:
1. wvirtual TTIl busy flag

2. virtual TTIl done flag

Page 45

3. virtual TTIl character buffer

The virtual TTIl character buffer is directly supported by the character
buffer of the real TTI device.

The following actions correspond to transfer and control commands
addressing TTIL:

Transfer:

DIA (read character buffer): The designated virtual accumulator is
loaded with the real TTI character buffer.

Control:

S: The virtual TTI1l busy flag is set to one and the virtual done
flag is cleared. A real start instruction is issued to the
real TTI device.

C: The virtual TTIl busy and done flags are cleared. A real clear
instruction is issued to the real TTI device.

Components of the virtual store referenced by instructions

addressing TTOl are:

l. wvirtual TTOl busy flag

2. virtual TTOl done flag

3. wvirtual TTOl character buffer

The virtual TTOl character buffer is directly supported by the character
buffer of the real TTO device.

The following actions correspond to transfer and control commands
addressing TTOl:

Transfer:
DOA (load character buffer): The real TTO device character buffer

is loaded with the contents of the designated virtual
accumulator.

Control:

S: The virtual TTOl busy flag is set to one and the virtual done
flag is cleared. A real start command is issued to the real
TTO device.

Page 46

C: The virtual TTOl busy and done flags are cleareds A real start
command is issued to the real TTO device.

3.4 Auto Increment/Decrement Instruction Interpretation.

If an auto increment or auto decrement instruction 1is attempted
while a virtual processor is assigned the real processor, the trap
process will be awakened. Tt must first determine if a wvirtual auto
location wviolation has occurred; such is the case if the virtual MMPU
status word indicates that virtual auto protection is enabled. If a
virtual violation is not present, the instruction must be interpreted by
the WM., The auto increment/decrement facility is supported if the
virtual processor 1is in supervisor mode (case 1) or if it is in user
mode with virtual logical page zero mapped to virtual physical page zero
(case 2). If wvirtual logical page zero is mapped elsewhere (case 3),
interpretation is required but the auto facility is not supported.

Interpretation for case one proceeds as follows. Determine the
effective data address of the trapping instruction (range 20 to 37
octal) and fetch the contents of this location from the virtual store.
If the data address was in the range 20 to 27 (octal), increment the
contents just fetched; otherwise decrement them. Store the updated
contents back into the realized virtual store. If these contents
specify an indirect address, fetch the word they point to. This process
ends when the last address in the chain is fetched. Should any link or
the final word pointed to not be realized, the page fault handler is
entered. The final address fetched is wused in the software
interpretation of the instruction.

In case two, addresses generated are virtual processor logical
addresses. Interpretation 1is the same as case one except that virtual
program maps are used to obtain virtual processor physical addresses.
If a wvirtual logical page is found to be validity protected, a virtual
validity violation is simulated. Similarly, if instruction
interpretation requires writing on a virtual logical page that is
virtual write protected, a virtual write violation is simulated.

Case three is the same as two except that the initial auto
increment or decrement 1is not performed. In all cases, the only
instructions which are candidates for interpretation are the memory
reference instructions (LDA, STA, MP, JSR, ISZ, and DSZ).

3.5 Virtual Protection Facility.

The virtual protection features of a virtual processor are enabled
only when the virtual processor is in virtual user mode and protection
enable flags in the virtual MMPU status word are set to one. Any
protection violation which occurs while the wvirtual processor is
assigned the real processor awakes the trap process. If the trap
process determines that virtual protection is enabled, then a virtual

Page 47

protection violation is supported. Virtual violation simulation begins
by fetching the address of the virtual violation handler from virtual
physical location 47. If this is an indirect address, the chain is
followed until the end. Should links not be realized, the page fault
handler is entered. The address of the virtual violation handler is
loaded into the virtual program counter, the virtual logical address of
the violating instruction is placed in the virtual violation address
register, the inhibit flag (bit 2) of the virtual MMPU status word is
set to one, and the virtual MMPU and CPU busy flags are cleared. The
virtual violation data register is loaded with the virtual logical page
address of the violation and appropriate violation flags are set.

The trap process determines virtual violations in the following
manner:

l. Virtual validity violation occurs when a virtual logical page
is mapped to virtual physical page 127 (octal) and the write
and validity protect flags of the virtual map register are set.

2. Virtual write violation occurs when a virtual logical page is
write protected and the write protect enable flag in the
virtual MMPU status word is set to one.

3. Virtual auto location violation occurs when the auto location
protect enable flag of the virtual MMPU status word is set to
one.

4., Virtual I/0 violation occurs when the I/0 protect enable flag
of the virtual MMPU status word is set to one.

5. Virtual defer violation occurs when the defer protect enable
flag of the virtual MMPU status word is set to one.

In the real processor, the following violation combinations are
possible.

auto : defer
auto : validity
defer : validity
auto : defer : validity

If the trap process detects any of these virtual violations, it also
checks for the other two to ensure that the virtual violation data
register is correct.

Explicit traps are simulated in the same fashion except that the
address of the trapping instruction is placed in virtual physical
location 46 and the virtual violation data register is not altered.

Page 48

3.6 Entry And Exit In The Trap Process.

On entry to the trap process, the state of the processor at the
time of the trap 1is saved. State includes accumulators, carry bit,
stack and frame pointers, and program counter. During the trap process,
components of the virtual store may be altered.

On exit, either the real processor is reassigned to the virtual
processor or the dispatcher process 1is awakened. If the preempt
condition is true initially, the dispatcher process 1is awakened.
Otherwise, if a wvirtual interrupt or stack fault is pending, it is
simulated. Should simulation result in a virtual mode switch or page
fault, the virtual processor is preempted and the dispatcher process is
awakened. Otherwise, the virtual processor regains the real processor.

Page 49

CHAPTER FOUR

The Dispatcher, Stack Fault, and Device Processes

4.1 The Dispatcher Process.

The dispatcher process is awakened whenever a virtual processor is
preempted. Should no wvirtual processor be in a ready state, the
dispatcher holds the processor and awaits an interrupt. Interrupts
schedule device processes which may promote virtual processors to the
ready state. In this case, return to the dispatcher results in
selection of a ready virtual processor and its promotion to running.

Whenever more than one virtual processor is ready to run, the VMM
must determine which virtual processor is to be selected and how long it
is to run. These considerations characterize the scheduling policy. It
is desirable to provide a mechanism through which a wide range of
policies may be implemented according to specified parameters. To this
end, the dispatcher process provides a round robin variable quantum
service discipline. Quanta for the virtual processors are specified by
the operator and may be changed at any time. Should a quantum be set to
zero, the virtual processor will not be preempted until a page fault or
explicit fault occurs. This scheduling mechanism allows policies
ranging from equal quantum round robin to priority round robin to first
come first serve.

Once a virtual processor is selected, promotion to running proceeds
in several steps. First, wvirtual processor state is checked for the
existence of a pending virtual interrupt or stack fault. If one exists,
it is simulated. Should a page fault result, the virtual processor is
put in the blocked state and another virtual processor is selected.

The next step is composition of a real address translation map. If
the virtual processor is in virtual supervisor mode, a real address map
is created based on the frame table. On the other hand, if virtual user
mode is present, virtual memory management must be supported. The real
address map is based on the virtual program map selected in the virtual
MMPU status word and on the page descriptors.

Promotion to running is completed by initializing the alarm clock
with the specified quantum, realizing the virtual accumulators, carry
bit, stack pointer, and frame pointer, and assigning the real processor
to the virtual processor.

4.2 The Stack Fault Process.

The stack fault process is awakened by a real processor stack
fault. Should another VMM process be executing, the real processor
stack pointer is inspected for possible overflow into virtual processor
address space. If so, the condition is communicated to the operator.

Page 50

Should a virtual processor be assigned the real processor when the stack
fault occurs, a virtual stack fault pending condition is set by the VMM.
On exit from the stack fault process, the dispatcher process is awakened
only if the end of the current time slice has been reached. Normally,
the stack fault is simulated. Should a virtual mode switch or page
fault occur during simulation, the dispatcher process is awakened. If
not, the virtual processor regains the real processor.

4,3 The QTY (Multiplexer) Process.

The multiplexer process is awakened by a real machine interrupt
from the multiplexer device. CRTs connected to the multiplexer are
potentially mapped to virtual processors, which consider them to be TTI
and TTO devices. The multiplexer process first determines if the
interrupt corresponds to successful transmission or reception of a
character and which CRT line is involved. 1In the case of transmission,
the virtual busy flag of the appropriate virtual TTO is cleared and the
virtual TTO done flag is set to one. If the virtual interrupt disable
flag for the virtual TTO device is zero, a virtual interrupt is pending.

In the case of a reception, the character received is transferred
to the appropriate virtual TTI character buffer. Virtual TTI busy is
cleared and TTI done is set to one. A virtual interrupt is pending if
the virtual interrupt disable flag of the virtual TTI device is set.

In both cases, the VMM clears the real machine interrupt condition.

4e4 The RTC (Real Time Clock) Process.

The real time clock process is awakened by a real time clock
interrupt at the rate of one thousand times per second. It serves three
functions. First, a thirty-two bit system clock is maintained which
increments every time the process is awakened. This clock overflows
approximately one and a half months after the monitor is started.
Second, it simulates virtual real time clocks by decrementing the
virtual clock counter of the running virtual processor. Should the
counter become =zero, it 1is reset according to the contents of the
virtual RTC output buffer. If the virtual RTC busy flag is equal to
one, it is cleared and and virtual RTC done is set to one. A virtual
interrupt for this device is pending if its virtual interrupt disable
flag is zero.

Finally, an alarm clock counter is maintained which times a virtual
processors time slice. This clock is initialized by the dispatcher
process and decrements as long as it is nonzero. When it becomes zero,
the running virtual processor is preempted.

Page 51

4.5 The DKP (Disk) Process

The disk process is awakened by an interrupt from the real DKP
device, signifying the completion of either a seek or read/write disk
operation. The disk driver is called to continue the disk operation
according to the current disk record, or to signal completion of a disk
transfer. Transfer completion requires further action. The disk queuer
is called to schedule another disk record if one is waiting and the used
record is returned to the record manager.

Further action is required if the last record of a page fault,
bootstrap load, or virtual disk I1/0 sequence is encountered. When a
page fault is serviced, the state of the corresponding virtual processor
is assigned ready. At the end of the bootstrap load sequence, a message
is sent to the operator verifying this condition. Finally, at the end
of wvirtual disk 1I/0, the contents of the real disc address and sector
count register, status register, and memory address register are copied
into their virtual counterparts. If the virtual DKP busy flag is equal
to one, it is cleared and virtual DKP done is set to omne. A virtual
interrupt for the virtual DKP device is pending if its interrupt disable
flag is equal to zero.

4.6 The CDR (Card Reader) Process.

The card reader process is awakened by an interrupt from the real
card reader. Interrupts from this device occur only when the WM is
reading a card for a virtual device. The character just read is stored
in the selected component of the character buffer after the buffer
pointer is incremented. If the end of card is reached, the buffering
indicator is cleared, the buffer pointer is reset, virtual CDR busy is
cleared, and virtual CDR done is set to one. A virtual interrupt 1is
pending for the virtual CDR device if its interrupt disable flag is set
to zero. If the end of card is not reached, an instruction is issued to
the real card reader to set up an interrupt when the next character is
read.

4.7 The LPT (Line Printer) Process.

The line printer process is awakened by an interrupt from the real
line printer. Virtual LPT busy is cleared and virtual LPT done is set
to one. A virtual interrupt is pending for this device if the virtual
LPT disable flag is set to zero.

4.8 The TTO And TTI (Teletype) Processes.

These processes are awakened by interrupts from the real TTO and
TTI devices. These real devices are potentially mapped to the virtual
second teletype (TTOl and TTIl) of a virtual processor. For each
device, if virtual busy is cleared and virtual done is set to one. A

Page 52

virtual interrupt is pending if the corresponding virtual device (TTO1
or TTI1) interrupt disable flag is zero.

4,9 The TTOl And TTI1 (Second Teletype) Processes.

These processes are awakened by interrupts from the real TTOl and
TTI1 devices. These devices correspond to the real second teletype,
which serves as the WM operator’s console. The three basic functions
are operator console communication, system generation, and command line
interpretation.

4.,9.1 Operator Console Communication. =~

Communication with the VWM operator’s console is performed through
an input and an output buffer. Typing a character on the comnsole
keyboard causes an interrupt, which awakens the TTOl process. The
character 1is echoed and stored in the input buffer. A carriage return
specifies the end of line; the input buffer is processed as either a
system generation input or a command line.

Output is performed by loading a message in the output buffer and
printing the first character. At this point, the keyboard is locked to
prevent character echoing in the output line. When a character is
printed, an interrupt awakes the TTOl process, which prints the next
character in the buffer. When the last character 1is printed, the
keyboard is unlocked. The TTOl process 1is not awakened after the
printing of an echo character.

4,9.2 System Generation. -

When the virtual machine monitor is started, several parameters
need to be specified. These are the number of virtual machines desired,
a frame partition size for each virtual machine, and a default quantum.
As a response to each query is given, the TTIl process executes a
program which loads system tables. A response is not accepted unless it
is considered to be legal. Responses are free format.

4,9.,3 Command Line Interpretation. -

Once the system is generated, further inputs are considered to be
command lines, of which there are three types. First, there are
commands which cause simulation of virtual CPU console functions. Next,
there are commands which control allocation of real devices. Finally,
there are commands which serve other functions. A command line 1is
interpreted only if it is syntactically and semantically legal. All
commands are free format. Complete syntax diagrams are given in
Appendix C.

Page 53

4,.9.3.1 Virtual Console Simulation. -

A real processor normally has a front panel which permits various
functions to be performed. In order to provide these functions for
virtual processors, the commands must be entered at the WMM operator’s
console. Keywords are used to distinguish commands. Given below is a
list of available commands. For each command, its keyword, syntax, and
function is given.

1. Loadswitches: LOAD <virtual processor> <number>: The virtual
data switches of the designated virtual processor are loaded
with the specified number.

2. Readswitches: READ <virtual processor>: The content of the
virtual data switches of the designated virtual processor are
printed.

3., Register Deposit: REGD <virtual processor> <register>: The
contents of the virtual data switches of the designated virtual
processor are loaded into the designated virtual register.
Possible virtual registers are ACO, AC1, AC2, AC3
(accumulators), SP (stack pointer), FP (frame pointer), and PC
(program counter).

4, Register Examine: REGE <virtual processor> <register>: The
contents of the designated virtual register of the designated
virtual processor are printed out.

5. Deposit into Memory: DEP <virtual processor>: The contents of
the virtual data switches of the designated virtual processor
are loaded into the location pointed to by the virtual program
counter. Memory reference commands are interpreted only if the
program counter is in the range 0..1023.

6. Deposit into Next Memory: DEPN <virtual processor>: The
virtual program counter of the designated virtual processor is
incremented. The contents of the virtual data switches are
loaded into the 1location pointed to by the virtual program
counter,

7. Examine Memory: EX <virtual processor>: The contents of the
virtual data switches of the designated virtual processor are
loaded into the the virtual program counter. The contents of
the program counter and the contents of the location it points
to are printed out.

8. Examine Next Memory: EXN <virtual processor>: The wvirtual
program counter of the designated virtual processor is
incremented. The contents of the virtual program counter and
the contents of the location it points to are printed out.

9, Start: STAR <virtual processor>: If the designated virtual
processor is terminated, the contents of the specified virtual
switches are loaded into the virtual program counter and the
virtual processor is promoted to ready.

Page 54

10. Stop: STOP <virtual processor>: The state of the virtual
processor 1is set to terminated. If it is currently running or
interpreting, it it preempted.

11. Continue: CONT <virtual processor>: If the designated virtual -
processor is terminated, it is promoted to running.

12. Reset: RESE <virtual processor>: The state of the designated
virtual processor is set to terminated. If it is currently
running or interpreting it is preempted. All virtual busy and
done flags and virtual interrupt disable flags are cleared.

4.9.3.,2 Device Allocation Control. -

The operator must have some means of mapping real devices to
virtual devices. Specifically, the 1line printer, card reader,
multiplexer CRTs, second teletype, 6030 diskettes, and 4234 disk
cylinders must be allocated. Three commands are used to control device
allocation. These are:

1. Allocate Device: ALLO <virtual processor> <device> [<number>]:
The designated device is allocated to the designated virtual
processor. A device may be allocated to only one virtual
processor at a time. Available devices are LPT, CRT, QTY
(teletype), TTYl (second teletype), DKPO (4234 disk), DKPl
(6030 diskette), and DKP2 (6030 diskette)., In the case of QTY
allocation, the number indicates which QTY is allocated. In
the case of DKP0, the number specifies the number of cylinders.
to be allocated. This number cannot be greater than the number
of available cylinders. Once cylinders are allocated, they
cannot be released, nor can the size of the allocation be
changed.

2. Release Device: RELE <virtual processor> <device> [<number>]:
The designated device is released from the designated virtual
processor. A device may be released only if it 1is currently
allocated to the selected virtual processor. DKPO cylinders
may not be released. In the case of QTY, the number indicates
which CRT is to be released.

3. Owner of Device: OWN <device> [<number>]: Prints out the
number of the virtual processor which owns the designated
device or the message NOT ALLOCATED., In the case of QTY, the
number indicates which CRT is selected. In the case of DKPO,
the number designates a virtual processor and the number of
cylinders allocated is printed out.

Page 55

4.9.3.3 Other Commands. -
Several other commands serve various functions. These are:
l. Decimal: DEC: Set the input/output radix to ten.
2. Octal: OCTA: Set the input/output radix to eight.

3. Show: SHOW <number>: Print out the value of the designated
show wvariable. These variables are counters which may be
incremented at any point of program executed by a WM process.
They can indicate various kinds of information, such as the
number of preemptions or page faults a virtual processor has
experienced.

4., Quantum: QUAN <virtual processor>: Set the quantum of the
designated virtual processor to the specified number.

5. Boot: BOOT <virtual processor> <number>: Transfer the
specified number of pages from a 6030 diskette to the disk
which holds the virtual store. Page zero is transferred into
the appropriate frame in real main memory.

4,10 Entry And Exit From Device And Stack Fault Processes.

Upon entry to a device or stack fault process, the state of the
real processor at the time of the interrupt or stack fault is saved.
The program counter is recovered from real processor physical location
Zero. A counter is also incremented which indicates how many levels of
interrupts are present.

Upon exit, several possibilities exist. If the stack fault or
device process put another VMM process to sleep, it is reawakened.
Otherwise, the virtual processor may need to be reassigned the real
processor. First, the virtual processor is checked for the preempt
condition., If it exists, the dispatcher process is awakened. If it is
not preempted, the virtual store is checked for the presence of a
pending stack fault or interrupt. Should it be necessary, the stack
fault or interrupt is simulated. If simulation results in preemption
due to virtual mode switch or a page fault, the dispatcher process is
awakened. If the dispatcher 1is not awakened, the virtual processor
regains the real processor.

Page 56

CHAPTER FIVE

Implementation of the Virtual Machine Monitor

5.1 Introduction.

The structure of the virtual machine monitor has been defined in
the preceeding chapters. If the design goal has been achieved,
implementation should proceed in a straight forward fashion.

There are four implementation issues to be considered. First, what
programming language 1is to be used? Second, how are processes to be
scheduled? Third, what system tables and variables are needed?
Finally, what programs are required to implement the functions of VMM
processes?

5.2 Systems Programming Language.

The virtual machine monitor is implemented in a version of PASCAL
developed for the Nova 3/D at the University of Texas at Austin.
Several papers [12] [13] [14] describe the compiler and procedures for
its use. The compiler translates PASCAL source code into the Nova macro
assembly language, producing only innocuous instructions. Nova PASCAL
is suitable for systems programming due to the following features:

1. All object code is generated in 1line, hence, no run time
support is required.

2. Actual parameters and local variables are maintained on a
stack, thus, procedures and functions may be coded in a
reentrant fashion.

3. Assembly language may be embedded within PASCAL source lines,
allowing the programmer to access all machine instructions.

4, Names of global wvariables and top level procedures and
functions are wused literally in code generation, permitting
easy access to PASCAL defined objects by assembly language
code.

Several features available in standard PASCAL are omitted in Nova
PASCAL for reasons described in [14]. According to [14], omitted
features are

l. floating point numbers

2. user defined scalar types

Page 57

3. pointers

4, sets

5. multidimensional arrays

6. FOR, CASE, and WITH statements

7. input/output statements

8. most system functions and procedure calls
9. GOTOs and labels

Omissions (2), (5), and (6) may be overcome by suitable programming
techniques. Input/output is accomplished by writing assembly language
I1/0 routines.

In some cases, it is necessary to load the contents of a PASCAL
defined variable into an accumulator before an assembly language
instruction using that accumulator is issued. Similarly, it dis often
necessary to load a PASCAL variable with the result of an assembly
language instruction. So that it does not interfere with compiler
generated code, this type of assembly code is encapsulated in procedure
and function bodies. In this way, the relation between generated and
non generated assembly code may be well understood.

5.3 Process Scheduling.

All VMM processes are scheduled by the Nova hardware. The address
of the entry program for device processes is put in location 000001
(octal). The address of the entry program for the stack fault process
is put in location 000003. Finally, the address of the entry program
for the trap process is put in location 000047. Whenever an interrupt,

stack fault, or trap occurs, the hardware initiates execution of the
appropriate entry program.

5.4 Systems Variables.

The following system variables are needed by the programs to be
described.

l. currentvm: Number of currently running virtual machine.
2. numbervm: Number of virtual machines in the system.
3. clock: Alarm clock which times virtual processor time slices.

4. ltime: Low order bits of the system clock.

5.

6.

7

8.

10.

11,

12.

13.

14.

15.

16.

17.

18.

19.

utime: High order bits of the system clock.

prempt: Flag which indicates that current virtual
should be preempted.

ch: Character fetched from input buffer.

token: Type of token fetched from input buffer.
value: Value of token fetched from input buffer.
radix: Input/output radix of'console communication.
genstate: State of system generation.

invmm: Flag indicating trap or dispatcher process
awakened.

ilevel: Counter for stack fault/interrupt level.

Page 58

machine

has been

trap: Flag indicating explicit trap instruction was executed.

aviol: Flag indicating auto violation occurred.
dviol: Flag indicating defer violation occurred.
iviol: Flag indicating I/0 violation occurred.

vviol: Flag indicating validity violation occurred.

mviol: Flag indicating which program map was selected when

violation occurred.

5.5 Systems Tables.

The following system tables are needed. These data structures are

arrays.

1.

2.

3.

4

5.

6.

istack: Stack for saving program counter after interrupt.

inbuff: Input buffer for console communication.
outbuff: Output buffer for console communication.
lex: Lexical table indicating type of all characters.

vmstate: Holds state of all virtual processors.

vm: Holds virtual accumulators, stack pointer, and frame

pointer for each virtual processor.

7.

9.

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

Page 59

vml: Holds the virtual processor store not in vm as well as
virtual MMPU registers, TTO registers, TTI registers, RTC
registers, and DKP registers.

vmpa: Holds virtual program map a for each virtual processor.

vmpb: Holds virtual program map b for each virtual processor.

vmda: Holds virtual data channel map a for each virtual
processor.

vmdb: Holds virtual data channel map b for each virtual
processor.

iostate: Holds virtual registers for the virtual CDR, LPT,
TTI1l, and TTOl.

qtyalloc: Indicates owner of each CRT.
qtyown: Indicates CRT owned by each virtual machine.

ioalloc: Indicates owner of virtual devices LPT, CDR, DKP1,
DKP2, and TTYl.

dkpOalloc: Indicates 4234 cylinder allocation of each wvirtual
machine.

show: Counters supporting SHOW functiomn.
ft: Frame table.

locked: Locked bits.

dirty: Dirty bits.

fbase: Indicates first frame of frame partition for each
virtual machine.

fsize: Indicates the size of the frame partition for each
virtual machine.

falloc: Indicates the number of frames used for each virtual
machine.

flocked: Indicates the number of frames locked for each
virtual machine.

pd: Page descriptors for each virtual machine.
rw: Reserved word list.

rwtype: List of values for reserved word tokens.

Page 60

5.6 Programs.

Programs are resources of processes; several processes may share
the same program or may even execute the same program concurrently
provided that it is reentrant. All shared programs of the WM are
reentrant. Because the Nova VMM is a subject of research, programs
implementing it are likely to be modified. If the VMM is well designed,
these changes will concern the means of implementing a function rather
than the definition of the function itself. In this discussion, only a
description of the function of WMM programs will be given. Program
listings should be consulted for an exact implementation specification.
As the majority of the code is written in PASCAL and adheres to standard
conventions, it should not be difficult to follow.

5.6.1 Assembly Language Programs. -

The following code is written in assembly language.

Device process entry routine: Saves current processor state and
calls main program of the device process. Depending on which
device process is awakened, PASCAL defined variables may be
loaded with different components of real machine state.

Stack fault process entry routine: Saves current processor state
and calls main program for stack fault process. This program
is the same as the device entry routine except that it has a
different entry point.

Device and stack fault process exit routine: Returns processor to
another stack fault or device process program, the dispatcher,
or a virtual processor. Return to dispatcher requires that
the state of the virtual processor be saved. Return to the
virtual processor requires calling of a program to test for
and simulate virtual stack faults and interrupts.

Trap process entry routine: Saves virtual processor state and
loads selected MMPU registers into PASCAL defined variables.
Calls the trap process main program.

Trap process exit routine: Returns processor to the dispatcher or
a virtual processor. Return to virtual processor requires
calling of a program to test for and simulate virtual stack
faults and interrupts.

Stack initialization routine: Initializes the real processor stack
and frame pointers as well as the interrupt stack. Executed
by the initialization process.

Page 61

5.6.2 Initialization Programs. -

The following programs are executed by the initialization process.

Procedure initl: Initializes the lexical table and the reserved
word liste.

Procedure enterrw: FEnters words in the reserved word list.

Procedure init2: Initializes all system variables and tables.

5.6.3 Dispatcher Programs. -

The following programs are executed by the dispatcher process.

PASCAL main program (following DISP 1label): Selects a ready
virtual processor and promotes it to running.

Procedure supermap: Composes a real address translation map in
program map A using information in the frame table.
Prerequisite to starting a virtual processor in virtual
supervisor mode.

Procedure usermap: Composes a real address translation map in
program map B using information in a virtual program map and

the page descriptors. Prerequisite to starting a virtual
processor in virtual user mode.

5.6.4 TTIl Programse. -
The following programs are executed by the TTIl process.
Procedure pttil: Main program of the TTIl1 process. Handles
console communication input and calls programs for command

line interpretation and system generation.

Procedure legaltoken: Semantic routine which tests legality of
input .

Procedure cli: Interprets command lines; calls other programs to
interpret most commands.

Function showfunction: Interprets the SHOW command.

Function ownfunction: Interprets the OWN command.

Page 62

Function bootfunction: Interprets the BOOT command.

Function clifunction: Interprets the virtual console commands and
the RESET and ALLOCATE commands.

Procedure sysgen: Initiates the printing of system generation

queries and the interpretation of inputs. This program may
also be executed by the TTOl process.

5.6+.5 Console Communications Programs. -

The following programs perform operation on the input and output
buffers. They may be executed by the TTIl or Trap processes.

Procedure putin: Place a character in the input buffer.

Procedure writec: Place a character in the output buffer.

Procedure writeln: Call writec to place a carriage return and line
feed in the output buffer.

Procedure prompt: Call writeln; call writec to place a star in
the output buffer.

Procedure writes: Call writec to place a string in the output
buffer.

Procedure writen: Call writec to place a numeral in the output
buffer,

Procedure sendobuff: Initiate printing of the output buffer.

Procedure nextch: Fetch a character from the input buffer.
The following program may be executed by the TTOl or Trap process.
Procedure putch: Waits for TTOl device to become idle and prints a

character.

5.6.6 Syntactic Programs. -

The following programs are used to scan the input buffer and fetch
tokens. They are executed by the TTIl process.

Procedure getoken: Fetch the next token from the input buffer.

Page 63
Procedure getnumb: Fetch a numeral from the input buffer and
convert it to a number.

Procedure getid: Fetch an identifier from the dinput buffer and
look it up in the reserved word list.

5.6.,7 Disk Subsystem Programs. -
The following programs comprise the disk subsystem and may be
executed by the TTIl process, the trap process, and the DKP process.
Procedure diskdriver: Performs disk I/0 based on a disk record.

Procedure enterqueue: Places a disk record in the disk record
queue.

Procedure scheduledisk: Schedules a disk I/0 if the disk is idle.
Procedure getrecord: Obtains a free disk record.
Procedure releaserecord: Frees a disk record.

Function Availrecord: Indicates if any disk records are free.

5.6.8 Page Fault Handling Programs. -
The following programs are used to handle page faults. They may be

executed by any process.

Procedure faulthandler: Generates the disk records for swapping
pages in and out. Updates page descriptors. Implements the
replacement algorithm.

Procedure clearlocks: Clears the locked list of a virtual machine.

Procedure enterlock: Enters a frame on the locked 1list of a
virtual machine.

Procedure setlock: Prevents clearing of locked list on execution
of faulthandler.

Page 64

5.6.9 Device Process Main Programs. -

The following programs are main programs for device processes.

Procedure pttol: Handles operator console output communication.

Procedure prtc: Simulates the actions of the virtual real time
clocks and handles the end of a time slice. Due to
performance considerations, the incrementing of the system
clock and the decrementing of the alarm clock is handled by
the rtc process entry routine.

Procedure pqty: Simulates the actions of wvirtual TTO and TTI
devices.

Procedure pdkp: Initiates scheduling of the disk, simulates the
actions of virtual disks, completes the handling of page
faults and bootstrap loading, and continues incomplete disk
1/0.

Procedure plpt: Simulates the actions of the virtual line printer.

Procedure pcdr: Simulates the actions of the virtual card reader.

Procedure ptto: Simulates the actions of the virtual TTOl device.

Procedure ptti: Simulates the actions of the virtual TTIl device.

5.6.10 Trap Process Programs. -

The following programs are executed by the trap process.

Procedure ptrap: Main program of the trap process. Initiates the
handling of page faults detected by validity violations,
interprets sensitive instructions, simulates the auto location
facility, and simulates virtual traps. Other programs are
called to implement some of these functions after ptrap has
determined what to do.

Procedure simultrap: Simulates a virtual trap due to a virtual
protection violation or a virtual explicit trap.

Procedure simulauto: Simulates the auto increment/decrement
facility.

Procedure simulmri: Simulates the execution of memory reference
instructions.

Page 65

5.6.11 Other Programs. -
The following programs may be executed by any process.
Procedure savst: The state of a virtual processor is saved in its
virtual store.
Procedure isfts: The name of this procedure stands for Interrupt

Stack Fault Test Simulate. Tests for a pending interrupt or
stack fault and simulates if required.

Page 66

APPENDIX A

How to Run Systems Program on the Nova

Systems programs, which require a basic machine interface, may be

booted

in and run by means of RDOS (real time disk operating system)

facilities. The steps for running a systems program are:

1.

2.

Generate an assembly language source program. This is done by
actually writing assembly language, compiling a PASCAL program,
or both., SPEED or MEDIT may be used to edit the program text.

Assemble the source program using the Nova Macro Assembler.
Output from the assembler is relocatable binary. The RDOS
command for assembling a program and producing an output
listing on the line printer is

MAC <filename>.SR SLPT/L

The standard extension for assembly language files is SR. The
RB extension is given to relocatable binary files.

Create a save file by loading the relocatable binary file. The
command for loading a systems program is

RLDR/Z/I <filename>.RB

The Z switch is used to force loading of the save file to begin
at location zero. The I switch prevents loading of routines
and tables needed by programs running under RDOS. Output from
the loader is a save file having the extension SV.

Boot the save file into core. In this operation, the core
resident portion of RDOS is replaced by the save file, which
must be in primary partition DPO. The command for booting in a
save file is:

BOOT DPO

RDOS responds by requesting the name of the save file. The
dialogue is:

MASTER DEVICE RELEASED
FILENAME? <filename>.SV

RDOS may then say:

PARTITION IN USE
TYPE C TO CONTINUE

When C is typed, the word CONTINUE is echoed and the processor
dies.

5.

6.

Page 67

It is possible that RDOS will refuse to boot in the save
file and will complain that an overlay file (<filename>.OL)
does not exist. This is known to occur if the save file
specifies a value for location five or if no values are
specified in the first 256 locations. Programs of this nature
should be avoided due to this RDOS error.

Set the data switches to the starting address.

Hit the RESET and START switches.

Page 68

APPENDIX B

How to Run the Virtual Machine Monitor

The following dialogue exemplifies the wuse of the UT wvirtual
machine monitor. Upper case letters designate output from the computer.
Lower case letters designate input by a human operator. Comments which
explain the example dialogue are enclosed in slashes. The keyword of
each command is identified by the first four letters of the command.

/ RDOS dialogue to start system at real machine first teletype (TTY) /

boot dpO

MASTER DEVICE RELEASED

FILENAME ? vmm

PARTITION IN USE - TYPE C TO CONTINUE
CONTINUE

/ set data switches to 000002 , hit RESET, hit RUN; the following
dialogue occurs on the real machine second teletype (CRT) /

U.T. AUSTIN NOVA 3/D VIRTUAL MACHINE MONITOR VERSION 1.0
SYSTEM GENERATION - ENTER DECIMAL VALUES
NUMBER OF VIRTUAL MACHINES ? 4

/ four virtual machines are created /

QUANTUM (MS) ? 50

FRAME ALLOCATION

40 FRAMES LEFT
ALLOCATION FOR W 0 ? 15
25 FRAMES LEFT
ALLOCATION FOR WM 1 ? 10
15 FRAMES LEFT
ALLOCATION FOR W 2 ? 8
7 FRAMES LEFT
ALLOCATION FOR WM 3 ? 7

/ system generation is completed; the monitor now prompts the operator /
*boot 0 15

/ the virtual store of vm 0 is booted into the system; a message signals
completion /

BOOT COMPLETE
*boot 1 10
BOOT COMPLETE

/ device allocation /

%3110 0 qty O
*allo 1 qty 1

*allo 5 qty 2
ERROR

*allo 0 dkp0 100
*own qty O

0

*own qty 1

1

*own qty 2
NOT ALLOC

*own dkpO O
100

*own dkpO 1

0

*allo 1 lpt
*own lpt

1

*release 1 1pt
*own lpt

NOT ALLOC

Page 69

/ a reference to a non existing vm is an error /

/ allocate 100 4234 cylinders to vm 0 /

/ the following commands will start vm 0 at location 64 /

*load 0 000064
*#read O
000064
*octal
*read 0
000100
*reset
*status 0
TERMINATED
*start 0
*status O
RUNNING
*stop O
*status 0
TERMINATED

/ the registers of vm 0 are examined /

*rege 0 acO
000000
*rege 0 acl
000001
*rege 0 sp
000200

/ registers may be altered /

*1oad 0 000007
*regd 0 acO
*rege 0 ac0
000007

/ the WM is terminated by hitting the STOP switch on the front panel /

Page 70

APPENDIX C

Syntax Diagrams for the VMM Command Language

In these diagrams, nonterminals are enclosed in angle brackets

and terminals are set in upper case.

< number > < vp >
——fT— < digit >-—]———— — < number > —————
< register > < device >
—— ACO — —QIY —
ACl TTY 1~
AC2 ——— LPT ol
AC3 ~ —t— (DR e
SP o DKP (O ——
FP)) 4 2 T
h PC 4 —— DKP2 ——

< device command >

ALLO
RELE

OWN

< device > {g
< number >-J

< front panel command >

- STAR

STOP

RESE

CONT

- READ

LOAD

REGE

b REGD

EX

EXN -

DEP

- DEPN

< support command >

P

DEC

<

<

vp

vp

VP

vp

vp

vp

vp

vp

vp

vp

vp

vp

>

>

>ww— < number >
>—< register >

>— < register >

>

>

Page 71

OCTA

e

SHOW —— < number >
QUAN — < vp >

BOOT —— < vp >— < number >/

< vmm command >
< device command >
-< front panel command >

< support command >

1.

2.

3.

6.

7.

8.

9.

10.

11.

12.

13.

Page 72

BIBLIOGRAPHY

Bagley, J.D., Floto, E.R., Hsieh, S.C., and Watson, V. "Sharing
Data and Services in a Virtual Machine System", Operating
Systems Review, Vol. 9, No. 5 (1975), pp. 82-88.

Belpaire, G. and Hsu, N.-T. '"Formal Properties of Recursive
Virtual Machine Architecture", Operating Systems Review, Vol 9,
NO. 5 (1975), pP. 89”96.

Brinch Hansen, P. Operating System Principles. Prentice-Hall,
Englewood Cliffs, New Jersey (1973).

Buzen, J.P. and Gagliard, U.O. "The Evolution of Virtual
Machine Architecture", National Computer Conference
Proceedings, AFIPS Press, Vol. 42 (June 4-9, 1973), New York.

Data General Corporation. "Programmer’s Reference Manual: Nova
Line Computers", No. 015-000023-03, Rev. 3, Westboro, Mass.
(January, 1976).

Data General Corporation. '"User’s Manual: Introduction to
Programming the Nova Computers", No. 093-000067-01, Rev. 1,
Westboro, Mass. (September, 1972).

Data General Corporation. "User’s Manual: Programmer’s
Reference: Peripherals.”"” ©No. 015-000021-04, Rev. 4, Westboro,
Mass. (January, 1977).

Goldberg, Robert P. "Survey of Virtual Machine Research', IEEE
Computer, Vol. 7. No. 6 (June, 1974), pp. 34-45.

Goldberg, Robert P. "The Architecture of Virtual Machines",
National Computer Conference Proceedings, AFIPS Press, Vol. 42
(June 4-9, 1973), New York, pp. 309-318.

Meyer, R.A. and Seawright, L.W. "A Virtual Machine Time-Sharing
System'", IBM Systems Journal, Vol 9, No. 3 (March, 1970), pp.
199-218.

Parmlee, R.P., Peterson, T.I., Tillman, C.C., and Hatfield,
DoJe. '"Virtual Storage and Virtual Machine Concepts", IBM
Systems Journal, Vol. 11, No. 2 (February, 1972), pp. 99-130.

Peterson, James L. "A Compiler for a PASCAL-Like Language."
Systems Programming Laboratory Note 1, Department of Computer
Sciences, University of Texas at Austin (August, 1977).

Peterson, James L. "Code Generation for a PASCAL Compiler for a
Nova Computer", Systems Programming Laboratory Note 2,
Department of Computer Sciences, University of Texas at Austin
(Septemper, 1977).

i4.

15.

16.

Page 73

Peterson, James L. '"Using PASCAL on the Novas", Systems
Programming Laboratory Note 4, Department of Computer Sciences,
University of Texas at Austin (January, 1978).

Popek, Gerald J., and Goldberg, Robert P. "Formal Requirements
for Virtualizable Third Generation Architectures', CACM, Vol.
17, No. 7 (July, 1974), pp. 412-421.

Popek, G.J. and Kline, C.S. "The PDP 11 Virtual Machine
Architecture: A Case Study", Operating Systems Review, Vol. 9,
No. 5 (1975), pp. 97-105.

