USING DEBUG TOOLS TO HELP PRODUCE
CORRECT PROGRAMS

by

William D. Clifford

May 1978 TR~79

This work was supported in part by the National Science Foun-
dation under Grant MCS75-16425,

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

ABSTRACT

This paper is concerned with the problems of producing correct
software. More specifically it is concerned with some tools, in the
form of computer programs, which can reduce the amount of effort
necessary for the production of correct software. Techniques for
developing and writing correct code are briefly presented. Methods (and
tools) for determining the correctness of this software are discussed.
Dynamic analysis, an important but often neglected area, is discussed in
detail, including some examples of current work. A debug tool is
proposed, implemented and evaluated.

This paper is a revision of a Master's Thesis of the same title.

TABLE OF CONTENTS

1.0 INTRODUCTION «uvcevmnseneenenneoesssnennesnasnnsenscnensesnannsns 1
1.1 PROBLEM STATEMENT & evvvennsecncacnnnsansssanssssesenseeensnnnns 1
1.2 PURPOSE OF THIS PAPER vevvcuviunnnnoneccensenns e, 2

2.0 WRITING CORRECT SOFTWARE «ovuvvuvrnvnocnnnnsnncns e, 2

3.0 METHODS FOR DETERMINING CORRECTINESS +evvvreconcccnvcnennacnennnns 3
3.1 TESTING veveveocccncncnnonannannnsnces et eateereeee e 3

3.1.1 EXHAUSTIVE TESTING +uuvvveecrvronnonoossesnasnassoncscceceacens 3
3.1.2 PROCRAM STRUCTURED TESTING ...ovev.n. e e, 4
3.1.3 DATA STRUCTURED TESTINGccevnn. e eeecaeerer e 5
3.1.4 RANDOM TESTING +eeeuvveenessnns- e, 3
3.71.5 HOW MUCH TESTING? wuoveeerccsonnnnnsesanseanannoononosss veee. D
3.2 STATIC ANALYSIS tvuveenvencncrnrannseronsesssnssascanss e 6
3.2.1 TYPES OF STATIC ANALYSIScccecvn- e reeeeeeeeaeeeaan 6
3.2.2 BENEFITS OF STAfIC ANALYSIS wecvennn e e 8
3.2.3 PROBLEMS WITH STATIC ANALYSIS wevencevvecroenannnancnennce. 10
4.0 WHAT TO DO WHEN A PROBLEM IS DISCOVERED DURING EXECUTION? 10

" 4.1 TYPES OF DYNAMIC ANALYSIS e eeeececeneceaenean e 11
4.2 PROBLEMS WITH DYNAMIC ANALYSIS +euvevecsnccncenconncanncaconse 12
5.0 DEBUG TOOLS «uveveevonnncceosnnssanacessonnnrnsenns T 13

5.1 TYPES OF FEATURES PROVIDED BY DEBUG TOOLSovneeeneonnennn. 13
5.2 LIMITATION OF INTEREST; 14
5.3 WHY EMPHASIZE DEBUC TOOLS AT ALL? .eoeeinnunnmmenncmenanoennns 14
5.4 PERFORMANCE MEASUREMENT VERSUS DEBUGGING ...ovvvrinvnennennnnn 15

iifi

6.0 IMPLEMENTATION OPTIONS FOR A DEBUG TOOL UTILITY .ceeeresenennenn. 15

7.0 ACCESS METHODS tvvvuvrnarnnacecrosasnssssesenessnmmosancscnncses 16
8.0 USER/DEBUG TOOL INTERFACEccvvvecccenmenersrenocccomsnessn, 17
9.0 SURVEY OF CURRENT WORK .cccevinrnennrermmonnronenrnesmemecesss 17
10.0 THE DESIGN OF A DEBUG TOOL «..vvenrocenearaacvrnrenrocscrccnses 22
10.1 ENVIRONMENT cevvevcnonmncassnsnsoncosossnsasenesnsessonccssne-. 22
10.2 WHY WAS HOPE NECESSARY?vecescrcncccnces esereemametrcenna 22
10.3 DESIGN GOALS- s ecesescscusnsnsassennanans teenseereean 22
10.4 USER/DEBUG TOOL INTERFACE ...covverenvcennnmmrercrenreosroes 23
10.4.3 BASIC LANGUAGE DEFINITIONS ..c.vevccroccccernnvonnres A |
10.4.2 IMMEDIATE COMMAND SYNTAX ..cecesceconscnnnrncs cecsennnonens 24
10.4.3 DEFERRED COMMAND SYNTAXccecevcvccccncces cesar e 25
10.4.4 ADDITIONALlSYNTAX RULES vvoeevensosvssancsonnecnssssssonas 25
10.4.5 COMMAND SEMANTICS ..c.eccccvacacccrncnnecans e ceere.. 26
10.5 USER PROGRAM/DEBUG TOOL INTERFACE ccvocraacraoncrenvocraccsns 32
10.5.1 TRANSPARENT MODE .ccecvrenonnccennnmmcacnrrcmmocncorscrsres 32
10.5.2 SEMI~TRANSPARENT MODEcc0ve-ve- ceseecsenee . 32
106.5.3 FILES USED BY HOPE et eeeeecasesreeses s eannn 35
10.5.4 USER PROGRAM/OPERATING SYSTEM INTERFACE ..cocccecneccerans 35
11.0 IMPLEMENTATION eencessesenssesr e cetesereroecosaarens 36
11.1 LANGUAGE PACKAGEcecnervvnmornmnneonennaecncccrres EEREEREE 36
11.2 MESSAGES ..ccevesecvocecean freseeeesecssesasanccre e ae e 36
11.2.1 DIAGNOSTIC MESSAGESeevencrerrnrrevnmmorrrr e 36
11.2.2 INFORMATIVE MESSAGES ...c.cvvennvnrrormnnnnmroeesmononees 37
11.3 COMMAND PROCESSING ..cvcvvrnerurnrumernrenmmmmoemsssesrsees 38

iv

11.4 INDIVIDUAL COMMAND IMPLEMENTATION ...vevncreenenennerenennnn. 38

11.5 RESTRICTIONS AND LIMITATIONS .o cunvvesnnernsnnennenenenaeen. 40
11.6 IMPLEMENTATION PROBLEMS ...t ieceeesrsoennanecsconenannancnnns 41
11.7 ANOTHER TMPLEMENTATTON OPTION .o vennsunnennasnscnreanaenennns 43
11.8 VIRTUAL MACHINES « e vnnennennne e e s aeaee e eeeaeaenennss 43

12.0 EXAMPLES OF USE + o v vnnsnnse e e e e e e ee e e 45

13.0 CONCLUSTON -+t v nsemnn e see e e e e e e e e e e e ae e e e e 45
13.1 HOW DOES HOPE COMPARE WITH OTHER DEBUG TOOLS? +uvewe-.. e 49
13.2 WERE THE DESIGN GOALS MET? e 49
13.3 WHAT NEEDS TO BE DONE FOR THE FUTURE? «uuevenernennennnennnn. 50

14.0 BIBLIOGRAPHY -+ nuennennenennenneennnns e 52

10.

11.

TABLE OF FIGURES

FLOWCHART SEGMENT FOR DATA FLOW ANALYSIS ..cceervcvnnannssennn, 9
EXAMPLE OF EXCHANGE PACKAGE DUMP ..c.cvinrraccerireeneneecnnns 27
FXAMPLE OF MEMORY DUMP ..ot vvivncnnoncscancoanarossasssmecssennn 27
EXAMPLE OF STEP AND TRACE OUTPUT ..c.cuvenrecncrrecnecesnncenas 29
EXAMPLE OF LIST OUTPUT ..c.neinnrunnrnnererenreesenannaesnooecnn 29
MEMORY LAYOUT FOR TRANSPARENT MODE ...ccvcevnereeccrcercccscnson 33
MEMORY LAYOUT FOR SEMI-TRANSPARENT MODE ...ccvviievvevacanrennns - 34
MEMORY LAYOUT FOR SUB-CONTROL POINT MODEcecvcvonncnernnnen 44
EXAMPLE OF MONITORING ALL RA+1 REQUESTS FOR A PROGRAM 46
EXAMPLE OF MONITORING ALL I/O REQUESTS FOR A GIVEN FET vvennn. 47
EXAMPLE OF USING THE STEP COMMAND TO AID IN DESK CHECKING 48

vi

TABLE OF APPENDICIES

A. THE USE OF GENBUG ...ttt errirsansrscesoancecssacncansene 55
B. FLOYD-EVANS PRODUCTIONS ...iiveiennnresnnnenascncnsccnconesns 56
C. DEFINITION OF TABLE AND BUFFER SIZES- e 60
D. SAMPLE JOB TO USE THE DEBUG TOOL IN SEMI-TRANSPARENT MODE ... 61

SUBROUTINES FOR TESTING EXAMPLE

vii

1.0 INTRODUCTION

This paper begins by presenting a problem common to computer
software: correctness, Chapters 2,3, and 4 outline methods for
preventing and detecting problems with the software before it is
delivered to the end user. Chapters 5 thru 9 discuss in detail devices
(known as debug tools) which can be used to isolate problems during
execution which escaped detection during the coding stages. Finally, in
chapters 10,11, and 12 a debug tool based upon ideas discussed in
previous chapters is designed and implemented.

1.1 PROBLEM STATEMENT

Our dependence on computers grows daily. Inventory control systems
automatically reflect price changes, monitor sales, and reorder when
stocks are reduced to a prescribed level. Airline reservations are
maintained din real time by extensive computer networks. The design of
spacecraft and even space travel itself would be impossible without
computerse. Soon computer systems may provide electronic funds transfer
services for financial institutions.

The major expense in these (and most) computer systems now and even
more so in the future is the cost of the software. Some researchers
[30] believe that these costs might be as high as 90%Z of the total
computer system by 1985.

This dependence on computer systems implies a need for correctness
in these systems. Inventory control systems must correctly account for
all sales. Airline reservations must not be lost or changed. The
computation, monitoring, and correction of spacecraft orbits must be
performed properly. Banks and their customers must have confidence that
money will not disappear into the computer system.

Because of the high cost of software and the end-user’s dependence
on it, it is relevant to discuss methods which can be useful in the
development of correct software. This development usually involves the
following steps:

1. Problem statement.

2. TFeasibility study.

3. System design.

4, Coding.

5. Testinge.

Throughout all of these steps correctness is an assumed attribute

of the final product. It is not until the testing phase of development
that the problem of establishing correctness becomes a reality.

Page 2

What procedures can be used during the design and coding phases to
increase the correctness of the final product? Program methodologies
such as an adequate description of the problem to be solved, detailed
design plans, coding standards, and code reviews provide a good
environment for correct software production.

How is the correctness of software determined? The definition of
correctness varies according to whose point of view is taken. The
software is correct in the users’ eyes if applications perform to their
satisfaction. The quality assurance team agrees that the software is
correct if their testing is successful. The programmer’s ego may cause
him to believe that his untried code is correct. The final answer to
the question lies in actual experience with the system either by testing
or by use at the hands of the end-user. There are, however, methods
which can be employed before the experience stage to provide a higher
level of confidence that the software is correct. These methods are
collectively termed static analysis and will be discussed in more detail
later.

It is inevitable that errors will be discovered during quality
assurance testing and the use of any large, complex computer system.
The problem then becomes one of locating the error in the source code in
a cost effective manner. This is called dynamic analysis and is more
commonly known as debugging.

1.2 PURPQSE OF THIS PAPER

This paper is concerned with the problems of producing correct
software. More specifically it is concerned with some tools, in the
form of computer programs, which can reduce the amount of effort
necessary for the production of correct software. Techniques for
developing and writing correct code are briefly presented. Methods (and
tools) for determining the correctness of this software are discussed.
Dynamic analysis, an important but often neglected area, is discussed in
detail, including some examples of current worke. A debug tool is
proposed, implemented and evaluated.

2.0 WRITING CORRECT SOFTWARE

The actual coding of a system should be delayed until a complete
and detailed design has been produced. The urge to jump into the coding
phase must be resisted. A careful design should uncover most of the
problems which would otherwise be found during implementation. It is
easier and cheaper to change the design than to change existing code.

Documentation is an important by-product of a detailed design
effort, This documentation should include a description of all
functional parts, the communication between these parts, and a
description of the problem to be solved.

Page 3

A structured design philosophy can be used to partition the problem
into small well-defined, functional pieces. This partitioning must also
specify the data and control flow between all of the individual pieces.
After this point the coding becomes a mechanical process of converting
the design specifications into a suitable programming language.

Even though the details of what to code are specified, the methods
of how to generate this code need some guidelines. Coding standards
such as establishing consistent naming conventions for variables,
setting limits for the maximum complexity of modules, and prohibiting
unclear and awkward coding constructions are useful. Module complexity
is difficult to define, although the number of lines of code involved is
a gross approximation. Code reviews are valuable but need to be handled
carefully so as not to offend the author of the code. These reviews
allow other staff members to become acquainted with the code and provide
an opportunity for detecting errors and enforcing coding standards.

3,0 METHODS FOR DETERMINING CORRECTNESS
3.1 TESTING

Testing is the process of gaining experience with the software,
implicitly through day to day use or explicitly through use designed to
exercise specific parts of the code. This testing may be at the
individual module (subroutine) 1level or any combination of modules
including the entire collection of modules known as the product. In any
event the goal of this testing is to determine the quality (in terms of
correctness) of the software.

Testing can be categorized into the following types. Each of these
is discussed at greater length below. Subroutines PAGEl and PAGE2 in
appendix E will be used as examples in these discussions on testing.
Both subroutines are supposed to compute the number of pages (PAGES)
required to store a given number of words (WORDS). PSIZE is the page
size.

1. Exhaustive.
2. Program structured.
3. Data structured.

4, Random.

3.1.1 EXHAUSTIVE TESTING -

Exhaustive testing is divided into two areas - processing all
possible input data and executing all possible program paths. Testing
which executes all possible program paths is certainly desirable but may
not detect errors which are independent of the transfer of control

rage 4

characteristics of the program.

For example, subroutine PAGEl has no flow of control statements.
Hence all possible program paths can be exhaustively tested with a
single set of input values. There is, however, an error in this
routine. Whenever the number of words exactly fills some number of
pages, the value computed will be one page too large.

Exhaustive data testing supplies all possible dinputs to the
software for processing. This is the only form of testing which can
claim that a program is completely correct. Anything short of
exhaustive data testing leaves open the possibility of errors in
untested portions of the code. Exhaustive data testing is expensive in
terms of machine and human resources. In general it is too expensive to
be practical. It may be very difficult or even impossible to define all
input combinations for complex systems. Even 1if the input can be
generated there may be insufficient machine resources to perform the
tests.

Consider a hardware multiplication wunit which is designed to
multiply two 27-bit dintegers in less than 100 microseconds [7].
Exhaustive data testing means that 2**54 different inputs must be tried.
Ignoring the time to verify results, the multiplications alone would
take more than 10,000 years. (An interesting fact derived from this
result is that during the lifetime of this multiplication unit it will
only be required to multiply a very small fraction of the numbers it was
designed to process).

3.1.2 PROGRAM STRUCTURED TESTING -

Program structured testing data is generated by dividing the dinput
universe according to internal differences, that is according to the
flow of control differences and the boundary conditions inside of the
programe Detailed dinternal knowledge of the program structure is
required to be able to produce data for this type of testing.

This example using PAGE2 tests the code which saves the computation
of PAGES if the current input values are identical to the last input
values. This section of code is not apparent without inspection (or
detailed documentation) of the code.

WORDS PSIZE PAGES
376 100 4

521 100 6
521 100 6

49 100 1
521 100 6

Page 5

3.1.3 DATA STRUCTURED TESTING -

Data structured testing data is derived by partitioning the
universe of inputs into classes according to external differences.
Representatives from each class are then used in the testing process,
In this case the partitioning is performed without regard to any data
dependent processing inside of the program. Only the external
characteristics of the data are considered.

This example tests PAGE2 for boundary conditions. Note that PAGE1
fails with this test data.

PAGE2 PAGE1
WORDS PSIZE PAGES PAGES

0 100 0 1

1 100 1 1

2 100 1 1
99 100 1 1
100 100 1 2
101 100 2 2
498 100 5 5
499 100 5 5
500 100 5 6
501 100 6 6
502 100 6 6

3.1.4 RANDOM TESTING -

Random testing inputs are chosen randomly from the universe of
inputse. The only requirement for selection is membership in the input
set. No consideration is given to internal or external characteristics
of the data. Input for random testing is the easiest to provide.

This example tests PAGE2 with random input values.

WORDS PSIZE PAGES

372 100 4

11 100 1
186 100 2
444 100 5

6745 100 68

3.1.5 HOW MUCH TESTING? -

The most important (and most difficult) question to answer about
testing is '"How much testing is enough?". Since exhaustive testing is
seldom practical, some technique must be employed to substantially
reduce the number of inputs used for testing. This is the trade-off
between the cost of complete testing vs. the cost of incorrect

Page 6

software. The end-user generally pays either way. He (often) pays real
money and time for the development and testing of a software system. He
pays again after the product is delivered if the vendor did a poor job
or was pressured by the end-user to deliver the product too soomn.

The testing process can be considered to be successful if the
probability is low that the user will encounter an error. This implies
that code which the user is expected to exercise often should be well
tested while other code may receive little or no testing. This means
that bugs may appear even after a program has been in use for many
yearse. However this is the only practical solution to the extreme cost
of exhaustive testing.

3.2 STATIC ANALYSIS

Static analysis or source code analysis is a semantic inspection of
the source code for errors or questionable (but syntatically correct)
constructions. A particular statement may be a legal statement in terms
of the rules of the language but when taken within the context of other
statements in the module or other related modules its meaning may be
inconsistent with the intentions of the programmer. These are errors
which can be detected mechanically and have been shown through
experience to cause problems., This analysis is a planned attempt to
discover problems before execution.

3.2.1 TYPES OF STATIC ANALYSIS -

Static analysis is divided into the following areas which are
discussed individually below.

1. Desk checking.

2. Module analysis.

3. Module interface analysis.
4., Data flow analysis.

5. Proofs of correctness.

Desk checking is the original method of source code analysis and is
performed by humans with paper and pencil. The other types of static
analysis are automated forms of desk checking, each specializing in a
particular area.

Module analysis is limited to discovering simple programming errors
in a single module or routine. These errors do not necessarily prevent
the routine from functioning properly but rather indicate conditions
which have a high probability of being incorrect and in need of
attention by the programmer.

rage 7

Some examples are:
l. Variable type checkinge.

2. Event sequence errors such as using (reading) a variable before
it 1is defined (valued) or writing on a file before opening it.

3. Improper loop nestinge.

4. Labels which are not referenced.

5. Statements which cannot be executed.
6. Array subscripts out of range.

7. Inconsistent argument count for subroutine calls.

Module interface analysis checks all routines in the system for
inter-routine interface errors. More extensive checks for undefined
variables can be made since information about all routines is available.
Routine A may use (read) a variable which is an actual parameter for
routine B expecting that B will return a value in that variable. The
module interface checks can determine that routine B at least stores
some value in the parameter used by A. If consistent naming conventions
are used for wvariables in COMMON blocks, then the correct naming and
alignment of such variables can be verified. Also conflicts between the
number, size, and type of formal and actual parameters can be reported.

Data flow analysis is a study of the way data is used within a
program. In general data is input to a program, the program performs
some computation using the input data, and finally produces some output
data. The computation process within the program is the area of
interest in data flow analysis. A general assumption is made that for a
given computation input was derived from the result of a past
computation and the result of the given computation will be wused as
input for a future computation. A data flow anomaly occurs if this
pattern is violated. For example:

= 3,5 +Y
= Z*R

PP e
i

The result of the first computation 1is never used since it is
destroyed by the second computation. If this 1is really what the
programmer intended, then the first computation can be deleted without
changing the output of the program. This is an obvious and trivial
example. In practice these two statements would be separated by other
statements or even be in different routines thereby complicating the
analysis.

Page 8

A data flow anomaly is a potential problem only if it can be
executed. Consider the flowchart segment shown in figure 1.

Path 1,3,4,6 contains a data flow anomaly at box 3 and 6 but cannot
be executed since box 1 sets I greater than zero and the branch to 6
will never be taken. Path 2,3,4,6 contains the same data flow anomaly
but may be difficult to detect because of the unknown value of J.

The detection of data flow anomalies requires that all routines in
the system be involved in the analysis. First all anomalies are
located. Then, for each anomaly, a path containing the anomaly is
isolated,. Finally a determination of whether or not the path is
executable is attempted. If the path cannot be executed, then it 1is
ignored.

Proofs of correctness attempt to prove by formal mathematical
techniques that a program has been coded correctly, that is that the
code will behave according to the specifications for the solution. An
example is proof of correctness by inductive assertions. In this method
assertions about the program state are inserted by the programmer or
prover after each line of source code. The correctness is proved by
demonstrating that each of these assertions is true whenever the program
is in that state, assuming that at each previous step a true assertion
was encountered.

A second method is proof by partitioned analysis of the cases to be
covered. This 1is a code analysis rather than a programming technique
like proof by inductive assertions. The proof consists of dividing the
input data into mutually exclusive classes and analyzing each class for
correctness.,

Correctness may be difficult or impossible to determine in many
cases. Sites [34] has attempted to address some of these areas by
considering a proof of clean termination in lieu of a proof of
correctness. A proof of clean termination does not guarantee correct
output but it does guarantee that the program will not be caught in an
infinite loop or terminate abnormally due to execution errors such as
address out-of-range or accumulator overflow.

3.2.2 BENEFITS OF STATIC ANALYSIS -

The use of static analysis techniques allows some common
programming errors to be located in the source code before execution.
It is important to note that locating the error in the source code using
static analysis is far superior to waiting until execution and working
backward from the incorrect output to the source code. Except for desk
checking, these methods are automated and may require little investment
of time from the programmer. Since execution is not required, it is not
necessary to prepare input data. The checkout (debug) phase of software
development receives a product with fewer bugs. Hence checkout time 1is
reduced.

Page 9

2
I=J-25
h:
3
M=K+ 6
A
4 \\\
T F
I .GT. © /
L h
6
J=M=* 2 M=K+ 1

FLOWCHART SEGMENT FOR DATA FLOW ANALYSIS

FIGURE 1

Page 10

3.2.3 PROBLEMS WITH STATIC ANALYSIS -

Desk checking is slow and susceptible to human error. The
utilities which perform the static analysis are often expensive to
execute because of the large amounts of computation involved in
analyzing the source code. These analysis wutilities are language
dependent, at least at the syntax level, and are not generally
applicable to assembly language. Simple logic or keypunch errors such
as M=M+1 instead of M=M+2 cannot be detected,. Only a few static
analysis utilities are currently available.

Even if a proof of correctness for a program is true, there is
still the possibility that the program will produce incorrect results
when it is executed. The proof operates on the source code and does not
consider the details of converting the source code to machine code and
executing the program on a given hardware configuration. Details of
computation such as accumulator overflow and the mechanics of passing
parameters to subroutines may cause a program to malfunction even though
it was proved to be correct.

In general, programmers do not write code in a style which is
compatible with proof of correctness techniques. Numerous programming
"tricks" or efficient coding constructions can be very difficult to
analyze during the proof, Prokop [29] believes that new programming
philosophies will need to be developed before proof of correctness
techniques can be generally useful. The programmer must be concerned
with producing code which correctly implements the program solution and
in addition is not confusing to the program prover. These new coding
techniques will probably sacrifice execution efficiency for provability.

Many existing programming languages are ill-suited to formal proof
methodologies. Two new programming languages, EUCLID [25, 26] and GYPSY
[1], have been specifically designed to be verified by either manual or
automatic formal proof techniques. These languages are based upon
PASCAL and are not necessarily general-purpose. Also they may be
somewhat difficult to use and the object code produced by the compilers
may not be the most efficient but that is probably the price to be paid
to verify programs at the source code level.

4.0 WHAT TO DO WHEN A PROBLEM IS DISCOVERED DURING EXECUTION?

Dynamic analysis, more commonly known as debugging, is employed to
isolate errors in the program which cause incorrect results to be
observed during execution. All problems in the software which could not
be or were not detected by other means must be resolved by dynamic
analysis. Testing will show that a program is incorrect but will not
locate the source code which caused the error., Since most programmers
produce bugs, debugging is expected during checkout but the details
cannot be planned since it is not known what errors will occur.

Page 11

4,1 TYPES OF DYNAMIC ANALYSIS

Dynamic analysis techniques are divided into the following
categories and discussed below.

1. Desk checkings.

2. Post mortem dump.

3. Debug tools.
l. Program modification.
2. Debug compiler.

3. Monitor utility.

Desk checking is the oldest type of dynamic analysis. The most
basic form requires that the programmer simulate the computer with paper
and pencil using the source code and the incorrect results. To some
degree desk checking is involved in all types of dynamic analysis.

A post mortem dump is a display of the contents of memory at the
time that the program terminated execution. Errors can often be found
by comparing assumed values of certain memory locations with actual
values from the dump. In general the dump may be the only aid provided
by the operating system to help locate an error.

A debug tool is a device which is used to reduce the number of
aspects of a program’s behavior which are misunderstood or poorly
understood by its programmer. Implicit in this definition is the fact
that a debug tool does not locate errors in the source code. It only
serves to provide information about the execution of the program which
would otherwise be difficult or impossible to obtain. This information
is then used as an aid to the programmer in his search for the cause of
the error in the source code.

Debug tools are implemented either as modifications to the
mal functioning program or as a standalone utility which can monitor the
execution of the program. Program modification by the user usually
takes the form of inserting print statements to display the contents of
various variables and to trace the paths taken through specified
segments of the code during execution.

Program modification by a utility program may be performed by a
precompiler which modifies and adds code according to user directives,
Features of such a precompiler include the ability to trace subroutine
calls, to display variables, and to perform execution-time verification
of program states. This last feature may require that the programmer
add assert statements (comment cards) to the program describing the
values and relationships which the programmer believes certain variables
should have. The precompiler reads the assert statements and generates
code to check for these values during executiom.

Page 12

Another form of debug utility is a debug compiler (also known as a
checkout compiler) which is wused during initial development of code.
These compilers require more memory and more execution time but they
provide the additional services of some of the static analysis utilities
discussed previously. When the code is finally debugged it is compiled
on a standard compiler which is more efficient and produces object code
without debug prints and traces.

A monitor utility operates on the object code either in relocatable
or absolute format. For this reason it is language independent except
perhaps for the user/utility interface which will be discussed later.
The monitor utility concept requires fewer (perhaps no) program
modifications when compared with other forms of debug tools. The
monitor provides much greater control over program execution with such
features as breakpoints and interrupts on references to specified
variables. Moreover this control over execution can be performed in
real time if interactive access is provided. In essence the monitor
utility is a virtual machine supplying an execution environment with
user control which is transparent to the program being debugged.

4,2 PROBLEMS WITH DYNAMIC ANALYSIS

Desk checking is slow and subject to the same human errors that
caused the bug. In addition the incorrect output is often insufficient
to locate the source code that caused the error. Post mortem dumps
provide no execution history, only a final snapshot of memory.
Depending upon the size of the program, the dump may produce a
considerable amount of output, usually in octal or hexadecimal, which
must be decoded. Debug features built into the program by the
programmer are usually an afterthought and not general enough to be
useful for fixing other bugs. These built-in features can have bugs
when they are added and cause bugs when they are removed. Program
modification can cause the manifestations of the bug to change or
disappear altogether. Also it is just plain inconvenient to modify the
program to insert debug statements.

It is often desirable to leave built-in debug features in the
program to help solve future problems. The debug features can be
incorporated into the program so that they are normally inoperative. By
changing the value of a switch, the debug code can be invoked. Multiple
values for the switch or multiple switches can enable selected portions
of the debug code instead of all of it at once. The disadvantage of
this technique is that the debug code may require considerable memory
even when it is not used.

Program modification by a utility overcomes many of the objections
to user modification of the program. However the utility may not be
flexible enough to display the kinds of data necessary to find the buge.
Also the wutility cannot provide much control over the program’s
execution. Since the utility must read the source code it 1is language
dependent.

Page 13

A monitor utility provides considerable control but the wuser is
required to learn the language of the utility in order to be able to
communicate with it. (This is a problem with all utilities). Because
the utility deals with the program as it is represented by machine code,
the user may need to know more about the details of the operating
system, compiler, assembly language, etce than would otherwise be
necessary. For example, the machine code generated by the compiler for
a given source statement may be intermixed with machine code for other
source statements.

5.0 DEBUG TOOLS

Debug tools may vary widely in the capabilities and services they
provide for the user,

5.1 TYPES OF FEATURES PROVIDED BY DEBUG TOOLS

The following common debug features are informally described for
the benefit of future discussion.

Breakpoint — the ability of the debug tool to dinterrupt the
execution of the job at a user-specified location. Control is then
passed to the user for additional directives. One of these directives
may be to restart the job from the point of interruptiom.

Memory and register dumps - the ability to print the contents of
selected memory locations including the program”s registers. The items
to be dumped may be printed in various formats including octal, decimal,
and character.

Memory and register modification - this feature allows the user to
change the contents of selected memory locations and registers.
Modifications may be entered as source statements, numeric, or character
values.

Monitor memory locations - the debug tool monitors every read
and/or write for specified memory locations. A breakpoint can be
generated if a certain value (including any value) is stored into (or
read from) one of the specified locatiomns.

Trace — a feature which prints the "instructions" being executed.
The output format might be machine code, assembly language mnemonics, or
higher level source language statements. The values of any variables or
registers involved may also be printed.

Reverse execution — this provides the ability to execute the
program in a backwards direction from some point of interruption. The
distance one may travel backward may vary, depending upon the
implementation, from only a few instructions to all dinstructions
involved.

Page 14

Checkpoint/restart - a checkpoint saves the current state of the
program. At a later time the program can be restarted from this "saved
state". If appropriate checkpoints are taken, this feature can simulate
reverse execution by restarting a checkpoint taken prior to the error.

Branch history - this is a record of every (or the last n) transfer
of control changes within the program. This information may be used for
manual reverse execution.

Symbolic addressing - many debug features require the wuser to
specify memory locations to the debug tool. Symbolic addressing allows
the user to identify these memory locations by the same names (symbols)
which were used in the source language. This requires the debug tool to
have a symbol table for use in converting the symbols to actual
addresses. The symbol table may be constructed from compiler and loader
output either by the debug tool or a separate utility program.

Execution statistics - depending upon the implementation scheme,
the debug tool may be able to collect information about what part of the
code is being executed by the CPU most often and how many and what kind
of requests are made to the operating system, e.g., I/0 requests.

Instruction step - this feature initiated from a point of
interruption (e.g., breakpoint) allows n (usually small) words of
instructions to be executed before control is returned to the user. The
n instructions executed may or may not be traced.

Snapshot dumps - these dumps are generated automatically by the
debug tool as the program executes. Their content and frequency are
specified before execution by the user.

5.2 LIMITATION OF INTEREST

Although program modification by the user is considered to be a
valid debug tool, this paper will concentrate on debug tools implemented
as utility programs. Of all the possible utility programs those which
can be classified as monitor utilities are the most interesting because
they provide the most control over program execution.

5.3 WHY EMPHASIZE DEBUG TOOLS AT ALL?

First, all programmers produce bugs. As previously discussed,
techniques exist for analyzing source code for potential bugs but they
cannot guarantee that the code produced is free from bugs. Thus
debugging is inevitable. In fact debugging accounts for more than 507
of programmer time [35]. Debugging is the most tiring, expensive, and
unpredictable phase of software development [111. Debug tools can
significantly reduce the time and effort required to locate a bug by
providing dynamic displays of program states and by providing control
over program execution. The operating system usually provides no more
than a post mortem dump. Little attention is given to debugging in

Page 15

texts and universities. It is reasonable to devote time and effort
toward the production of sophisticated debug tools to make the debug
phase of software development easier and faster for the programmer.

5.4 PERFORMANCE MEASUREMENT VERSUS DEBUGGING

Consider the following situation: The output from a program is
correct but it costs $1000 for a single run. This is not an unusual
problem. Several possibilities exist for explaining the high cost of
running the program.

1. It might actually require $1000 worth of computer resources to
perform the task.

2. The program may contain sloppy code or poor logic requiring
extra CPU time and/or causing unnecessary I/0. Example -
calculating a value each time it 1is needed instead of
calculating it once and saving it.

3. The program may contain logic bugs which do not affect the
output but which waste resources. Example - a buffer manager
is responsible for keeping frequently used data in memory. 1f
there is a bug in the code which determines if the data is in
memory or on the disk, then the buffer manager may request an
I1/0 for every reference to the data instead of only the first
time.

While not generally designed for performance measurement
applications, debug tools can help determine some of the causes of poor
performance. CPU execution statistics (if provided by the debug tool)
can isolate areas of the code which are executed frequently. Visual
inspection of the code is then necessary to determine if a problem
existse In the buffer manager example above, traces and dumps triggered
by execution of the code performing the I/0 can be used to reveal a
malfunction.

6.0 TMPLEMENTATION OPTIONS FOR A DEBUG TOOL UTILITY
Implementation options include:
1. Modification of source code.
2. Modification of object code.
3. Use of hardware aids.

4, Software interpretatiom.

Page 16

In general a debug tool will not strictly adhere to a single
implementation scheme but rather will use a combination of methods by
implementing a particular debug feature by wusing the most effective
method.

Modification of source code by a precompiler causes statements in
the source language to be inserted at appropriate locations to provide
dynamic displays of program states and trace information. Once the
source code is compiled, the debug commands are frozen. Any change in
the debug command sequence requires re-precompilation and
re-compilation. The problem of trapping references to a specific memory
location is handled symbolically and not by actual address. This means
that assembly language code or compiler-level source code could
reference the memory location in question by a clever addressing
technique which could not be detected by the debug tool. This is the
well known alias problem with variable names.

Modification of object code requires a monitor utility at execution
time instead of a precompiler. The monitor modifies and/or replaces
certain machine instructions to gain control at times indicated by user
directives. If dinteractive access 1is provided, this implementation
method allows real-time decisions to be made about what action to take
next. In the precompiler mode all such decisions must be made in
advance at precompile time, Using this method alone it is not possible
to trap references to a specified memory location without the help of
hardware.

In certain situations the debug tool can be implemented as a
standalone hardware device capable of monitoring the executing program.
An example is a device which can determine which part of the program
uses most of the CPU resources. More common is the use of certain
existing hardware features which allow the debug tool to detect
situations which would be difficult to determine otherwise. For
example, a machine with memory parity bits could have the parity bit
toggled by software in a memory location in such a way as to force an
interrupt into the debug tool if that memory location was referenced.
Thus to trap memory references the debug tool sets the appropriate
parity bit and waits for the interrupt.

Software interpretation of the machine instructions by the debug
tool is often necessary when the hardware does not support features to
allow a debug feature to be implemented otherwise. The example of
trapping specific memory references can be done easily through
interpretation. The major disadvantage in this method is its increased
execution cost.

7.0 ACCESS METHODS

User access to the debug tool can be through batch or dinteractive
methods. The one advantage that batch provides over interactive is the
large amount of output that is possible in this mode. Interactive mode
may allow large output files to be spooled to a printer thus overcoming
this obstacle. The breakpoint feature of a debug tool is highly

rage 17

oriented toward interactive use. The decision of what to do next can be
made in real time based upon output from previous commands. Studies by
several groups [31, 11, 8] have shown that programmer productivity is
higher when interactive access methods are used.

8.0 USER/DEBUG TOOL INTERFACE

The user must provide directive (commands) to the debug tool to
tell it what to do. These directives should be flexible, brief, and
easy to learn. It should not be necessary for the user to spend a lot
of time and effort learning a lengthy, complex language to be able to
use the debug tool. The commands must name entities within the program
which are of interest to the programmer. These entities should be
described to the debug tool in terms and concepts of the source program.

Output from the debug tool should be easy to read and in terms of
data formats consistent with the source program.

All of this communication requires that the debug tool have access
to information such as names, locations, and types of subroutines and
variables within the source program. This data is generally available
from load maps and compiler listings. Either manual or automated
methods can be used to format this data into a symbol table for use by
the debug tool.

9,0 SURVEY OF CURRENT WORK

Current work was examined for certain attributes and will be
presented in the following format:

environment : programming languages which can be used with the debug
tool, including hardware.

interface : debug tool access method - batch and/or interactive.
Language used to communicate with the debug tool. Can

symbols be used?

implementation: method(s) used for implementation.

features : basic debug features provided.
job type : types of jobs which can be debugged with this tool.
other : any other interesting or unusual comments about the

debug tool.

EVANS, DARLEY [8]

environment : Assembly language. PDP hardware.

interface
implementation:

features :

job type

other

WOIMAN [38]
environment

interface

implementation:

features

job type :

BALZER [4]

environment

interface

implementation:

features

job type

Page 18

Interactive, brief, simple debug language with symbols.
Monitor utility.

Addition/deletion of symbolic instructions.

Conditional breakpoint.

Memory and register displays with various output
formats.

Modification of memory.

: All.

: Modifications are collected during the debug run and

applied to the source at the end of the run. These
modifications are converted to machine code and inserted
in the proper place, relocating any instructions which’
were moved, during the debug run.

: PL/1. Honeywell hardware.

: PL/1-1like debug language with symbols. Interactive

access provided.

Modified compiler for symbol table. Monitor utility.
Conditional and non-conditional breakpoint.

Trace subroutine calls.

Execution statistics.

Examine and modify variables.

All.

COBOL, FORTRAN.

: Brief debug language with symbols. Interactive access

provided.

Precompiler. Execution history is collected on a file
which is post-processed for the debug run. Debug
relocatable must be included with relocatable for user
program.

: Breakpoint.

Source statement trace.
Execute in reverse.

: All small jobs.

other :

Page 19

No memory (variable) modifications are allowed during
debug run.

SATTERTHWAITE [32]

environment

interface

implementation:
features
job type :

other :

JOSEPHS [19]
environment
interface

implementation:

features

job type :

BLAIR [5]

environment

interface :

implementation:

features :

: ALGOL.

: No batch input. Output is in terms of ALGOL. Assert

statements direct action of debug tool.

Modified compiler. Interpreter.

: Statement and variable trace.

Small student.

Non-executed code is flagged.
Assert statements will terminate program if actual
conditions do not correspond.

: Assembly language. IBM 360 hardware.

IBM~-style debug language with symbols.

Debug monitor utility. Assembler and loader provide
symbol table.

: Breakpoint.

Modify and display memory.

All.

: FORTRAN, COMPASS (assembly language). ChC 6000

hardware.
Batch access. Abbreviated debug language with symbols.

Modified compiler and loader to provide symbol table.
Debug monitor utility which modifies object code.
Interpretation is used when necessary.

Breakpoint.

Fxamine and modify memory.

Take checkpoint dumps and restart later,
Monitor references to variables.

job type

other

KULSRUD [24]

environment

interface

implementation:

features

job type

GRISHMAN [16]

environment

interface

Page 20

: All.

Can be used with overlays.

FORTRAN, COMPASS (assembly language). CDC 6000
hardware.

Interactive and batch. Complicated debug language with
symbols.,

Modified compiler and assembler for symbol table.
Debug monitor utility which modifies object code,
Interpret when necessary.

: Checkpoint/restart.

Backup n instructions.

Monitor references to variables.

Trace instructions.

Examine and modify memory and registers.

All.

FORTRAN, COMPASS (assembly language). CDC 6000
hardware.

: FORTRAN-like debug language with symbols. Batch and

implementation:

features

job type

other

interactive access.

Debug monitor utility which modifies object code.
Interpret when necessarye.

. Can execute backwards to a limited extend.

.
.

Breakpoint,

Trace user-supplied events such as stores to a memory
location.

Step one word of instructions at a time.

Monitor references to variables.

Small.

No compiler, loader, or assembler modifications.
Input is object code, compiler/assembler listing, and
directives,

Page 21

ASHBY, SAIMONSON, HEIIMAN [2]

environment :

interface

implementation:

features

job type

FORTRAN. PDP-10 hardware.

: FORTRAN~like debug language with symbols. Interactive

accesse.

Debug monitor utility.

: Breakpoint.

Examine and modify variables.
Go to.

Monitor references to variables.
Collect branch history.

: All.

WILCOX, DAVIS, TINDALL [37]

environment :
interface :
implementation:

features

job type

GAINES [11]

environment

interface :

implementation:

features

FORTRAN, COBOL, PL/1.

Debug monitor asks questions. (Student doesn’t know
what to ask). Simple reply. Interactive.

Modified compilers.
Debug monitor utility.
Interpreter.

: Works backward from the error.

Does not allow the user many options. It is assumed
that the user is not sophisticated enoughe.

: Beginning student.

: FORTRAN, COMPASS (assembly language). CDC 6000

hardware.

Interactive. Cryptic, brief debug language with
symbols. Special function keys on CRT are used for
directives,

Utility to read listing for symbol definitions,
No interpretation.
Debug object code must be included with user program.

: Conditional breakpoint.

Examine and modify memory.
Checkpoint/restart.
Register and memory snapshot dumps.

Page 22

Single instruction step mode with instruction trace.
job type : All.

other : Output available in many formats.
Input directives can be saved on a file for reuse.

10.0 THE DESIGN OF A DEBUG TOOL

In the discussions that follow, user program, uprog, and program to
be debugged all have the same meaning.

10,1 ENVIRONMENT

A debug tool named HOPE (Helper for Observation of Program
Execution) was developed for a specific environment but is general
enough to be useful for numerous other applications. The Control Data
6000 series computer and the NOS 2.1 operating system provide the basic
operating enviromment for HOPE. The programs requiring debugging aids
are production and development programs written in FORTRAN and COMPASS
(the CDC assembly language) consisting of several hundred subroutines
and numerous overlayse. Although HOPE allows some symbolic input, the
output is at the assembly language level. Thus the user must have a
good working knowledge of compiler and assembler listings and loader
maps. Policy restrictions for the computer prohibited any modifications
to the operating system and permitted only remote access through RJE and
TTY terminals.

10,2 WHY WAS HOPE NECESSARY?

First, because good debug tools are extremely useful devices. That
is the major point of this paper. And second, because the vendor (CDC)
does not supply any such tools for the environment previously described.
It should be pointed out however that the operating system comes with a
very powerful debug facility which is only accessible from the on-site
console. Although this debug facility provides numerous features, it is
deficient in some areas. For example it is mnot possible to trap
references to memory locations.

10.3 DESIGN GOALS

1. Require no program modifications or recompilation. Many of the
programs being debugged were production programs in absolute
format which had been is use for a long time. Recompilation of
several hundred subroutines was too expensive.

Page 23

2., Provide a brief, flexible, easy to learn command language. The
user should not have to spend a lot of time learning how to use
the debug tool. The commands should be in terms familiar to
the user. A criticism of some of the debug tools described in
the literature was that the command language was too difficult
to learn and use [16].

3., Provide comprehensive control over program execution. This is
the key to satisfying the definition of a debug tool previously
presented - "... to reduce the number of aspects of a
program’s behavior which are misunderstood or poorly understood
by its programmer'.

4. Provide a variety of memory and instruction displays during
execution. Data should be presented in other than octal
formats. Instruction mnemonics and values of pertinent
registers should be available.

5. Provide TTY and batch access. Each has an advantage and should
be provided if possible.

6. Allow symbolic addressing. Symbols are more meaningful to

humans. With symbols the user is able to use some of the terms
and concepts of the source language. Computers always add
better than humans.

7. Provide a separate utility to create the symbol table. It is
more efficient to create the symbol table once if it is to be
used many times. The debug tool should not be concerned with
generating the symbol table.

10.4 USER/DEBUG TOOL INTERFACE

The discussion in this section includes batch and interactive (TTY)
processing. Explicit references to either type will be made only when
the processing is different. The phrase "return control to the user"
means read the next command from an interactive device or from the batch
input card.

Non-symbolic operands are limited to octal numbers to be consistent

with the operating system software. The compilers, loaders, and
assembler all display addresses in terms of octal numbers.

10.4.1 BASIC LANGUAGE DEFINITIONS -

Relationship is denoted by <rel>. Address expression is denoted by
<ae>, Address range is denoted by <rg>.

<octal digit> ::=

<decimal digit> ::=

<octal number> ::=

ol1]213|415]617

<octal digit> | 8 | 9

Page 24

<octal digit> | <octal digit><octal number>

<n> ::= <decimal digit> | <decimal digit><n>
<register> ::= A0 | Al | A2 | A3 | A4 | A5 | A6 | A7 |
X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7
P|BL|B2]| B3| B4 | B5]| B6 | B
<rel> ::= NE | EQ | LT | GT | LE | GE

<operator> ::i= + | =

<symbol> ::= a string of
characters,

symbol table. <symbol>

<operand> ::=

<ae> ::

<rg> ::

<blank>

<ae> | <ae>;<ae>

up to seven alphanumeric
the first is alphabetic.
A member of the set of symbols in the

<register> = 0,

<symbol> | <octal number>

<operand> | <operand><operator><ae>

::= one or more blank characters

<value> ::= <octal number> | <octal number><blank><value>

{3} 1=

used.
<at

<if cmd>

<if action>

[
.o

<at action> ::=

Within <if action> and <at action> PRINT, DMP, and BKP may
but DMP<rg> may occur multiple times.

only once

optional syntax delimiters.

cmd> ::= DMP | BKP | DMP{, }<rg>

1:= <at cmd> | PRINT

The item(s) may or may not

<if cmd> | <if cmd>/<if action>

<at emd> | <at cmd>/<at action>

occurrences is described under RESTRICTIONS and LIMITATIONS.

10.4.2 IMMEDIATE COMMAND SYNTAX -

DMP

DMP{, }<rg>

be

occur
The maximum number of

Page 25

RESET{, }<register>=<value>
RESET{, }<ae>=<value>
STEP{,<n>}

STEP {<n>}

LIST

HALT

CLEAR

CLEAR{, }<rg>

GO

ENTER{, }<symbol>=<ae>

10.4.3 DEFERRED COMMAND SYNTAX -
BKP{, }<rg>{,<n>}
TRACE{, }<rg>{,<n>}
IF{, }<ae> IS READ,<if action>
IF{, }<ae> IS WRITTEN,<if action>
1F{, }<ae>.<rel>.<value>,<if action>
AT{, }<ae>,<at action>

AT{, }<ae>,IF{, }<ae>.<rel>.<value>,<if action>

10,4.4 ADDITIONAL SYNTAX RULES -

l. Multiple commands per card (line) are allowed but must be
separated by ".".

2. No command may cross a card (line) boundary.
3. Commands are free-field. All extraneous blanks are ignored.

4., All commands may be abbreviated by their first letter.

rage 26

10.4.5 COMMAND SEMANTICS -

10040501 DMP -

DMP provides the ability to display registers and contents of
memory locations. DMP with no arguments displays the location counter,
field length, and CPU registers. If arguments are present the contents
of memory locations specified in <rg> are displayed in octal and
character formats with the address of each location. See figures 2 and
3 for sample output. Control is returned to the user after execution of
DMP. Examples:

DMP
D,37

DMP TEST;TEST+16

1004.5.2 RESET -

RESET allows the contents of registers and memory locations to be
changed. Since symbols and registers cannot have the same name, no
ambiguity arises in distinguishing between them. Blanks are allowed in
<value> for readability. Control is returned to the wuser after
execution of RESET. Examples:

RESET,X6 = 230
R COUNTER=24

R,TEST+6 = 51300 06345 10733 46000

10.4;5-3 STEP -

STEP allows a specified number of words of instructions to be
executed before control is returned to the user. If <n> is absent,
<n>=1 is used. For each instruction, the memory location, the
instruction mnemonic, and the value of the resultant register are
printed. See figure 4 for sample output. Examples:

S

STEP, 6

Page 27

5r1d
4277 Onla
4255 n4eel
3261
sS4
3052
40 noong
4471 nd255
451 4452

1N542
445
=144
Nnadz=s

aonnd

AR

=

WE=000010

EXAMPLE OF EXCHANGE PACKAGE DUMP

FIGURE 2

ONOAZTIA200036705

AN sSEdannndsnng
S1100042544ennnad&a0nn
GLONGOsSsSTSanIZnoslzis

S S I

EESRSNOGOOONO 11
CaTTH TYP
E MM OFINL
= -1 7O
ZTOR

IWonnoning A

""""""" = T

EXAMPLE OF MEMORY DUMP

FIGURE 3

Page 28

10.4-504 LIST haat

LIST displays all pending deferred commands which have been entered
by the wuser. Control is returned to the user after execution of LIST.
See figure 5 for sample output. Example:

LIST

10040505 HALT -

HALT terminates the execution of the debug tool (as well as the
execution of the program being debugged). Control is passed to the
operating system for execution of the next JCL statement after entering
HALT. Examples:

H

HALT

10.405.6 CLEAR -
CLEAR deletes pending deferred commands. If <rg> is specified, all
pending commands which are bounded by <rg> are deleted. If <rg> is

absent, all pending commands are deleted. Control is returned to the
user after execution of CLEAR. Examples:

c
CLEAR,TEST+2;TEST+30

C 376

10-40507 G‘O -

GO transfers control (the CPU) from the debug tool to the program
being debugged. That 1is it restarts (or starts) execution of the
program being debugged from the point of last interruption. Control may
or may not be returned to the user depending upon the presence of any
deferred commands. Example:

GO

Page 29

STEP 7
P= a4z SAS Bl+4272 AS=4273 #SH=00000000000000000004
= 4571 M on AQ=0u000an0d00000R00000
= 4721 1?7 HO+RS ¥P=00000000000000000004
= 4722 PL M7 424
P= 4224 TH1 En+425g Al1=4254 *1=00000000000000002144
P= 4224 Ikin}
= G224 nin}
= 4228 (=] 3575
= 5578 pg) HO+ED HE=OOU00NAI0N0anNde vy
= 5575 SME BO+5745 AR=00UO0000000000003745
= GB5786 IHS #1+B0 XE=0000000000000000G2144
= RE87F LHC =2 HE=00000000005745000000
F= 5577 EXE HE+XZ ¥e=0U0oOanoa0sv45004277
F= 5577 RE1 RBO+1 BEi=1
P= S&a00 SHG EO+3478 Ae=4472
F= S&00 2RE BO+S5FE AZ=55735 ¥E=0400004226 0000000000
EXAMPLE OF STEP AND TRACE OUTPUT
FIGURE 4
LIET

TRACE»AO05:4012e1.,

FEFs 2455. 4,

AT+ 5005 D-D Z300-.T 24505 3468,
FATsdc20s 0.

RTs 22204 IF 865 LT. 145 P,

EXAMPLE OF LIST CUTPUT

FIGURE 5

Page 30

10.4.5.8 ENTER -

ENTER allows symbols to be entered into the symbol table. Control
is returned to the user after execution of ENTER. Examples:

ENTER,CTYPE = 3457

E LEVEL = TEST + 26

10o40509 BKP -

BKP (breakpoint) allows the user to specify the location(s) at
which execution of the program being debugged is to be interrupted. A
breakpoint is set in each location specified in <rg>. If <n> is
specified, the interrupt is performed only after the breakpoint has been
encountered <n> times. If <n> is absent, <n>=1 1s used. When the
breakpoint has been encountered <n> times, control is returned to the
user.

BKP is a deferred action command. This means that the command 1is
stored in a table until the program being debugged is in execution and
the conditions specified by the user are satisfied. At this time the
command is executed. Since the debug tool stores a jump at <rg> to gain
control from the user program, this location(s) must not be changed
during execution.

B,24673

BKP TEST+200,6

1004.5.10 TRACE -

TRACE prints the location, instruction mnemonic, and resultant
register when the instructions bounded by locations in <rg> are
executed. The output for TRACE is identical to the output for STEP.
The TRACE output is provided <n> times for a given <rg>. If <n> is not
specified, <n>=1 1is used. TRACE is a deferred action command.
Examples:

T, TEST+17,4

TRACE TEST+3;TEST+7

10.4.5.11 IF bl

IF allows a memory location to be monitored during execution for
any read, any write, or any write which satisfies a relationship to a
given value. This is a deferred action command and the action performed
depends upon the commands specified by the user in <if action>.

Page 31

PRINT displays the address of the instruction accessing <ae> and
the contents (after execution of the instruction) of <ae>.

IMP displays the values of all registers and memory locations as
described previously.

BKP returns control to the user. If BKP is specified, it 1is
executed last.

The IF command stays in effect until it is deleted by a CLEAR
command. Examples:

1F,TEST .GT. O,P/D TEST ;TEST+4/D TEST+30;TEST+41
I LEVEL IS READ,BKP

IF 36537 IS WRITTEN,PRINT/BKP

10.4.5012 AT e

AT specifies that the execution of the program being debugged is to
be interrupted when instructions at location <ae> are executed. The
action(s) to be taken after interruption is specified by the user in the
<at action> clause. Items in <at action> are described under the IF
command. AT is designed to provide snapshots of memory and registers
during execution. AT is a deferred action command and is in effect
until cancelled by CLEAR. Examples:

AT TEST+5 , DMP TEST+100;TEST+110
A,37521,BKP is equivalent to BKP,37521
AT DRIVER+17,D/D 101/D 267/D 5743

AT..IF - this command is more efficient than IF alone. The IF part
of the command is only executed when the AT is satisfied as described
above, This is a deferred action command and remains in effect until
deleted by CLEAR. Examples:

AT,DRIVER+27,IF SIZE.EQ.37,BKP
A TEST,IF 3462 .NE. 7777,P/D,306;310
AT DRIVER+7, IF FLAG .NE. 0,D/P/B

Note about IF and AT..IF - the IF command requires full
interpretation of the machine instructions and therefore causes a high
CPU overhead. The AT..IF command executes at normal CPU speed until the
location specified by <ae> is reached. At that point the IF part of the
command is evaluated and execution continues or the <if action> clause
is executed, If it is only necessary to evaluate the IF command at a
few discrete locations , then the AT..IF command should be used.
However if it is necessary to monitor all references to <ae>, then IF

Page 32

must be used.

10.5 USER PROGRAM/DEBUG TOOL INTERFACE

As the debug tool controls the execution of the user program
certain conventions must be followed so that the debug tool’s presence
remains transparent to the user program.

10.5.,1 TRANSPARENT MODE -

The transparent mode of operation is the principal interface
method. In this mode, the debug tool loads the program to be debugged
into memory just as if the operating system had done it. This is a
trivial operation because the user program is required to be in absolute
(already relocated) format and the debug tool simply transfers wuprog
from disk to the appropriate place in memory. Figure 6 shows a memory
layout for the debug tool and wuprog in this mode. Before passing
control (the CPU) to the user program, the debug tool interrogates the
user for debug directives.

If any control card parameters are required by uprog, they are
entered on the HOPE control card exactly as they would be on the control
card used to execute uprog. HOPE does not modify the memory reserved
for these parameters. Thus uprog can process them when it receives the
CPU.

HOPE provides a transparent execution environment for uprog while
maintaining control over the execution. No modifications to uprog are
necessary to debug in this mode. HOPE however must be configured with
sufficient memory to allow uprog to be loaded. The procedure for doing
this will be discussed later.

10.5.2 SEMI-TRANSPARENT MODE -

Certain situations arise where uprog needs memory which 1is not
allocated at the time the loader converts from relocatable to absolute
code. An example is a COBOL program which obtains and releases memory
for buffers during execution when files are opened and closed. This
memory management is performed by the operating system library routines
and is not under user control. In transparent mode, uprog is unaware of
HOPE’s existence and will allocate or deallocate memory which 1is
occupied by HOPE.

To overcome this problem, the semi-transparent mode of operation
was devised, Both uprog and HOPE are in relocatable format. The two
relocatables are combined by the user (see appendix A for sample control
cards) and loaded into memory by the operating system. Figure 7
provides a memory layout for semi-transparent mode. In order for the
debug tool to ever receive control, the user must insert a CALL HOPE

Page 33

- RA+UPROG FL+54008

DEBUG TOOL
RA+UPROG FL
SYSTEM LIBRARY ROUTINES
FOR USER PROGRAM
USER PROGRAM
—~—'RA+1008
0/S COMMUNICATION AREA
RA+0

MEMORY LAYOUT FOR TRANSPARENT MODE

FIGURE 6

Page 34

RA+UPROG FL+5400

8

AVAILABLE TO
USER PROGRAM

SYSTEM LIBRARY ROUTINES
FOR USER PROGRAM

DEBUG TQOL

USER PROGRAM

RA+100

0/S COMMUNICATION AREA

RA+0

MEMORY LAYOUT FOR SEMI-~-TRANSPARENT MODE

FIGURE 7

Page 35

source statement 1in wuprog. When this statement 1is executed the
debugging session begins as if transparent mode were being used.

10.5.3 FILES USED BY HOPE -

INPUT - this file contains all commands. The format is card image.
INPUT 4is also the name of the interactive input device for interactive
mode.

OUTPUT ~ this file contains all output generated as a result of
executing commands including diagnostic and informative messages printed
by HOPE., The format is standard printer line image. OUTPUT is also the
name of the interactive output device for interactive mode.

UPROG - this file contains the program to be debugged when using
transparent mode. Its format 1is that of an absolute program file
created by the loader.

SYMTAB -~ this file contains the optional symbol table, It is read
into memory as part of the initialization process of HOPE. The file
consists of one-word entries terminated by a full zero worde The entry
format is 42/<symbol>,18/<value> where <symbol> is left-justified,
binary zero filled display code and <value> is the integer value of the
symbol.

Normal operating system procedures would allow these file names to
be <changed at execute time by appropriate control card parameters,
Since the control card parameters used with HOPE are intended for uprog,
HOPE does not (and cannot) process then. Thus these names can be
changed only by source code modification to the debug tool.

10.5.4 USER PROGRAM/OPERATING SYSTEM INTERFACE -

All programs communicate with the operating system by means of an
RA+1 request. RA 1is address zero of the user program; hence RA+1 is
the second word of the program. The operating system monitor constantly
samples RA+l of the program in memory which has the CPU. When RA+1
becomes non-zero, the monitor interprets the non-zero value as a request
for some service (e.g., 1/0, time of day, tape request). The CPU may be
taken away from the program until the request 1is completed by the
operating system if a certain bit is set in the RA+1 request. Otherwise
the program keeps the CPU and must perform the completion check itself.

The debug tool does not interfere with this communication between
the wuser program and the operating system. There are however two
situations which the debug tool must be aware of. First, it is possible
for the debug tool to receive the CPU when RA+1 is non-zero. In this
case the debug tool must wait until the operating system monitor accepts
the request before proceeding. Also the debug tool does not give the
CPU to the user program if RA+1 is non-zero. Second, before the debug
tool flushes the output buffer for the user program, it must first check

Page 36

to insure that the previous I/0 operation has been completed.

11,0 TMPLEMENTATION

HOPE was implemented as a monitor utility. Except for the addition
of one source statement in semi-transparent mode, no modifications to
the program being debugged are required. HOPE was written primarily in
COMPASS (the CDC assembly language) with some FORTRAN for a total of
6300 lines of code. Memory requirements are 5400 (octal) words.

11.1 LANGUAGE PACKAGE

The language (commands) recognized by the debug tool is defined
through the use of Floyd-Evans productions [9]. Appendix B contains the
language definition written in these productions. A precompiler reads
the productions and produces an assembly language table for inclusion
with the other debug tool routines. A command parser reads each command
and breaks it down into syntactic units. (A syntactic unit is a string
of alphanumeric characters or a single special character). These
syntactic units are matched with entries in the Floyd-Evans production
table to determine if the command is wvalid. Data contained in each
production table entry tells the parser where the next syntactic units
are and how many should be matched at a time.

11.2 MESSAGES

Messages produced by the debug tool are listed in alphabetical
order. An explanation is also provided for each message. Command fatal
(CF) messages cause the entire command to be rejected. Job fatal (JF)
messages cause the job to be terminated abnormally. Messages which are
applicable to transparent mode only are indicated by (T). Those
messages which are applicable only to semi-transparent mode are
indicated by (ST). Lack of a T or ST designation means that the message
can be received in either mode.

11.2.1 DIAGNOSTIC MESSAGES -

~COMMAND ILLEGAL WITH PENDING IF- (CF) This message is displayed when
a non-IF deferred command is entered and the deferred command table
contains IF commands.

—COMMAND TABLE FULL- (CF) This message is 1issued when a deferred
command requires more records in the deferred command table than are
available.

-DUPLICATE SYMBOL- (CF) This message is displayed if a symbol is wused
in the ENTER command which is already in the symbol table.

Page 37

-IF ILLEGAL WITH OTHER DEFERRED COMMANDS- (CF) This message is printed
when an IF command is entered and the deferred command table contains
non~-IF commandse.

~INSUFFICIENT MEMORY TO LOAD PROGRAM~ (JF,T) This message indicates
that the debug tool was not configured with enough memory to load the
program to be debugged.

~-INVALID ADDRESS RANGE~ (CF) This message is issued for any command
which has an <rg> of the form <ael>;<ae2> and <ael> is greater than
<ae2>.

~INVALID SYMBOL- (CF) This message is printed if a symbol which is
greater than seven characters or does mnot begin with an alphabetic
character is used in the ENTER command.

~-PROGRAM NOT IN ABSOLUTE FORMAT- (JF,T) This message indicates that
the file containing the program to be debugged is not in absolute
format.

~-SYMBOL TABLE FULL- (CF) This message is issued when the ENTER command
is used to add a symbol to the symbol table and the symbol table is

full. It is also printed if the symbol table file fills up the symbol
table when it is read.

~SYNTAX ERROR- (CF) This message indicates that a command is not
recognized as part of the language accepted by the debug tool.

-TO0 MANY DMP COMMANDS~ (CF) This message is printed when the action
part of a command contains too many DMP <rg> commands.

~UNDEFINED SYMBOL- (CF) this message is printed when a symbol used in
an address expression cannot be found in the symbol table.

~USER PROGRAM FILE EMPTY- (JF,T) This message is displayed when the
debug tool reads the file containing the program to be debugged and
finds it empty.

11.2.2 INFORMATIVE MESSAGES -

—-BREAKPOINT LOST AT <add> This message indicates that the debug tool
has detected a breakpoint (set for some deferred action command) that
was destroyed by the user program.

~ILLEGAL OPCODE AT <add> This message is printed when the interpreter
attempts to execute an unknown instruction. <add> is the address of the
unknown instruction.

-MODE 1 ERROR AT <add> This message indicates that the user program
attempted to reference memory which was outside of its memory limits
during interpretation. <add> is the address of the instruction which
caused the error.

Page 38

-PROGRAM STOP AT <add> This message is displayed when the interpreter
executes a program stop (a zero instruction). <add> is the address of
the instruction which caused the error.

YY/MM/DD HH.MM.SS BEGIN DEBUG VERSION 1.0 This message is the first
line of output from the debug tool. YY/MM/DD is the current date.
HH.MM.SS is the current time.

— This message is printed after a DMP <rg> command. It 1is also
used to indicate the end of a TRACE iteratiom.

B This message is used to indicate where a syntax error
has occurred. The * indicates the last syntactic unit scanned by the
parser.

<n> SYMBOLS READ This message indicates how many symbols, <n>, were
read from the symbol table file,

11.3 COMMAND PROCESSING

All commands are classified as either immediate or deferred action
commands. An immediate action command is executed as soon as the entire
command is recognized by the parser. Examples are LIST, STEP, and
CLEAR.

The execution of deferred action commands must wait until the
program being debugged reaches certain user-defined conditions. Thus
these commands are entered into the deferred command table (DCT) to be
executed at a later time. Each deferred action command exists in the
DCT as one or more records. Each record is the same size and contains a
record type identifier, A single command, depending wupon its
complexity, may require multiple records in the DCT chained together in
a linked 1list structure. The first record of the chain contains the
breakpoint address and the word of instructions which were replaced by
the breakpoint. The breakpoint itself contains the address of this
first record so the debug tool can execute the appropriate command when
it receives control. Examples are TRACE, BKP, AT, and IF.

11.4 INDIVIDUAL COMMAND IMPLEMENTATION

BKP - the breakpoint routine replaces the word of instructions at
the breakpoint address with a word containing a return jump to the
breakpoint processor and the address of the breakpoint record in the
deferred command table. The replaced instructions and the breakpoint
count are saved in the breakpoint record. When the breakpoint processor
is called (as a result of executing the return jump at the breakpoint
address) the registers are saved and the breakpoint count is
decremented. If the count is exhausted, control is passed to the user.
Otherwise the registers are restored, the saved instructions are
executed remotely and control is returned to the user program. Remote
execution is performed by storing the saved instructions in the first

Page 39

word of a two word array, storing an wunconditional branch to the
breakpoint address+l in the second word of the array, and transferring
control to the saved instructions. Control is returned to the user
program by executing a branch instruction (one of the saved
instructions) or executing all saved instructions and falling through to
the second word of the array.

TRACE - the trace feature uses a breakpoint to get control when the
first word of the trace range is executed. The registers are saved and
interpretation of the instructions begins and continues until control is
transferred out of the trace range. In trace mode during
interpretation, each instruction, its address, and the wvalue of the
resultant register is printed. When control is transferred out of the
trace range, interpretation stops and the trace count is decremented.
If the trace count 1is not exhausted, the trace breakpoint is reset,
Finally the registers are restored and control is returned to the user
programe.

STEP - interpretation begins from the point of interruption and
continues for the number of words of instructions specified as the step
count. During interpretation the instruction, its address, and the
resultant register are printed Jjust as in TRACE mode. Control is
returned to the user when the step count is exhausted.

DMP - the values of all registers are saved whenever control is

passed from the user program to the debug tool. Information from this
save area is used to produce the output for this command.

RESET - the first symbol in the address expression is compared with
the register names. If it is a register, then the appropriate value in
the user program’s register save area (exchange package) 1is changed,
otherwise the appropriate memory location is changed.

GO - this command returns control to the user program. Control may
be transferred by restoring the registers and returning the real CPU to
the user program or by starting (or restarting) the interpreter. The
presence of any IF commands in the deferred command table causes the
interpreter to be used.

ENTER - the input symbol is examined to be sure that it begins with
an alpha character and is no longer than seven characters. Then a
search is made for 4t in the symbol table to prevent duplicates.
Appropriate diagnostic messages are printed for errors.

IF - the IF command requires interpretation of the user program. A
table of addresses which are to be monitored is examined for each memory
reference, excluding reading memory for instructions. If a match is
found, then the table of addresses contains the address of a record (or
records) in the deferred command table which defines what action(s) to
take., Interpretation is resumed after processing the action record(s).

The algorithm (exhaustive table search for every memory reference)
for determining if a memory reference is for an address in the table is
suitable only for a small number of entries in the address table. Other
algorithms which search the table only if the address in question has a

Page 40

very high probability of being in the table could be implemented if wuse
of this feature required the monitoring of numerous locations.

AT - this command uses a breakpoint to transfer control to the AT
processor. The breakpoint also contains the address of a record (or
records) in the deferred command table which defines the action(s) to be
performed. As with IF, execution resumes after the action(s) has been
carried out.

AT..IF - this command allows the user program to be executed at
normal speed (rather than be interpreted) and still take advantage of
the power of IF. The IF part of the command is evaluated when the AT
breakpoint is reached.

LIST - each deferred command is represented by one or more records
in the deferred command table. Each record contains a type field which
is used by LIST to determine which commands are in the table.

CLEAR - each deferred command record contains the address it 1is
associated with in the user program. These addresses are used by CLEAR
to determine if a record falls within the CLEAR range and therefore
should be deleted. CLEAR must also replace all instructions which were
displaced as a result of breakpoints.

HALT - this command closes the output file for the debug tool and

the user program (if it has a file named OUTPUT). Then it terminates
execution of the debug tool and returns control to the operating system.

11.5 RESTRICTIONS AND LIMITATIONS

l. The symbol table can accommodate a maximum of 64 symbols.

2. The deferred command table can hold a maximum of 20 records.
The following formulas can be used to calculate the number of
records a command will require:
BKP - 1 record
TRACE - 1 record
IF - 2 + (ND-1)/3 records
AT - 2 + (ND-1)/3 records

AT..IF = 3 + (ND=1)/3 records

where ND is the number of DMP <rg> commands specified in the
action clause. The maximum value for ND is 15.

3, The buffer size for file INPUT is 128 words.

6.

7.

Page 41

The buffer size for the file OUTPUT is 128 words.

Since no command terminator is required (except between
commands on the same card) the end-of-card or end-of-line from
an interactive terminal is treated as the command terminator.
Thus commands are not allowed to cross card (line) boundaries.

Semi-transparent mode must be used if the wuser program
dynamically requests memory from the operating system.

Breakpoint addresses as specified in AT, TRACE, and BKP
commands must not be modified by the wuser program during
execution. The debug tool cannot prevent this but can
determine in many cases if it has happened. Whenever the debug
tool receives control from the user program, each location
which is supposed to contain a breakpoint is examined. An
informative message is printed when a discrepancy is detected.

Ttems 1,2,3, and 4 may easily be changed by re-definition of the

symbol
table.

which is used to specify the size of the appropriate buffer or
Appendix C contains a list of such symbols.

11.6 IMPLEMENTATION PROBLEMS

1.

2.

3.

be

User programs vary greatly in the amount of memory they require
for executione. Therefore some provision to vary the "hole"
size in transparent mode was necessarye. Once a program has
been converted into absolute format it cannot change the
address that it executes at. Thus it is necessary to specify
the '"hole" size while the debug tool is still in relocatable
format. A utility program was developed to accept the 'hole"
size as an input parameter and generate an absolute version of
the debug tool with the desired memory allocation. See
appendix D for a description of this utility and an example of
its use.

The CDC 6000 series computer has a word size of 60 bits. The
instruction size is either 15, 30, or 60 bits. Up to four
15-bit instructions may be packed into a single word. Extra
bookkeeping is mnecessary in the interpreter to handle all of
these conditions.

The CDC hardware does not provide any hardware aids which can
be used to save and restore registers or monitor memory
locations for reads, writes, or execution. Thus it was
necessary to write software to provide these features.

Certain of the debug tool features are implemented by modifying
instructions in the user program. Thus the user program must
not modify these same memory locations or the results will be
unpredictable. Instruction modification may be a necessary
technique for the programmer. Certain compilers produce code

6.

7

Page 42

which relocates parameter addresses at execution time by
modification of instructions. The hardware modifies a word of
instructions whenever it performs a subroutine call via the
return jump instruction. There is no way the debug tool can
know if the program will attempt to modify the instructions at
the breakpoint address so it is the programmer’s responsibility
to insure that the breakpoint addresses are properly chosen.

Providing a table of all symbols in the user program can be a
difficult task depending upon the program. In this
implementation, modification to the compilers, assembler, and
loader was not possible although the output from these programs
is available and contains the necessary data. Utilities can be
written to extract the symbols and their values and build a
table suitable for input to the debug tool. The first problem
with this scheme is that the vendor periodically updates the
operating system which sometimes causes changes to the output
format of these programs. And second, but more important, is
that for large systems (several hundred routines and numerous
overlays) there may be thousands of unique symbols, most of
which would be wunused in any given debug session. Two
solutions are provided, both of which may be used. The user
may define symbols at execution time through the use of the
ENTER command and/or the user may prepare a symbol table on a
file with a utility program before the debug run.

As discussed earlier certain compiler products allocate and
deallocate memory for I/0 buffers at execution time. The
solution to this problem was to add the semi-transparent mode
of operation.

To preserve the natural order of input and output when a
program executes in interactive mode, the operating system will
print all output accumulated before the signal for the user to
enter input is given. This service 1is provided by the
operating system only if the program provides file information
in the operation system/program communication area (addresses
0-64). (The compilers do this automatically). In the case of
the debug tool, two separate programs are being executed. The
debug tool flushes the user program output file, changes the
file information in the communication area to indicate its own
output file and then issues a read to the interactive device.
Thus output from the user program is printed, output from the
debug tool is printed, and a read is requested. After the read
request is satisfied, the file information in the communication
area must be restored to indicate the user program output file,

Page 43

11.7 ANOTHER IMPLEMENTATION OPTION

The NOS operating system provides a sub-tasking facility called a
sub-control point (SCP). A control point is a software-defined resource
which a job possesses if and only if it occupies central memory. A job
(job A) at a control point can use the SCP facility to create one or
more tasks (job B) which execute at sub-control points under control of
the dinitiating program (job A). Job B executes exactly as though it
were at a control point. It has its own memory bounds and registers.
Job A defines the memory bounds, has access to all memory for job B, and
transfers the CPU to job B. Job A receives the CPU (from job B) wunder
the following circumstances:

1. Job B makes an RA+l request.
2. Job B exceeds its CPU time slice (defined by job A).

3, Job B aborts (address out-of-range, divide by zero, etc.).

This is an excellent enviromment for a debug tool (job A) to
control the execution of a malfunctioning program (job B). See figure 8
for a memory layout of such a job which has one sub-control point. The
problems discussed earlier of memory allocation by the user program
(semi-transparent mode) and configuration of a proper "hole" for
transparent mode disappear when using a sub-control point. The
difficulty with SCP mode is that job A intercepts all RA+1 requests from
job B. This means that the RA+1 request must either be processed by job
A or passed on to the operating system. In any case the parameters
(addresses) wused in the RA+1 request are relative to job B but if they
are passed on to the operating system they must be relative to job A.
Thus job A must relocate all such addresses, pass the request to the
operating system as if it were making the request, un-relocate the
addresses, and return the CPU the job B. Thus the debug tool would be
required to simulate the operating system for the user programe. The
decision not to use the SCP feature in the debug tool was made for this
reason.

11.8 VIRTUAL MACHINES

Virtual storage exists when the logical address space is different
from the physical address space for some real device. A virtual machine
is a generalization of virtual storage. It is a computing system in
which the instructions issued by a program may be different from those
actually executed by the hardware [28].

Goldberg [12] defines two types of maps based upon the mapping of
real resources to virtual resources in a virtual machine. The p-map is
an intra-level map and is software visible. It maps process names to
resource names. The f-map is an inter-level map and is software
invisible. It maps virtual resource names to real resource names.

Page 44

AVAILABLE TO
USER PROGRAM

SYSTEM LIBRARY ROUTINES
FOR USER PROGRAM

USER PROGRAM

0/S COMMUNICATION AREA (UPROG)

DEBUG TOOL

0/S COMMUNICATION AREA (DEBUG)

RA+1008 (UPROG)

RA+0 (UPROG)

RA+100g (DEBUG)

RA+0 (DEBUG)

MEMORY BOUNDS
FOR UPROG

MEMORY BOUNDS
FOR DEBUG

MEMORY LAYOUT FOR SUB-CONTROL POINT (SCP) MODE

FIGURE 8

Page 45

In general a debug tool implemented as a monitor utility provides a
virtual machine environment for the program being debugged. The current
implementation of HOPE follows Goldberg’s p-map. An dimplementation
using the SCP feature would follow the f-map.

12,0 EXAMPLES OF USE

Figure 9 is an example of monitoring all RA+l requests for a
FORTRAN program named AUDIT. The debug tool was requested to print any
value which was stored in address 1 (RA+1). Such values contain the
name of the PP program being called in bits 59-41. Bit 39 is the
auto-recall bit and bits 17-0 contain the memory address of input/output
data. In the case of the PP program CIO, bits 17-0 contain the address
of a file environment table (FET). The FET contains the file name, a
function code, and buffer pointers for I/0 operations [39].

All I/0 requests performed with a given FET can be displayed by the
technique shown in figure 10. (This is the same program that was used
for figure 9). In this example the debug tool dumped the FET only when
RA+1 had a CIO request for the FET at address 5414,

Desk checking a piece of code is a good technique for finding
errors. However, the same incorrect assumption made during coding can
also be made during desk checking causing the error to go undetected.
To do a thorough job of desk checking requires that the programmer "play
computer" on the code and write down all variable and register values as
the code is "executed". The TRACE and STEP features in the debug tool
can be used to do this work for the programmer. The programmer must
still pass judgement on the results of execution, but need not perform
the calculations necessary to obtain the results.

Figure 11 is STEP output from a piece of code which creates a tape
request message. The message should be the following:

REQUEST, TAPE999,D=HY, F=SI,P0=R,MT,LB=UN,VSN= KA376.

However, as can be seen from the memory dump, some of the characters in
address 111 are dincorrect (;BV). Desk checking the STEP output
indicates that the first instruction in address 137 is the cause of the
problem. That instruction should be BX6 X4+X1 instead of BX6 X4+X0.
The bottom part of figure 11 shows how the RESET command was wused to
change the incorrect instruction. The DMP command verifies that the fix
actually worked.

13.0 CONCLUSION

It is important that computer software be correct because it is
very expensive and because many aspects of our daily lives are affected
either directly or indirectly by computer systems. For all stages of
software development, there exist techniques and methodologies which can
be used to increase the correctness of this software. Although these

Page 46

s BT Ll e E N N
R n s | I LN 1 I W R AV
X

-t
L AT Y W T T W R S
I o v o o O e 0 I o 0 I o
N I e el e e B
G L L) O L L

PR

- L * L n n L] "] Ll
-t 0L
AN i
o et O3
[T

—

P TR W IR WU O VU JO o O OO o O Wy W

EXAMPLE OF MONITORING ALL RA+1 REQUESTS FOR A PROGRAM

FIGURE 9

3]

—\]
W]
.,
Pt}
]
3
f

-

g

]
ut
S Ja -

NI ol o

ooy

i

y =4 T L

Yw

oo Lo g

i

|
|
i
|

Sd14
G415
S416
S417
S420

END

L. uE111

. 1320005, 1.0

TYMEOLS

24011124
Qﬁ&ﬁ&gﬁﬁﬁﬁﬂﬂﬁgﬁﬂ%i?g
GDGBQ%QBQD&SGDGQEE?&
OOOoNannoooanonnsl
GQDDBQQQ&BDQQQQQSE?@

HIPSIA

A i
o ol 1 T

AUDIT

EXAMPLE OF MONITORING ALL I/0 REQUESTS FOR
A GIVEN FILE ENVIRONMENT TABLE (FET)

FIGURE 10

Page 47

N

Rt W

&
-p

oy}

0]

Page 48

Bk
¥]
F= i
P 13
F=L
F= 1z
F= 134
= 134
P= 135
P 1 e
F= 13 B
F= 1] E
F= 1 B
P= 137 b
F= 137
F= 137
F= 140
= 140
TOBEF 103,
kP, P o=
TOoMFEa11051
11 = i
111 = =
112 3 1
112 = 1
114 2 par
115 &

N

fowe)

o=

1w

=)

fobe

[hew}

T

e
pry
Lo
U

b oo
[R
Pk
KX}

LA

EXAMPLE OF USING THE STEP COMMAND TO AID IN DESK CHECKING
FIGURE 11

Page 49

methods are helpful and should be used, they currently cannot guarantee
that the software will be free from bugs. Finding these bugs can be
very difficult and time consuming. Powerful computer programs (called
debug tools) can be used to substantially reduce the burden of debugging
by providing control over the execution of these malfunctioning
programs. The development and use of these debug tools has not received
the attention that it deserves,

13.1 HOW DOES HOPE COMPARE WITH OTHER DEBUG TOOLS?

HOPE provides both an interactive and a batch environment for

debugging programs., Some of the debug tools cited earlier in chapter 9
provided either interactive or batch access but not both.

Essentially all of the debug tools surveyed included a symbolic
addressing capability in the language. So does HOPE., The difference is
that HOPE does not generate the symbol table or provide a utility to do
it. Other debug tools either generated the symbol table directly or
required modifications to the compilers and loaders in the operating
system to provide symbol table data for the debug tool. HOPE will
accept an externally produced symbol table and/or allow the user to
manually define symbols through its language.

HOPE’s language is brief and understandable. Some of the others
were note. The system developed by Kulsrud [24] required a complicated
language. Gaines [11] and some of the debug tools for PDP machines used
special characters and function keys for directives to the debug tool.
These are certainly brief but are often difficult to remember. Command
abbreviations or mnemonics are probably better,

HOPE, like a number of other debug tools surveyed, provides a good
interface to assembly language and a poor interface to higher level
languages with the exception of FORTRAN. Other debug tools, especially
Satterthwaite’s [32], interface very well with specific higher level
languages and are not concerned with assembly language at all. Whether
this is a good or a bad point for HOPE depends, of course, upon the
language in which the program to be debugged was written.

13.2 WERE THE DESIGN GOALS MET?

Require no program modifications or recompilation. This goal was
completely satisfied in situations where transparent mode could be used.
Situations which require semi-~transparent mode cause a one statement
program modification and recompilation.

Provide a brief, flexible, easy to learn command language. This
goal was achieved by allowing one character command abbreviations and
providing syntax which is compatible with FORTRAN, English, and the
operating system JCL.

Page 50

Provide comprehensive control over program execution. Conditional
and unconditional breakpoints with counters, instruction trace with
counters, step mode, the ability to define snapshot dumps, and the
ability to conditionally or wunconditionally monitor memory locations
support a claim that this goal was satisfiede In addition any memory
location or CPU register can be modified or displayed whenever the debug
tool has control. Features found in other systems such as collecting
flow of control history and executing in reverse are certainly useful
but were not included in this implementation.

Provide a variety of memory and instruction displays during
execution. The goal of providing instruction displays was satisfied by
the TRACE and STEP commands which print the instruction mnemonic and
resultant registers under user control (STEP) or program control
(TRACE). The contents of all registers can be displayed with the DMP
command. However there is no way to display a subset of the registers.
Memory is displayed in only two formats - octal and character. Some
other debug tools allow more display options such as floating-point and
integer,

Provide TTY and batch access. This goal was successfully achieved
by allowing access to the debug tool with either method.

Allow symbolic addressing. Symbolic addressing is allowed as input
in any context which requires addresses to be specified. As with any
compiler or assembler, the actual symbolic name is lost when the command
is translated into the internal tables of the debug tool. Thus the LIST
command can only display the value of the address expressions involved
and not the symbolic names which were input.

Provide a separate utility to create the symbol table, This goal
was not met. No utility was provided to produce a symbol table. Such a
utility may take many forms depending upon the program being debugged.
The enviromment for which this debug tool was developed consists of a
system of about 400 routines and about 20 overlays. If there are only
10 unique symbols in each routine and 25 routines in each overlay, the
number of unique symbols for the symbol table would be in excess of
5,000. Obviously only a very small number of these symbols would be of
interest on any given debug run. Thus the actual usage of this feature
to date has been 1limited to the programmer defining the few symbols
needed using the ENTER command.

13.3 WHAT NEEDS TO BE DONE FOR THE FUTURE?

Research into any area which will aid in the production of correct
software should continue. Development and use of debug tools should be
encouraged. Computer manufacturers can stimulate interest in debug
tools by adding or providing access to hardware aids which make debug
features easier or even possible to implement. An example is hardware
which will trap a memory reference to a given location for data or
instruction execution. Manufacturers could even provide complete
general purpose debugging systems for their customers as well as
themselves.,

Page 51

Compilers are ideal programs to be enhanced with static analysis
features. Here again computer manufacturers have the opportunity and
should take the responsibility to provide compilers which do more than
check syntax. It should be mentioned that the current CDC FORTRAN
compiler includes features which will flag undefined variables,
statements which cannot be executed, and subroutine calls which have
inconsistent argument counts.

All of these techniques and ideas are wasted unless they are put to
actual wuse. Programmers (and managers) need to be educated in these
areas so that the software that they produce can benefit from these
methodologies.

Page 52

14,0 BIBLIOGRAPHY

1.

2.

3.

6.

7.

9.

10.

11.

12.

13.

l4.

15.

A.L.Anmbler, D.I.Good, J.CeBrowne, W.F.Burger, Gypsy: a
language for specification and implementation of verifiable
programs , Proceedings of an ACM conference on language design
for reliable software, D.B.Wortman (ed), MAR 1977.

G.Ashby, L.Salmonson, R.Heilman, Design of an interactive
debugger for Fortran: Mantis, Software-practice and
experience, vol 3, pp65-74, 1973.

J.L.Baker, CDC 6000-series register save/restore, Software-
practice and experience, vol 2, pp377-387, 1972,

R.M.Balzer, EXDAMS-Extendable debugging and monitoring systemn,
SJCC 1969, pp567-580.

J.Blair, Extendable non-interactive debugging, Debugging
techniques in large systems, R.Rustin (ed), Prentice-Hall,
1971.

P.T.Brady, Writing an online debugging program for the
experienced user, CACM, vol 11, no 6, pp423-427, JUN 1968,

0.J.Dahl, E.W.Dijkstra, C.A.R.Hoare, Structured programming,
Academic Press, 1972,

T.G.FEvans, D.L.Darley, On-~line debugging techniques: a
survey, FJCC 1966, pp37-50.

R.W.Floyd, A descriptive language for symbol manipulation,
J.ACM 8,10, pp579~584, OCT 1961.

L.D.Fosdick, L.J.Osterweil, Data flow analysis in software
reliability, Computing surveys, vol 8, no 3, pp305-330,
SEP 1976.

R.S.Gaines, The debugging of computer programs, Ph.D.
dissertation , Princeton University, 1969.

R.P.Goldberg, Architecture of virtual machines, National
Computer Conference, pp309-318, 1973.

DeI.Good, L.C.Ragland, Nucleus—a language of provable programs,
Program test methods, W.C.Hetzel (ed), Prentice-Hall, 1973.

J.D.Gould, P.Drongowski, An exploratory study of computer
program debugging, Human factors 16(3), pp258-277,
MAY-JUN 1974.

R.Grishman, Criteria for a debugging language, Debugging
techniques in large systems, R.Rustin (ed), Prentice-Hall,
1971,

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26,

27.

28.

29.

30.

31.

Page 53

R.Grishman, The debugging system AIDS, SJCC 1970, pp59-64.

M.Halpern, Computer programming: the debugging epoch opens,
Computers and automation, pp28-31, NOV 1965.

D.H.Ingalls, FETE-a Fortran execution time estimator,
STAN-CS-71-204, Stanford University, FEB 1971,

W.H.Josephs, An online machine language debugger for 08/360,
FJCC 1969, ppl79-186.

JesCeKing, Symbolic execution and program testing, CACM ,
vol 19, no 7, pp385-394, JUL 1976.

J.C.King, A verifying compiler, Debugging techniques in large
systems, R.Rustin (ed), Prentice-Hall, 1971.

W.Kocher, Survey of current debugging concepts, NASA contractor
report, NASA CR-1397, AUG 1969.

D.E.Knuth, An empirical study of Fortran programs,
Software~practice and experience vol 1, ppl05-133, 1971.

H.E.Kulsrud, Extending HELPER, Debugging techniques in large
systems, R.Rustin (ed), Prentice-Hall, 1971.

B.W.Lampson, J.J.Horning, R.L.London, J.G.Mitchell, G.L.Popek,
Report on the programming language EUCLID, Sigplan notices ,
vol 12, no 2, FEB 1977.

B.W.Lampson, J.J.Horning, R.L.London, J.G.Mitchell, G.L.Popek,
Notes on the design of EUCLID, Proceedings of an ACM conference
on language design for reliable software, D.B.Wortman (ed),
MAR 1977.

LeJ.Osterweil, L.D.Fosdick, Some experience with DAVE -~ a
Fortran program analyzer, National Computer Conference |,
pp909-915, 1976.

R.P.Parmelee, T.I.Peterson, C.C.Tillman, D.J.Hatfield, Virtual

storage and virtual machine concepts, IBM systems journal,
no 2, pp99-130, 1972.

JeS.Prokop, On proving the correctness of computer programs,
Program test methods, W.C.Hetzel (ed), Prentice-Hall , 1973.

C.V.Ramamoorthy, S.F.Ho, Testing large software with automated
software evaluation systems, International conference on
reliable software, pp382-394, 1975.

H.Sackman, W.J.Erikson, E.E.Grant, Exploratory experimental
studies comparing online and offline programming performance,
CACM, vol 11, no 1, pp3-11, JAN 1968.

32,

33.

34.

35,

36.

37.

38.

39.

Page 54

E.H.Satterthwaite, Jr., Source language debugging tools,
STAN-CS-75-494, Stanford University, MAY 1975,

J.Schwartz, An overview of bugs, Debugging techniques in large
systems, R.Rustin (ed), Prentice-~Hall, 1971.

R.L.Sites, Some thoughts on proving clean termination of
programs, STAN-CS-74-417, Stanford University, MAY 1974,

D.van Tassel, Program style, design, efficiency, debugging and
testing, Prentice-Hall, 1974,

V.A.Vyssotsky, Common sense 1in designing testable software,
Program test methods, W.C.Hetzel (ed), Prentice~Hall , 1973.

T.Wilcox, A.Davis, M.Tindall, The design and implementation of

a table driven, dinteractive diagnostic programming system,
CACM, vol 19, no 11, pp609-616, NOV 1976.

B.L.Wolman, Debugging PL/l Programs in the Multics environment,
FJCC 1972, pp507-514.,

~,NOS Version 1 Reference Manual, Control Data Corporation,

vol 2, pp2-1,3-4, 1976.

Page 55
APPENDIX A

The method of generating a copy (in absolute format) of the debug

tool for transparent mode was automated with the following tools:

1. HOLE is a utility program which takes a single input value (a
control card parameter) and creates a source file (TAPE1l) for a

tiny routine named FILLER.

2. GENBUG (see below) is a control card file which uses HOLE and
.manipulates the debug relocatable file, BUGLGO, to produce an
input file for the loader. The loader produces the debug tool
absolute on a file named DEBUG with a "hole" for the user

program as specified by the input to HOLE.

GENBUG is executed Dby the following control card:
CALL,GENBUG(SIZE=<n>), where <n> is the input value for HOLE: The

example below shows the source output of HOLE with <n> = 34000.

GET QHOLEC
ATTACH,BUGLGO.

RETURN,TAPE1 yDEBUGsLGO.
HOLEsSIZE -

REWINDsTAPE1.
COMPASS3S=04L=091I=TAPELl.
COPYBF 4BUGLGO,sLGO.

LOADSLGO.

NGGO .
RETURNsHOLE s BUGLGO» TAPEL 4L GO

LISTING OF GENBUG, A CONTROL CARD FILE

IDENT FILLER

Lcc OVERLAY (DEBUGy 04 0)
BSSZ 3400083

END

SAMPLE OUTPUT FROM PROGRAM HOLE

L..’.‘q..-......?.......‘.1.0....‘.l

APPENDIX B

FLOYD-EVANS PRODUCTIONS

STeP

S

aKE -
3 -
DMP -
[p] .
TRACE -
T -
CLEAR -
C -
C -—
HALT -
H -
GO -
G -
LIST -
L -
1F -
1 -—
AT -
A -
RESET

R

FNTER

E

<SG>

<SG>

*

<SG>

<SG> -

Page 56

k2?2?2222d£1111111111Xo..00-QQQONQ-.-

..3;_...._..2_.._....,1__,,,.,,,Ré?ZZZ?ZZ&dllllllillIX...-...ooON-...

1FIRST
STEPRP1 185TP1
STERL 15TP1
4CMD] 1BKP1
4CMD1 18KP1
1CMDL 1CMD1
1CMDI 1CMD1
2CMD1 1BKP1
2CMD1 1B8KP1
3CcMul 1CMD1L
3CMD1 1CMD1
3CcMD1 1CMD9
1 1CR
1 1CR
2 1CR
2 1CR
3 1CR
3 1CR
1AT1 1IF1
1AT1 1IF1
2AT1 1AT1
2AT1 1AT1
RESET IRES]
RESET 1RES1
20EF O
ZOUEFO
SYNERR FIRST
CMD99 FIRST
SYNERR FIRST
1
AEXP1
BKP1 FIRST
RKPZ 28KP2Z
HKP3 18KP3
SYNERR FIRST
BKP4 FIRST
SYNERR FIRST
AEXF]
BKP6 FIRST
RKPS 2BKPZ
SYNERR FIRST

L q ...2’...‘...’1.'.Q.....PZQ??Z?ZZKZ].

CrD1
cHMD9

crD?

LQODO"X.....ooohizt-.o!nc..

PES]

e A @ @
wn
n
v

<SG>
<SG>
<SG>
llctuonooop

b4
al -

B2 -.

a3 -
R4 -
RS -
R6 -
B7 -
a0 -
Al -
A2 -
A3 -
Ay -
AS -

. AH -

L..O.‘}.-..OQOQOPDOOQO...I

STP1

AT -
X0 -
X1 -
X2 -
X3 -
X4 -
X9 -
X6 -

X7 -

P ‘ -
<5G>
<SG>
<56>

2<5G>

Page 57

22222222221111111111Xs0ceaasss

lllllll]1x‘-.“....0N....

lco-.....0Q2?2?2?228a1111llllllxio-cc0.Q.ON....

L]
’

<SG>

»
<CQGR>

CcMD10 FIRST
1
AEXF1
cCHMb20 1CMD2
CMD30 FIRST
SYNERR
AEXF]
CMO40 FIRST
SYNERR FIRST
ON..O‘
1
1RESETL 1RES?Z
2RESET] 1RES?Z
IRESET1 1RESZ
HRESET 1RESZ
SRESET1 1RES?2
6RESET! 1RES?Z
TRESET1 1RESZ
8RESET] 1RES?
9RESET1 1RESZ
JORESET! 1RESZ
11RESET1 1RESZ
172RESET 1RESZ
13RESET1 1RESZ
14RESET! 1RES?Z
15RESET1 1RES?Z
16RESETI 1RFS?2
17RESET1 1RESZ
18RESET 1RESZ
19RESET1 1RES?
20RESET1 1RES?Z
21RESET1L 1RES?
22RESETI 1RES?Z
23RESET1 1RESZ
2L4RESETI 1RES?2
AEXP1
RES3
SYNERR FIRST
RESET3 1
RESETZ FIRST
SYNERR FIRST
STEP2 FIRST
1
STEP3 1
STEPZ2 FIRST
SYNF RR FIRST

L-..o'x......~..2....-...-1..-.-....

NEFO
NEF 1

hEFe

L..003:.0..-...?’.....-.‘

iFl

IF2

IF3

IF4

IF6

IF7

1IF8

1F9

’

<S6G>

LF
LT
GE
GT
EQ
NE.

<SG>

<SG>
<SG>

-

<SG>

Page 58

SYM1
SYNERR
AEXP1L
Syme
SYNERR

peP222222221111111111Xe00ecceralNscss

1
1DEF2
FIRST

FIRST
FIRST

] eoonovaaeek2??22222¢21111111111X0cecccsselNense

b4
<SG>
13
<SG>

¢ & & e o

<5G>
WRITTEN
READ
<SG>
L]
<SG>
»]
PRINT
H

RKP

N

NP
<S5G>
/
<SG>

AEXP]

SYNERR
0AT2
1AT2
2ATZ
3AT2
H4AT2
SAT?

SYNERR
6AT2
TATZ2

SYNERR

AT3

SYNERR

AT&

AT4%

ATS

ATS

ATE

ATG

SYNERR

AT7

SYNERR
AT7

AEXP]
ATY
AT10
AT11
SYNERR
AEXP1
AT12
AT13
SYNERR

1

2IF2
1IF3
FIRST
11IF4
11F4
1IF4
1iF4
11F4
1IFa
FIRST
11F4
11IFa
FIRST
1IF6
FIRST
1IF7
1IF7
1LIF7
11F7
11F8
1iF8
FIRST
FIRST
11F6
FIRST
1IFé6
FIRST
1

11IF9

FIRST
1IF6
FIRST

FIRST
11Fé6
FIRST

Page 59

Lao.-B..-.---.-203-0'.i.-1...-....-RZ???agzzeallllllll}.lX.ooo-nocnONvo'g

AT1 . 1
<SG> AEXP1
R AT1S 1AT2
<SG> SYNERR FIRST
ATZ2 1F - 3ATH 11F1
1 - 3AT] 1IF1
<SG> AT3 1F6

Loool’}.‘.o..-00020-00000001.."-.Qoapd??pzaazgdllllllllllx-o..bo..lof\‘..‘.

REIZET
=SIZFC
SYMS[7F
NCE
RS

Page 60

APPENDIX C

DEFINITION OF TABLE AND BUFFER SIZES

o Z00a STIZF OUF TINRUY HBUbFeR

W FO0R 17 0F OUTRUT &urfer

ot [RIS Q17F UF SYM=sO0L Tr3Lle

F ol en : MUMRER OF DEFERRE S COMMAND RECORDGS

00 3 CEFERREN COmMAND RECURG STZE

Page 61

APPENDIX D

SAMPLE JOB TO USE THE DEBUG TOOL IN SEMI-TRANSPARENT MODE

JOr Caiviy,

ATTACH IR G0, SELOCATASLY DriUn 20 Tive

FTN. CAl L FURTHab COMPTFE Fus USER PrROGRAM

COPYHRF 2 =NELEOLLGU. ADP PMERUG wAUTINES TO Lse = PROGRa RELUCATASLE
{ (=0 EXFCUTE USED 2Ru62aM wIiH RERUG LT INES

7/8/9 E MY — 4F 00

SOLLEE FOR USER PRNGEAN

-

A/T/8/9 ENN=OF =F T1LF

Page 62

APPENDIX E
ciekOyTINE PAGF] T3/ 7w nPT =]
1 QUEROUTIHE PAAF1 (#0rDSyPSILE o PAGES)

TakRLICIT INTEGFER (A=)
PARES = ((wORNKeRST 0 /BS /)
RETURN

a F ol

GYMROLIC REFFRENCE MaP (P=1)

ErTRy ONINTS

3 PAGF]
VARTARIFS st TyRE FEI DCATION B
b Conne NP AA A Fare 0 PSIZE INTEGER
n WOPDS INTERFR Fop.

STETISTICS i |
PROCRAM | FrnGTH 127 Lo

ClimDOUTIngE PAGED

1
109
10

Page 63

TR/74 AP T=

[

QURKOUTTHE P AGE2 (00KDS s PSLLE s PAGES)
I?»“«PLICU INTEAER (A=Z))
NATA SuCOnssn/
BATA SPSTLE/D/
TF(PS]/7% ab 0aSPST 7
SRS = w(RNS
SPAGES = ((#NRNS+pS|zb=1)/H#S17E)
CONTINUF
PAGES =
RETURN

F i

HURDS oo SWORDS)

a iUl e

SPEAGES

SymrROLIC REFFQFNCE MAP (F=1)

ErTRry ROITY
A PAGF2

VARTARIFS sr TYRF
b Banks INTEGF
e CiPAGRES INTFQF
20 SWORDS INTFGF
STATEMENMT | ARFLS
14 100
STATISTICS
PoOnPam | FNGTH

HELOCATION

- 21 SPSIZt
7 0 WORDS

232 19

G0 TO 100

INTEGFR
INTEGER
INTEGFR

