A NONTRIVTIAL EXAMPLE OF CONCURRENT PROCESSING:

DISTRIBUTED SIMULATION

By
K. M. Chandy
J. Misra

September 1978 TR-82

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

A NONTRIVIAL EXAMPLE OF CONCURRENT PROCESSING:

DISTRIBUTED SIMULATION

K. M. Chandy

J.

Misra

The University

Abstract

This paper i3 concerned with the pros and cons
of writing distributed applications software. Most
applications software is highly sequential due to
the sharing of variables. Here we focus attention
on one such application: Jdiscrete-event simulation
We show how to develop distributed software for
this application by taking a radically different
view of the application. We outline proofs that
our distributed software is correct. Our goal is
to develop guidelines for writing distributed appli
cations software,

1. Writing Distributed Applications Software

The continued development of distributed systems
has been due to (1) the continued decline in pro-
cessing costs and (2) the increasing geographically
distributed nature of inputs to information pro-
cessing systems. Most of the previous work on dis-
tributed systems has been concerned with architec-

tures and operating systems. The key issue of dis-
tributed applications software has not received
sufficient attention. Qur goal is to focus on dis-
tributed applications software running on well
understood distributed architecture and operating
systems. It is. recognized that the major cost of
information systems lies in applications software;
we wish to focus on this fact in distributed sys-
tems as well. We shall use a message communica-
tion network as the architecture and operating
system base on which we shall develop distributed
applications software.
1.1 Why Choose Message Communication Networks?

Firstly, anything which can be done using a
loosely coupled collection of processors which
communicate only through messages can also be done
using a tightly coupled set of processors with
shared memory. Secondly, there are several Message
Communication Networks (MCN) in existence. Hence
MCNs are a practical basis to develop ideas about
distributed applications.
1.2 Distributed Applications Programming

Most applications programs are written as a
series of sequential programs. Relatively recently
[£] a great deal of attention has been paid to
concurrent programming in which several processes
may be in operation simultaneously. Distributed
programs are special cases of concurrent programs
in which communication between processes is exclu-
sively through messages. There are no shared vari-
ables.

For a distributed program to be efficient
the time spent in communication between processes
should be small relative to the time spent in pro-
cessing messages and data. The problem is to write

of Texas at Austin

applications software ags a collection of loosely
coupled processes.

Many applications are not suitable for distri-
buted programming. - A common approach to the crea-
tion of parallel programs is to attempt to recog—~
nize parallelism in existing programs and to then
restructure the programs to make the parallelism
evident. This method does not work in many cases
because a variable may be shared by several pro-
cesses. In this paper we consider an application
(discrete-event simulation) which has always been
solved in a highly sequential fashion because one
variable, the "clock” or "time" variable is shared
by all processes. We show how to create a truly
distributed applications program despite the wide,
intensive sharing of this variable. The develop-
ment of this distributed program stems from viewing
the application from a radically different point
of view, this view-point may be useful in other
applications as well.

1.3 Difficulties with Distributed Applications
Programming

(1) 1f the program is not highly structured and
many portions of the program share a large
number of variables then the program is unsuit-
able for distribution.

(2) It is harder to prove a distributed program
correct than it is to prove the correctness of
a conventional sequential program. This 1is
because to show correctness of distributed
programs we have to consider issues such as
deadlocks and flooding the network with mes~-
sages; these issues are not considered in
sequential application programs. In this paper
we provide one example of proving correctness.
of a distributed program.

The key contributions of this paper are: (1) It

lays stress on the importance of distributed appli~

cations software (not merely architecture and

operating systems) (2) we consider an application,

viz. discrete~event simulation, which has been

solved in a highly sequential fashion and show how

to create a distributed program by taking a radi-

cal view of this application (3) we show how to

ensure the correct behavior of this distributed

system without any form of centralized comtrol

(4) we formally prove the correct behavior of this

distributed system elsewhere [2].

Our overall goal is to develop a methodology
for the design of distributed applications soft-
ware. The example provided here should give the
reader some idea about the advantages and the dif-
ficulties in writing distributed software.

2. An Example of Distributed Programming:
Simulation of Networks

We consider a network of work statfons each of
which could process jobs. Jobs enter the system
from a source at arbitrary time intervals, get
processed by some work station and then move to
some neighboring work station for more processing.
Due to the presence of loops in the network, a

ordered in an increasing sequence of expected time
of occurrence. The simulator removes the first
event from the event list and moves the simulation

_clock to the time associated with that event. Now

the occurrence of this event may create new events
with associated times, each of which is entered
into the event 1ist. It is possible that occur=
rence of an event e, may cause event e, to happeti

particular job may get processed more than once by

4 work station. Eventually, a job leaves the sys~
tem by reaching the sink. The service time asso-
clated with processing a job at a work station may
depend on the job and the work station. A queue
may build up at a work station 1f more jobs arrive
before one job is completely processed. Jobs are
processed First Come First Serve (FCFS). Since

one work station may receive inputs from two or
more work stations, jobs in the queue may come

from different work stations and get ordered by
their arrival times.. An-example of such a network
is shown in Fig. 1, where A,B,C,D are work stations
and a directed line between two work stations indi-
cates that a job could (possibly) go from one to
the other in the direction of the line.

sink
source [};}

Figure 1

Assume that a job J, arrives at time 5 and requires
7 units of processing by A. It will then depart A
at time 12 and suppose it goes to C. Suppose 32

arrives at A at time 8then it must wait till time
12 to get processed. Assume that Jz takes 2 units
of processing at A and then goes to B. Assume J1
takes 5 units of processing at C and Jz takes 2

units of processing at B. Both go to D. A pic-
ture of the functioning of the system is shown
below.

time -+ ,‘2 ;% }\,2 J‘:(I‘ }’(6 '1‘<7
events+ e, e, ey e, eg e T
e, H J1 arrives at A

e, = J2 arrives at A

ey H J1 departs A to go to C

e, S Jz departs A to go to B

e5 = Jz departs B to go to D .
e H Jl departs C to go to D

Note that D will process J2 first and then Jl'

The events happen at discrete instants in time.

We assume that no time is taken for a job to travel
from one work station to the next.

A conventional simulator maintains an event~-
list, which 1s a list of expected future events

next] hence the simulator can not remove more than
one event from the event-list at any time. The
strict serial nature of this algorithm was a chal-
lenge to deriving a distributed algorithm where
processes could operate in parallel.

Clearly, the work stations in the real system
are operating in parallel; for instance B,C process
JysJ; in parallel during times 14 through 16.

However, the synchronization is achieved in real
time. Any effort to duplicate this parallelism

in the simulator would result in a shared variable
"clock” or a central process which schedules events
in the proper order - another implementation of
the event list. Our solution dispenses with a
central clock by maintaining clocks at each indi-
vidual process, where a process corresponds to a
work station of the real system.

2.1 A Special Case; Assembly Line

It is easier to explain the algorithm when the
network structure is a tandem. We thus have work
stations 1,2,...,n, where the ith work station
receives input jobs from (i-1)th work station and
outputs jobs to (i+l)th work station. Source is
the Oth work station and sink the (n+l)th work
station. In the simulator, we associate one pro-
cess with each work station; message transmission
in the simulator is along the same direction as .
the job fiow in the real system. As in conven-
tional simulation, we assume that jobs are pro-
duced by the source by a random number generator
and service times at work stations are arbitrary
random variables.

The messages transmitted in the simulator are
of the form <t,j> where j 18 a job name and t is
a time. If ith process transmits <t,j> to (i+Dth
process at any step during simulation, it means
that, the job 4 departs the ith work station
(arriving at the (i+1)th work station) in the real
system, at time t. Thus every job bears a time
stamp which identifies the time occurrence of an

.. event involving that job in the real system.

Given this interpretation of the messages, 1t
is quite straightforward to specify the logic of
each process,

pizﬁ(ith process)

Var D; {time of departure of the last Job from
this work station = time stamp of the
last message output by pt}

- . . A; {arrival time for the next job} .-

§; {the identity of nextz job}

Initially D:=0;

loop .

input <A,3> ; {from pi—l}

D:=max(A,D) + next(service time){next returns
the next ser-
vice time}

output <D,3> {to p,,,}
i+l

collect statistics {for histogram and other
output from the simu-
lator}
forever

Correctness of the logic of P, can be seen as
follows.,

The jobs go from source to sink visiting each
work station in order. Thus we note the following.

general, absence of deadlock proofs may have to
rely on structure of the network as well as on
the internal logic of individual processes.

8. Since snapshot in the simulator does not usually
correspond to a snapshot in the real ayatem, it
is not entirely straightforward to compute cer-
tain statistics such as queue length distribu-
tion. These statistics however can be computed
on-line with a bounded amount of storage, see
{1} for details.

{1) Each process Py receives input <A,j> &t the

jthcycle, where A is the arrival time of the
jth job at the ith work station in the real
system,

{(2) D, at the beginning of the jth cycle, is the
departure time of (j-1)th job from work station
i in the real system.

(3) Hence the jth job can not be processed by the
ith work station until max(A,D). Processing
will start at this time.

(4) Thus departure time of the jth job from the . .
ith work station is max(A,D) + next (service-
time).

We have thus effectively associated a clock D,
with every process which simulates the functioning
of that particular work station up to D. Since
different processes may have different D's, pro-
cesses are not synchronized in terms of the real
time. In fact, if we were to stop the simulator
at some step and examine the snapshot of the sys-
tem (last arrival and departure times at each pro-
cess), we will most likely find that the snapshot
corresponds to no physical snapshot of the real
system - some processes may have simulated further
and gone ahead of other processes; i.e., their
clocks may have advanced further. The only syn-
chronization is between neighboring processes where
a message sent from one process to the next, might
advance the clock of the latter process.

We summarize the important aspects of the pro-
posed algorithm.

1. There is no shared variable.

2. Messages are transmitted between neighboring
processes and that constitutes the only shared
information.

3. Synchronization is only in a logical sense,
unrelated to the physical synchronization
through time in the real system.

4. Logic of each individual process is simple.
Memory requirement of individual processes is
minimal. Only the necessary data is transmitted
in each message, prefixed with a time stamp.

5. Structure of the simulator is identical to the
structure of the real system.

6. Correctness of the simulator can be shown by
proving that each process produces a correct
message (i.e., if it produces <t,j>, J will
actually depart at time t in the real system)
assuming that it receives a correct message.
Thus correctness of each individual process 1is
sufficient to guarantee correctness of the en-
tire system, provided there is no deadlock in
the simulator.

7. The simulator is deadlock-free as long as the
source keeps on producing jobs and the sink
keeps accepting them. This fact is obvious
from the tandem structure of the natwork. In

rrnifFteutey ol Algorithn Destgn-for—A
Networks

It may seem that the algorithm given in the pre-
vious section is also applicable to arbitrary net-
works. Unfortunately this is not so. To see why,
consider a process that has two input lines.
Clearly, the process must receive input on both
lines before producing any output; otherwise if it
receives an input <t.,J.> on one input line and
the other line is empty, it can not assert that
the next job to be processed by this process would
be J., since <t ‘J2> may appear on the other in-
put }1ne at a later“simulation step where t, < tl'
In the real system of course, this problem “does
not arise since J, would arrive (physically) prio
to arrival of Jl.

Now consider a loop which has a process P having

two input lines L1 and Lz; line Ll is in the loop

(see Figure 2). 1In all reasonable real systems
every loop must have such a process, otherwvise
jobs can not enter the loop. We claim that P can
not proceed with simulation since it requires

input from both Ll and L2 and since it can not

produce any output, line Ll will never have any '

mecsage transmitted over it. In fact all the pro-
cesses in the loop would be individually dead-
locked. A possible solution is to somehow identify
that Ll is in a loop and hence P should proceed

without waiting for input from Ll. This is correct

only if it can be guaranteed that no message can
appear on L1 unless P produces some output. A

solution given in [3] sends around a message to
detect if such a deadlock’'has occurred. This may
slow down simulation. We propose an alternate
solution which solves this problem.

~ -’

Figuore 2
It may seem that the algorithm given for the
tandem case would be applicable to acyclic net-
works. Again this is not so, unless we permit
every process to have a buffer of unbounded length.
Consider the network given in Figure 3.

Suppose x sends job J, at t=5 to A. J1 takes 10

units of processing at A,
X sends job J2 at t=6 to B, J

unit of processing at B.
x sends job J3 at t=7 to A.

2 takea 1

x attempts to send J, at t=8 to A.

4

permits a process to produce jobs in a gtrict mono-
tone time sequence: a fact that is important for

showing absence of deadlock.

We now show how an unbounded buffer can be re-
placed by a bounded (one-word) buffer for the solu-
tion of the second problem discussed in the pre-
vious section. Suppose a process P receives the

message <t1,n1> and determines the next departure

.) ey, 212 .2
Nete that-y-would-read-input-—from-both-lines

<15.J1> on (A,Y) and <7,J2> on (B,Y). It will
process JZ' Next it would attempt reading from

(B,Y) again. However x 1s blocked attempting to
output to A, which is blocked since its input
buffer has one item (J3) and its output buffer has

one item (J‘). Hence all nodes would halt.

A solution is to allow processes to have un-
bounded buffers. Thus A could keep reading inputs

as long as input is being sent to it from x. Such -

a-solution appears in [3]. Our algorithm solves
the problem with a bounded buffer.
2.3 The General Algorithm: Time EXchange System (EXS)

A concept that is crucial to the solution of
the general problem is the notion of a "null" job,
to be denoted by #. A message <t,$> on a line in-
dicates that no job will appear until time t on
this line. A message <t,J>, J#@, indicates that
job J appears on the line at time ¢ and no other
job will appear until time t on this line. Such
an assertion can be made in our algorithm since
the times produced by each process are monotone
anondecreasing; a fact that we prove in the next
section.

Let P be a process that has more than one out~
put line. Whenever P produces <t,J>, J#@, on some
output line, it produces <t,$> on every other out-
put line. This is valid since the next output of
P to any other process must be at a time at least
as. high as t.

Processing of a null job should take 0 time;
however this would fail to avoid the deadlock in
a loop, as explained in the previous section. If
<t,@> is the next message to be processed at pro-
cess P and service time for the next (real) job
at P is s, then P can certainly output <t+s,f>
on every output line; this is easily seen to be
valid since the next real job can not arrive be-
fore t and hence can not depart before t+s.

A second key idea is to suppress the identity
of jobs and only count the number of jobs which
arrive at ime t. Thus each message would be of
the form <t,n>, n > 0 which denotes that,

(i) exactly n real jobs arrive at time t along
the given line at this process (n=0 denotes
that no real job arrives at time t) and,

(11) next job, real or null, arrives at time
strictly greater than t.

It is possible to keep only a count since identity

of jobs does not affect the simulation procedure.

A process accepts inputs from all input lines and

processes those having the least time stamp. Thus

<t,n >.<t,n2> on two different input lines would

be logically equivalent tov<t,n1+n2>, i.e., n1+n2

real jobs arrive at this process at time t. We
will show in the next section that this scheme

time to be T. HNow any sequence of input messages
<t2.n2>,<t3,n3>}.. <t _,n >, can be replaced by

r
<T, I n,> provided tr < T, for the purposes of
i=2

simulation. Clearly none of the jobs can be pro-

cessed until time T and hence their individual
arrival times are of no consequence’ as long as
they are before T. Thus a process may accept in-
puts (in the proper order) as long as the input
times are less than the next departure time and
simply keep a count of the number of jobs so re-
ceived. A formal description of the algorithm and
its proof appears in {2].

3. System Properties

In this section, we show that any arbitrary
network of processes as defined in the previous
section, is deadlock-free, provided every loop has
a process which has nonzero service-time. For~
correctness of individual processes and the geneml
problem of designing correct distributed systems,
reader is referred to [1].

It is important to distinguish between system
deadlock and process deadlock. System is dead-
locked when no process can proceed, i.e., every
process is waiting for either input or output such
that no pair of processes are waiting for input-.
output from each other. A process is deadlocked
if it is waiting and would never get out of the
waiting state. It is possible that a process may
be deadlocked, but the system is not deadlocked.
It is likely that in our case, the system may not
be deadlocked, but it may not be computing any-
thing useful (such as a null job going around a
loop). Hence we need to establish that no process
will deadlock; then the source can produce an ar-
bitrarily large number of jobs.

We first note an important property of our
system: the sequence of messages ALTLES <t,,n,>

...<tr,nr> output along a line have strictly
increasing time stamps, i.e., ti < ti+1' This can
be shown by induction on the total number of mes-
sages output in the system; note that if any pro-
cess receives input having the strict monotonicity
property, it produces outputs having strict mono-
tonicity property.

Define a process to be starved, if it is wait-
ing to input and blocked, if it is waiting to out-
put. Observe that no process is simultaneously
blocked and starved. At any point during simula-
tion, we associate a time t with every line in

+

The only statistics that depends on individual
arrival times is the queue length distribution.
As shown in [1], it can be computed on-line with
a bounded amount of storage.


~~~~~~~~~~~~~~ 1,25 -process P s blocked waiting tooutput on

the network: t 1s the time stamp of the last mes-
sage sent along the line (sent from the process at
the tail of the line and received by the process
at the head of the line).

We make the following observations without
proving them here.

blocked processes and monotone nondecreasing across

. starved processes and there is discontinuity at the

boundary processes.

Corollary: Assuming that every service-time > ¢,
where € is a positive real number, no process will
deadlock.

line out then for any input line in
tin 2 tout”

Every loop has a process for which tin > tout'

2. If a process P is starved waiting to input along
line in, then for any output line out,

tin < fout”

Every loop has a process for which tin < tout'

3. If a process u 1is blocked waiting to output to
process v and v is starved then,

t >t
inl in2
v inl
n, ly
Figure &

4. If a process u is starved waiting to input from
process v and v is blocked then,

4 >t
inl inz

in u

|-

v
Figure 5

Theorem: System is never deadlocked.

Proof: Intuitively, if there is deadlock then
there is a loop of blocked or starved processes or
a (pseudo) loop of starved and blocked processes.
There can not be a loop of blocked/starved pro-
cesses each of which is waiting on the other, since

the times on lines must be monotone nonincreasing/ .

nondecreasing and there must be a discontinuity
in time across some process.

. The only possibility then is a pseudo loop of
the following type.

A . b ,j
st —2 T TR
A= g
. Zh——; ,_.j
° s
b S
Figure 6

where b denotes a blocked and 8 denotes a starved

process. Again such a pseudo loop 1s impossible
since times are monotone nonincreasing across

4 Digoueginn

We have shown that any distributed program syn-
thesized according to a certain discipline {is 4
deadlock~free. Furthermore, the memory require-
ments for implementing the logic of processes is
minimal. Every process behaves identically inde-
pendent of the structure of the network. Syn-
chronization among neighbors is achieved through
time stamps affixed to a message.

Though the discussion has been couched in terms
of simulation, it is not hard to see that the same
technique is applicable to any system where every
process can determine its (local) time. It may
then output messages bearing the proper time stamp
Buffer length, in theory, could depend on the times

in tout However, we have found that in almost
all'cases, a bounded buffer suffices.

We are currently investigating the use of mes~
sage communication networks in the solutions of
other application problems.

5. Acknowledgement

We are grateful to Professors Manning, Wong
and Peacock of the University of Waterloo for
helpful discussions. This work has been extended
in an orthogonal direction by Mr. Vic Holmes [5].
This work was supported by NSF Grant MCS77-09812.
We are grateful to Ms. Debbie Davis for typing and
editorial comments.
References

1. K. M. Chandy, Victor Holmes and J. Misra,
"Distributed 5imulation of Networks," Computer
Networks, December 1978.

2. K.M. Chandy and J. Misra, "Issues in the Design
of Correct Distributed Systems,” Technical
Report, Computer Sciences Department, Univer-
sity of Texas, 1978.

3. J.K. Peacock, J.W. Wong and E. Manning,
"Distributed Simulation Using a Network of

. Microcomputers,"” Computer Networks, December. . ..

1978.

4. W.H. Kaubisch and C.A.R. H-are, "Discrete
-Event Simulation Based on Communicating
Sequential Processes,” Comm of ACM (to appear)

5. Victor Holmes, Ph.D. Dissertation, University
of Texas, in Preparation.



