DISTRIBUTED SIMULATION OF NETWORKS*

TR-81 1978

K.M. Chandy
Victor Holmes
J. Misra

Department of Computer Science

University of Texas
Austin, Texas 78712

* Supported by NSF Grant MCS77-09812



Abgtract

A potentially valuable attribute of message switched networké is that all
processors in the network can cooperate in solving a common problem. This attri-
bute haé not received sufficient attention in the literature probably because
it is hard to partition most programs 1nt6 processes which communicate exclusively
by exchanging messages. The problem of partitioning programs and assigning them
to processors in message switched systems becomes acute when programs appear to
be inherently sequential. In this paper we use a message switched network to
solve a problem that has always been solved in a highly sequential fashion. The
specific problem that is studied is discrete-event simulation thoﬁgh key concepts
can be extended to other areas of message-switched problem~solving. There are
no shared variables in message switched networks. The shared variaﬁle "clock"
ﬁypically used in simulation algorithms, does not appear in theiproposed scheme;
instead each process maintains an internal clock that is not usually synchronized
with clocks of other processes. The case where the network is a tandem of servers
is considered in detail in this paper. The core ideas reported hete were signi-
ficantly developed and radically extended by a group‘at the University of Waterloo

under the direction of Professors Manning and Wong.



1. INTRODUCTION

1. The Problem of Distributed Programming: A Simulation Example

The advent of inexpensive and increasingly powerful minicomputers has

increased pressure to create parallel programs for a variety of appliicatioms.
We are interested in distributed programs which are special cases of parallel

programs; a distributed program is a collection of parallel processes which only

communicate with each other by passing messages. A key factor in distributed

programs ig that concurrent processes have no shared variables. One method for
generating distributed ﬁrograms is to recognize parallelism in programs written
for serial machines and to then reconstruct the program using parallel constructs.
However; many existing algorithms do not lend themselves to distribution by this
method. 1In these cases radically different algorithms are required. We are
interested in the creation of distributed algorithms in general; however, in this
paper we shall restrict attention to distributed algorithms for event driven
simulations. Thé concepts we use in distributing simulations can be applied to

other important areas. Our goal is to use message switched networks to solve

parallel problems.
1.1 The Importance of Distributed Simulation: the problem of parallel time

a) The apparently sequential nature of simulation

Conventional simulation algorithms appear to be inherently
sequential for the following reason. The key data structure in
event driven simulations is the event list, which is a list of
expected future events ordered in increasing order of expected time
‘occurrence. Simulations proceed by processing the next (i.e., top)
event in the event list and by moving the simulation clock to the
time of oécurrence of this event. In general, events must proceed

in striect chronological order. The processing of one event may



result in the spawning of several new events, one of which may be

the next event to be processed. Thus, to ensure strict chronological

order, events can be processed only one at a time, resulting in an
apparently sequential program. Parallelism can only be achieved by
changing the structure of the event list so as to capture the inde~
pendence as well as the interdependence of the processes being
simulated. Thus simulation provides an interesting problem for the
creation of distributed algorithms.

Our goal is to construct a simulator consisting of several parallel

processes with no shared variables. Communication is permitted only

by passing messages between processes. This implies that each procesé

must maintain its own clock (time) and hence the strict chronological

sequence of events that occurs in the real system must be realized in
the asynchronous simulator solely by messages between processors,
b) Importance
Simulations are widely used in analyzing systems including job- |
shops, computers and communication networks. Computational expense
and/or the real time required to run a significant simulation may
inhibit the use of simulation in these areas. Paralleliém may reduce

this problem.

1.2 Desirable Criteria for Distributed Algorithms

a) Inter-Processor communication

Communication between processors may be a sizeable overhead in
distributed processor systems: hence inter-processor communicétion

should be kept to a minimum.



|

Each processor in a distributed system has access to its local
memory only. Hence the memory available to each processor may be less

than the amount available to conventional processors. Memory requirements

Simulations are rarely checked for correctness in a formal manner.
This is because simulations are not usually specified formally; In
many cases the informal specification for a simulator is an existing
system such as a manufacturing job shop (though the values of parameters
must be changed more easily an& with less expense in the simulation
than in the real system). It is importaﬁt that simulators be natural -
representations of the systems to be simulated because even though a
simulation is not formally proved to be correct, a decision-maker is
likely to believe in a simulation if he can easily see the correspondence
between events and processes in the real and simulated systems. An |
obvious éorrespondence between real and simulated systems is also less
likely to lead to errors. Very often, the system being simulated is’a'
parallel processor system; in this case the correspondence between reality

and the simulation model is more cobvious if the simulator is also a

b) Memory
should be kept to a minimum.
¢) Natural representation
parallel processor system.
Correctness

d)

An interesting problem in its own right is to formally specify a
simulator and to then prove that the simulator meets specificatioms.
This problem becomes doubly interesting when the simulator is a distributed

program. In this paper we prove that the distributed simulation is



correct. We shall show that every process in the distributed simulation

ntinue to run until the simulation is over (4. e, deadlock is

s
[¢]
Q

impossible) and that the simulator faithfully represents the real
system. For a detailed formal study of correctness of distributed

programs see [CHANDY and MISRA ].

1.3 An Example: Assembly Lines

To illustrate the key concepts associated with distributed simulation we shall
use the simple example of an assembly line. An assembly line (figuré 1) consists
of a series of n work-stations. Jobs enter the assembly line at work-statiom ]1;
when a job has been processed at work-station i it proceeds to work—station i+1,
i=1,2,....,n, until it is completed and leaves the system. Service times at
different statlons are arbitrary random variables. There are buffers between
stations. A server at a station takes one job from its input buffer, processes
that job and then places the job in its output buffer (which is the input buffer
to the next station). All stations are assumed to be served in a First-Come~First-
Served (FCFS) manner. Initially, we will assume that buffers have infinite

capacity. Our objective is to find queue length and wait time distributioms.

1.3.1 Conventional simulations

In conventional simulations the key data structure is thé event list which
consists of the departure times from all the work-stations and from the job sourée.
To process the next event we (a) determine the next work-station (say work-station
i) to have‘a departure and the time t of the departure, (b) move fhe simulator
clock up to t, (c) remove this event (departure at t from work-station i) from

the event~list, (d) decrement the number of jobs in work-station i by 1 and



"queue of jobs ///,§ErveL T
A

[ —

source of jobs

!
t

=

B!

“%~fi]:[13 fg_*~5>'n

]

source .<&——station l-——> &— station 2—> - --~------%gtation n—7 sink

C—C

source processor 1
processor simulating
station 1

A/

processor 2|
simulatingi
station 2

THE ASSEMBLY LINE

i

processor n . sink
simulating & processor
station n

SIMULATION OF THE ASSEMBLY LINE
The distributed simulation of an assembly line

Figure 1.

i{ncrement the number in work-station i+l by 1, (e) if the number of jobs at work-

station 1 is non-zero, compute the time of the next departure from i and insert

this event into the event list, (f) if there is currently no event in the event

1ist corresponding to a departure from i+l compute the time of the next departure

from i+l and insert this event into the event list.

In conventional simulations the behavior of any subsystem may depend upon

‘the state of any other subsystem (or possibly upon the entire system). For

instance, the service time at the ith work-station may depend upon the numbers



of jobs at work-station 1,....,n. The generality of the conventional simulation

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV "&??fﬁgﬁhwhaﬁW?ﬁéﬁ%%%éwiﬁwi&SMWid%SPteadwu&e$mM§QﬂQ!§I- it is difficult to run such

a simulator on multiple processors.

1.3.2 Distributed simulations: Time Exchange Systems

There is a limited class of problems which lends itself naturally to distri-
buted simulation. The goal of distributed simula;ion is to (a) partition the |
system being simulated into relatively independent subsystems which communicaté
with each other in a simple manner (such as passing customers or jobs from one
subsystem to another), and (b) simulate each subsystem on a different processor.
For instance, in the assembly—line example, if the service time at each work-
station were independent of all other work-statioms, then each work—station could
be treated as an independent subsystem and simulated on a different processor.

If all the parts of a system are mutually interdependent then distributed
simulatiﬁn provides no advantage, because the overhead involved in communicating
(information about the status of several subsystems to other subsystems) negates
the advantage derived from concurrent processing. In a forthcoﬁing p#per we shall
discuss the simulation of systems with interdependent subsystems.

The crucial issue in distributed simulation is that of simulating time on
multiple processors. Two methods are suggested: the firét method is not a
distributed program because it has a global variable.

(a) Time Driven Simulation: A Method That is Not a Distributed Program

All processors keep the same simulated time. In this case there is
a single master clock which drives all the processors. The master
clock moves forward in time in discrete steps of fixed size. At each

clock step, all the processors transmit information about the events



that happened during that incremental interval of simulated time. In the

(b)

assembly-line example, in every clock-step, each processor determines if

a job leaves the corresponding work-station and communicates that infor-

mation to the next processor downstream. The advantage of this approach

is that the correspondence between the simulator and the simulated

system is obvious. The disadvantage is common to all time-driven simula-
tions: the clock-step must be short for purposes of accuracy, but short

clock-steps result in long simulations.

TEXS: Time EXchange Systems

Tn our method a different clock 1is associated with each connection
between subsystems. For example, in tﬁe assembly-line case (figure 2),.
there is a clock (number 0) associated with the connection from the
source to the first work-station, and a clock (number i, 1 = 1,0000,0)
associated with the interface between the ith work-station and the next
one downstream. Each clock moves forward in time in an asynchronous
manner. Thus we cannot take a "gnapshot" of the entire systeﬁ by stopping
all processors at the same instant. Each processor maintains the clocks
for all the connections going out of it (figure 2).

The basic idea is simple. All processors continuously repeat a
two-step cycle. (1) Whenever an event occurs on the output line of a
pfocessor it sends a message to each processor that it ié directly
connected to. This message includes the current clock-time of the line
connecting the two processors and a description of the event which occurs
at that time. (2) Each processor inspects the messages corresponding to
all of its input lines and based on these messages it determineé the next
event dn its output line and moves its output lines forward in time to

this event. Now, the next cycle starts with the new interface times.



output buffer for output buffer for
source and Input processor 1 and input
buffer for processor 1 buffer to processor 2

y
/L

o
source m ; 5
/ u | -7
; /

>,

i
i clock 0 ' : clock 1 |
i : ] 1
' \ ; ' : - i
i source processor | processor 1 i _ _ _ . o __.__1
Figure 2.

In the assembly-line example, the clock for the interface between the "ith and
i+1th processors is moved forward in discrete steps through a sequence of times
l,t ,..., which are the instants at which jobs move from the ith station to the
(i+1)th. The ith processor (4 =1,...,n) computes the time at which the next job
will depart from the ith work-station and enter the @+1)h station; this time is
clock-time of the interface between the ith and @#l)th stations. Given the sequence
of arrival times into a work-station (i.e., the sequence of values cf the input
line's clock) a processor merely computes the sequence of departure times from

the station (i.e., the sequencé of values of the output line's clock).



Conslider an arbitrary work-statiom. Let Aj’ Sj’ and Dj be the arrival,

service and departure times (respectively) of the jth job, j = 1,2,... . Since

the ith job cannot begin to get service until it arrives and the previous job
departs, a formal specification of departure times is:

DO =0 (assumed for convenlence)

D, = S, + maximum {Ai’Di-l}’ i=1,2,3,...

i i

The ith processor has three local variables: A, D, S which are the arrival, service
‘and departure times for this job. (Processors also keep local variables for
computing statistics, but these are not discussed.) There is a one word buffer that
the ith processor writes into and the (i +1)th processor reads from. We call this
buffer the (i, i+1) buffer. We assume the existence of a protocol which ensures
that the @+)th processor waits to read the buffer until the ith processor has
written into it.

The ith processor repeats the following four-step cycle:

(1) Compute S (The service time is normally computed using the random

number generator).

'(2) Read the (i-1, i) buffer into A

(3) D:=S + max(A,D)

(4) Write D into the (i, i+l) buffer
An Example

Assume that we have three processes A,B,C connected in sequence as shown

below, to a source and a sink.

1 -1
> A | B ¢ |—--ysink

source

Source produces 4 jobs 1,2,3,4 at times shown below. Service~times for

each of the jobs on each processor is also given in the following table.



10

H

™. job
nnﬂé“ t 2 3 4
source 3 ;
(pm time) 5 1 7 f 30 32
7 A 4 t10 b1 5
| 4

Processing ! ~
y B 112 - 15 2 7

Times - s
Cc 2 13 1 | 4

Sequences of departure times corresponding to different jobs, produced

by the various nodes are shown below.

ieder ! 2 3 4
gource 5 7 30 32
A | 9 19 31 37
B 21 36 38 45
c _'~“—~”23 39 40 : 49

1f we were to stop all the processes in the simulatof at some point in
time and take a "snapshot" of the simulator we may get the picture shown below.

32,30,7,5 — 31,19,9 21 — 23

o g

7

The sedquence of departure times produced by each process is shown on the corres-

ponding line. The source has produced all jobs including job 4; node A has
processed up to job 3 gnd has output it to B; B has processed job 1 and has
cutput it to‘C; C has finished processing job 1 and output it to the sink.
There are 1,2,0 jobs waiting to be processed by A,B,C respectively. As a

next step A,B can process their next input jobs, possibly in parallel. HNote



11

that each processor is working at its own point in simulated time. If we were

to stop the real system at some point in time, all processes of the real system
would be at that point in time. A radical difference between distributed and
convéntional simulations is that snapshots of distributed simulations do not
correspond to snapshots of conventiocnal ones.
We discuss initial and termination conditions and the computation of statistics
later; our goal here is to provide a simple intuitive explanation of TEX sttems.
The advantage of TEX Systems is that many processors can work in parallel in
a pipe-lined fashion. The primary problem is that it is difficult to determine
the state of the system (including such information as queue-lengths) at any
instant of reél-time whereas this is easily done in conventional gimulations. “This
difficulty is serious since many statistics (such as queue-length) are defined
over time. We next discuss a method for solvinglthis problem.

2. Queue-length distributions

It is often necessary to determine the length of time in a simplation
that a buffer contains n or more jobs, n = 1,2,.... Once aggin considgr the
simulation of a single queue. Let Q(n) be the length of time in a simulation
that there are n or more jobs at a service station'(waitiﬁg for orv:ecéiving
service). We can specify Q(n) formally in ferms of the sequences of afrival

times Al’AZ and departure times Dl’ DZ""‘

2.1 Specification

Let t be a non-negative real variable representing time and 1et‘xn(t), n=1,2,...
be indicator functions which can take on the values 0 or 1. Define xn(t) in the
following way. Set xn(t)ito 1 if there exista‘some i such that A1 st e Di—n+1;

otherwise set it to 0.



12

xa(t) = 1 if and only if there are n or more jobs in the queue at time

t; this is because xn(t) = 1 implies that for some i, the ith, (i-1)th,

(i-n+1)th jobs depart after tband all of these jobs arrived before time t.

Hence

T

Q(n) = f xn(t).dt
- =0

where T is the length of the simulation.

2.2 The problem with distributed simulation

In our simulation a processor gets a job from a processor upstream and
immediately passes the job on to the next processor downstream. Hence ﬁe have
to employ some ingenuity in estimating how many jobs there would be in the real
system at some time t. An obvious solution is to keep a record of all arrivals
and departures, and to deduce queue-lengths from this log. However, this solu-
tion is infeasible due to the tight comstraints on available memory in mini
and microcomputers. We present a solution which doesbnot require storage of
more than n+l variables; this memory requirement for typical n) is within‘ the
capability qf most configurations.

2.3 Computation of queue-length distribution

We show how Q(N), for some specific N, may be computed on~line by a processor.

The processor will maintain two local variables SUM and CURSOR, and after the ith

cycle, _
CURSOR
SUM = I xN(t).dt, and
0

CURSOR = max(A ).

1°P1-we1



13

Initially, AO:=D_N:=D_N+1=... D0:=O; SUM:=0; CURSOR:=0;

Thus definitions of SUM and CURSOR are trivially satisfied initially. At the
beginning of the ith cycyle the processor reads the next arrival time Ai' Then
it computes the following quantities.

(1) » :=Si + max(Ai,D ) {ith departure time}

i-1

(2) Wi:=Di - Ai; {ith wait time; needed to compute the histogram}
(3) if A, <D _ .. then SUM:=SUM + D . .. - max(CURSOR,A );

%) CURSOR:=max(Ai,Di_N+1);

A proof that SUM and CURSOR are computed correctly by this program, appears
in Appendix A. We note that SUM holds the correct value of Q(N) up to at least

time Ai at the end of the ith cycle, since CURSOR = A

T

Note that the algorithm given above requires a history of the 1asf"N departure
times to be kept - we call this a "window" of length N. After each new arrival,
the window is moved once by discarding the first departure time and appending the
new departure time. Clearly Q(1), Q(2)... Q(N-1) can be computed without need
for any extra information if we are computing Q(N). Furthérmore, this technique
is independent of the particular structure of the network, e.g., tandem structure
considered so far. It can be applied in the general case whenever the departure
time for a new arrival can be predicted.

Typical output of a simulation program is the statistics collected at every
node at prespecified times Tl,Tz,...,Tr.These are the instants when a conventional
simulation can take a snapshot and output the proper statistics. As we have shown,
the proposed algorithm does not directly produce snapshots which correspond to
snapshots of the real system. However this is not a major problem. Every processor
could keep a table of Tl’TZ”"’Tr' Statistics corresponding to source T, are

3

recorded when Ai < Tj < Di' Thus the processor need only compare the next T



14

against the arrival and departure times to determine if the statistics should

be recorded and output.

3. An Overview of TEXS

We now present an overview of how TEX Systems work in general networks.
Crucial to the general solution is the notion of a "null" job: a fictitious job
created by the simulator solely for its own operation. Null jobs do not appear
in the real system. A special indicator needs to be used to differentiate a null
job from a real job. This notion is of fundamental importance in avoiding dead-
lock in the general case. Creation of null jobs makes the simulator differ
in a nontrivial manner from the real system. | |

We show, with an example below, that the general problem is not just a
trivial extension of the assembly line case, considered earlier. 1In the case
of an assembly line, every subnetwork having one input line and one output line
preserves the FCFS property; any job Jl,which enters the subnetwork before job

J, must leave the subnetwork ahead of JZ. This property is not preserved in the

2
general case even when the network has no loops. Consider the éubsystem shown

in Figure 3 and where A, B and C are queues with First Come First Served service,
jobs branch at X and merge at Y. Assume that we wish to carry out a distributed

simulation with one processor assigned to each node. Thus the (logical) inter-

connection between processors is exactly as shown in Figure 3.

Figure 3



15

The difficulty is to ensure that the correct chronological sequence of jobs is

input to C, while all processors maintain local information; this problem is

i11llustrated by the following example: assume that the system is initially empty
and that jobs 1, 2 and 3 enter branch point X at times t = 1, 2 and 5 respectively
(figure 4). Assume that jobs 1 and 3 are directed to A while 2 is directed to B.
Let the service times for these jobs 1, 2 and 3 be 3, 1 and 2 respectively. As
shown in Figure 4, job 2 will arrive at C before job 1. However, if we use exactly
the same method used in the assembly line example, processor C will receive meé?

sages regarding job 1 first (from A), then regarding job 2 (from B) and finally,

. ____ incorrect

— #3 [ #2) [#1] chrono-

e Tl T i7" logical

Job# 3 #17 I A Job# [#3 E#}J t=7) [t=3] |t=9] seqience

1 k % e 9 ' = | = ' ‘ \ = = \

cloc t=5] t=1; P lockig=7}it=4 3 (72 correct
/ . : chrono-
L t=7] L t=4] (t=3] 1logical

sequence

¢l

c

L]

"

N / Job# [ #2
B i K] ClOCk t_.=3. R

Figure 4,

regarding job 3. Thus the sequence of messages received by processor C in the
simulator does not match the chronological sequence of jobs arriving at work-station

C in the real system.



16

The solution to the problem is obvious if we insist on a separate clock for

each line between processors énd if we move all clocks as far ahead in time as

pogsible, bhaged on fho_l@salwinﬁéxma;iaawa&mhgad@wWghaam}ebwkwa*?*“gsma* gml o
node X and is directed to A, we move the clock on line (X,A) up to t=1 and send a
message to processor A stating that a job will arrive at t=1; we will also move
the clock along line (X,B) to t=1 stating that no job will arrive at B until t=1,
Processor A moves the clock on the line (A,Y) up to t=4 because the next job

arrives at that time. Processor B moves the g}ock along line (B,Y) up to t=2, and

sends a message stating that no job can leave B before t=2 (this is because no-
Job can enter B until t=1 and the next service time at B will be 1 umit). Now
processor Y inspects the clocks on its input lines and moves the clock along its
output line to the minimum of the values of the input clocks., Thus the key infof-
mation exchanged between processors is the clock-time of the connecting lines and
each processor attempts to move the clocks of its output lines as far forward as"
possible. This method ensures that messages flow in the right order. The
algorithm is discussed more formally in another paper [4].
The key points of our method are the following;
‘(1) There is a separate clock (time) assoclated with each line connecting
processors |
(2) Processors transmit messages including time information
{3) Each process attempts to move the output clocks as far ahead in time as
possible based upon currently available information
(4) The output message on a line may state that no job will arrive on that
line between the curremt clock-time and some future time. The use of
no~job messages 1s crucial to the correct operation of distributed

simulators.



17

(5) Since the sequence of clock times on a line are monotone increasing,

merging of two lines at a processor can be achieved on-line based
on the well known merging algorithm which appears in merge-sort,
for instance.’

4, Earlier Work

Techniques for parallel simulations, with centralized clocks were reported

by Parent, et al (2) and Kaubisch and Hoare (3). To the best of our knowledge

the concept of a distributed clock simulation was discovered by the authors.

The distributed clock simulation concept has been radiéally extended by Peacock,

Wong and Manning (1).

5. Summary and Discussion

We have proposed a distributed algorithm for an important problem which
is typically solved in a sequential manner. Distributed algorithms have the
sdvantage that many processors may operate in parallel: since there are no
shared variables (except message buffers between two connecting processors)
protocol issues for shared data access are largely‘avéided. We have suggested
an algorithm for the general network whose formal description and proof appears
elsewhere (5).

We have assumed that each processor has a buffer size large enough to store
all incoming messages prior to processing. In préctice, the buffer size can
be quite small if all simulator processors take aﬁproximatelyﬁthe same time
to handle a job (i.e., compute its departure time and maintain statistics): in
this case jobs arrive at approximately the same rate at which they are ptdceaSed.

A formal solution to the problem with very short buffers, is desired since
memory can be a scarce resource in minicomputers; this solution musf formally
prove that no processor will be deadlocked with buffers permanently empty or

full.



. Deadlock is an important issue in any distributed algorithm. Usually
avoidance of deadlock is considered a global property and is solved by methods

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, which are based upon collection of global information. Solutions to this problem

based upon collection of global information and unbounded buffers appears in (1).
A general solution which avoids deadlock with bounded buffers and without
collecting any global information is clearly desired; this problem is currently

under active investigation.

The algorithm proposed here has been implemented on 2 NOVA processors
with communication capability at the University of Texas. A major problem
in implementation has been the short (16 bit) word length in the computer.
This makes it impossible to generate a long nonrepeating random sequence unless
several words are used. We anticipate this to be the major problem in imple-
menting simulation algorithms (conventional or the proposéd scheme) on a

microcomputer.



19

Acknowiedgement

1.

The initial ideas on distributed programs were developed by the authors

in an attempt to parallelize inherently sequential problems in an attempt

to use a large parallel pipelined computer, the Texas Instruments ASC.

We are grateful to TI for giving us a grant of time on their machine

in 1976.

The ideas presented here were discussed in a course taught at the University
of Waterloo by K. M. Chandy in Summer 1977. We are grateful for this support
from the University of Waterloo and to course participants for valuable
discussions.

We are especially grateful to Professors Manning, Wong and Peacock of the
University of Waterloo for pointing out that these core ideas could be sig-
nificantly extended to general networks {(3) by considering deadlock detection
and avoidance schemes, and for their continued cooperation.

We are grateful to the National Science Foundation for support under

grant MCS77-09812.



References

20

1.

2.

J. K. Peacock, J. W. Wong and E. Manning, "pistributed simulation using
a network of microcomputers,’ Computer Networks (this issue). .

M. Parent, F. Prunet, J. M. Dumas and Y. Moreau, "Graphical models and the
LAM hardware discrete event simulator,” in Computer Performance (eds.
K. M. Chandy and M. Reiser), North~Holland, 1977.

W. H. Kaubisch and C. A. R. Hoare, 'Discrete event simulation based on
communicating sequential processes,” to appear in CACM.

K. M. Chandy and J. Misra, "A nontrivial example of concurrent processing:
distributed simulation," Proceedings of COMPSAC '78, available from IEEE.

K. M. Chandy and J. Misra, "Issues in the design of correct distributed
systems,' Technical Report, Computer Sciences Department, University
of Texas, 1978.



21

pendix A: A proof of correctness of queue length computation.

We show that the algorithm given in Sec. 2.3 is correct, i.e., at the

end of the ith cycle,

CURSOR
SUM = [ xN(t),dt, and
0

CURSCR = max(Ai,D ).

1-N+1
We consider a slightly altered form of the algorithm that includes the parts

that modify SUM and CURSOR.

Initially,

ese D.:=0; SUM:=0; CURSOR:=0

A, =D =D 0

0 V-n T C-mi
Thus trivially the definitions are satisfied.

At the beginning of ith cycle:

(1) read Ai and compute Di;
(2) ig_Ai < Di—N+l then SUM:=SUM + Di—N+1 - max(CURSOR,Ai);
(3) CURSOR:=max(Ai,Di;N+1)

We will show that the steps {Z),(:) properly update SUM and CURSOR to meet
‘the gilven definitions. Step (:) clearly maintains the definition of CURSOR.
In order to show that step (:) properly updates SUM,

(i) We will assume that prior to step Cg},
CURSOR
SM = XN(t),dt,

CURSOR = max(A }

1-1* Pyy



22

(i1) and show that after step (é),

max(A;,0y ne)

SUM xN(t).dt .

i

0

Proof is based on the following lemma.
Lemma : Prior to step 2, if Ai > CURSOR then

xN(t) = 0, CURSOR < t < Ai’

Proof: Suppose xN(t)¢0 for some t, CURSOR < t < Ai'
Then there is some j such that

< <
Ay €= Dy,

Ajst,t<Ai=-?'Aj<Ai=>j<i.

Hence CURSOR < t, € < Dj-N+1 = CURSOR < Dj—N+l < Di—N'

However CURSOR 2 Di—N prior to step 2. Contradiction!
In order to prove correctness of step (2), we consider the following
3 cases one of which holds prior to executuion of step (2).

D Then A, > CURSOR

Case a) A i—N+1: | 1

1 >
Then, XN(t) = 0, CURSOR < t < Ai’ from the lemma.

max(Ai, Di—N+1) = Ai

A 1 CURSOR A 1
New value of SUM = I xN(t).dt = I xN(t).dt + I xN(t).dt
Gccording to definition) 0 CURSOR

= SUM + 0 = SUM
Note that the value of SUM remains unchanged in step (2) in this

case, as required.



23

Case b) 'Ai < Di*N+1’ Ai < CURSOR: Here CURSOR = Di—N > Di—N+1

Then, xN(t) = 1, CURSOR < t £ Di—N+1 since

From the definition, xN(t) = 1, Ai <t < Di—N+1'

max (A5 Dy yi9) = Dy e

Di-nt1
New value of SUM (according to definition) = [ xN(t).dt
_ 0
CURSOR D, N+
= xN(t) dt  + xN(t).dt = SUM -+ (Di—N+1 - CURSOR),
0 CURSOR
provided Di—N+l 2 CURSOR.

Case c¢) Ai < Di—N+l’ Ai > CURSOR:

Then,

fO, CURSOR < t < A,, from the lemma.

i’
xN(t) = .
1, A, st s from definition.

1 Dy w+1°

max(A;s Dy ni1) = Dyni

New values of SUM (according to definition) =

Di—N+l CURSOR Ai Di—N+1

[ xN(t).dt = I xN(t).dt + I xN(t).dt + f xN(t).dt
0 0 CURSOR Ai

= SUM + 0+ (D, o0 = A

In cases b) and ¢) SUM must change to SUM + Di—N+l - max (CURSOR, Ai)’

which is accomplished in step (2).



