Assertion Graphs for Verifying and
Synthesizing Programs#®

by
Tilak Agerwala
Jayadev Misra

TR 83 August 78

% This work was supported in part by the National Science Foundation
under NSF Grant DCR75-09842 and in part by the Joint Services
Electronics Program under contract AFOSR F44620-76-0089.

THE UNIVERSITY OF TEXAS AT AUSTIN

Assertion Graphs for Verifying and Synthesizing Programs*

by
Tilak Agerwala
Jayadev Misra
Departments of Electrical Engineering
and Computer Sclences
The University of Texas at Austin
Austin, Texas 78712

October, 1978

" *This work was supported in part by the National Science Foundation
under NSF Grant DCR75-09842 and in part by the Joint Seryices
Electronics Program under contract AFOSR F44620-76-C-0089,

Key Words:

Assertion graphs, inductive assertions, program synthesis,

program verification, sequential programs.

Assertion Graphs for Verifying and Synthesizing Programs

1. Introduction

A notion of assertion graphs is introduced in this paper which has been
found to be a useful tool for understanding and verifying programs and
synthesizing programs from their specifications.

A program can be viewed as a tramsition system operating on a set of
states. Each state corresponds to distinct values of variables, registers,
location counters, etc. Execution of a program statement results in transition
from one state to another. Clearly, such a view of program execution is not

very useful since the number of states is usually very large and sometimes

potentially infinite,

Instead, the set of states is partitioned into a finite number of sub-

sets such that the states Inside a subset have similar properties with

respect to the given program. Then it is unnecessary to identify or study
each state individually; omly the subsets are of interest. ' This is more
tractable since the number of subsets is finite. Each subset is characterized
by an assertion involving the variables of the program. This finite set of
assertions constitutes a finite state machine where transitions among
assertions are effected by execution of program statements. Once a reasonable
cholce of subsets (assertions) has been made, the transitions can be

derived from the program text quite easily using a éimulétionA o

algorithm. These transitions can be used to verify a program. An example

of verification of a program from an informal description of an algorithm is

given in section 2.

Section 3 illustrates how these ideas could be applied to systematic

synthesis in a hiervarchic manner similar to that of Dijkstra 11
The final section considers some other uses of the approach mainly as a tool
for program understanding and synthesis of programs from informal descriptioms

of algorithms.

and Hoare [4] on verification, Henderson [3] on program

testing and Dijkstra [1] on constructive program synthesis.

2. The Finite Assertion Technique

It is possible to verify a program using assertion graphs. The

technigque consists of two distinct phases: model construction and rinite

simulation. A model of the system is constructed from an intuitive under-
standing of the algorithm. This model consisés of a finite set of assertions;
each assertion being a proposition over program variables and their initial
values. The assertions are so chosen that they capture the relevant
behavior of the program and at every point during program exeuction, one {or
more) of these assertions are believed to be true. In terms of system
states this is equivalent to obtaining, from the potentially infinite set of
states, a finite set of subsets each representing a particular system
behavior. The assertion is merely a representation of this behavior,

For instance, consider the problem of merging two sorted arrays
Af[1..m] and B[1l..n] with the result being in C[l..min]. The algorithm

maintains three pointers i, j, k which are indices to 4, B, C respectively.

Initially i=j=k=1. At each step A[i] and B[j] are compared and the smaller

one becomes C[k]; proper indices are then updated, This continues until
either A or B is exhausted, in which case the other array is copied into C.

This description of the problem enables us to construct a model:

Assertion 1: Al : 1 <41 <m, 1< 3 <n, Ali] < B3] .

Assertion 2: A2 : 1 <i<m, 1<3<n, Ali] > B[3] .

Assertion 3: A3 : 1 <i<m, j>n .
Assertion 4: A4 : 1 > m s 1 <j<n.
Assertion 5: A5 : 1 > m s J>n .

Furthermore the following assertion is true in all states and hence

is called a global assertiom.

"k=i+j-1, C[1] to C[k-1] is sorted and consists of the elements

A[1] to A[i-1] and B[1] to B[j-1]. A, B are sorted and are unchanged . "

Clearly, the global assertion is violated during the time whemn i or
j has been updated and k is &et to be updated. Considering such a set of
operations as a single operation, it may then be postulated that at each
instant during program execution, one or more of the given assertions are
true along with the global assertion.

The next step is to verify a given program with respect to the
postulated model. Verification is obtained through a method of "simulation."
It is assumed that the semantics of each simple statement in the program is
known in the sense that given an entry assertiom and the statemeni, the
resulting assertion(s) can be derived. In this sense, each statement moves
the system from one assertion state to one or more assertion states. A

simulation algorithm is presented later in the paper. This algorithm

&

enables one to deduce systematically the transitions corresponsing to

compound statements such as if-then-else, do-while, etc.. It then remains

to be shown that starting from a set of initial states (implied by the input

specification), the program always moves to some set of final states, where

each final state satisfies the output specification. The method is informally
presented below. Consider the following program for merging, with the input

and output specifications shown within braces.

{i=1, j=1, k=1}
while i <m and j <n do
if A[1] < B[j] then C[k]s=A[i] ; ki=ktl ; ie=mitl

else Cl[k]:=B{j] ; ke=k+l ; Je=j+l

enddo
while i <m do Clk]:=A[1i] : k:=k+l ; i:=i+l enddo ;

while j <n do C[k]:=B[4] ; k:=ktl j:=j+1 enddo ;

we

{c[1..mtn] is sorted and consists of elements from A,B}.

Let Si’ S2 denote the following groups of statements and Bl’ BZ’ 33, and B4

the following conditions.

S. : Cl[k]:=A[i] ; ke=k+l ; i:=i+1

1
82 : C[k]:=B[j] ; ks=k+l ; je=j+l1
B1 : 1 <m and j <n
B, : Ali] < B[]
B3 : 1<m
B j<n

Then the structure of the program is as shown below,

then S. else S, endif enddo ;

whi}g B1 do if Bz 1 2
while B, do Sy 3
while 34 do 82 H

The set of initial assertion states is {AI’AZ}' Bzyis trué in Ai ahé

false in A2. Execution of S1 in Al leads to either Al or A2 or Aé4;

execution of 82 in A2 leads to either Al or A2 or A3. This is shown in
Figure 1. Hence, it follows that starting from Al or A2, execution of the
2 then S1 else s, endif" takes the program to Al, A2,
A3, or A4, Since the statement is embedded inside a loop, it will possibly

statement "if B

be executed many times. However, the loop exit condition holds for A3 and

A4. Hence, it may be concluded that starting from Al or A2, after any

number of loop iterations, the program is in Al, A2, A3, or A4, If the loo0p
ever terminates, the program must be in A3 or A4. As shown in Figure 2,
"while B3 do Sl" is applicable inA3 and "while 34 do SZ" in A4.

The simulation thus indicates that if the program terminates it is guaranteed
to be in A5, which along with the global assertions implies the output

condition. It remains to be shown that every loop terminates in order to

prove total correctness.

The model and simulation algorithm (which derives the transitions from

a given program text) are described below.

Figure 1

Fiqure P

A model of the program is a finite set of assertionms, M, on variable
values. For any assertion p € M and statement S in the program, define S(p)

to be a set of states, such that p{s}Q (using Hoare's notation [4]) and

Q=Yv q. Thus, if any set of variable values satisfy p and S is executed
qes(p)

then the resulting variable values always satisfy one (or more) q from S{(p).
In a transition diagram where each node represents a unique assertion in M,

if S(p) C M it would be represented as a set of arcs A = {<p,q>iq€SQj)}. For
a given M and p € M, if there is no S(p) € M, then M is said to be incomplete .
with respect to S and p. This may happen if certain valid system states have
been excluded from consideration in M. Furthermore, even if the‘model is
complete there may be many sets S(p) C M, unless every pair of assertions

belonging to M are disjoint (for all 91> 99> ¢ M there is no set of variable

values satisfying 9, A qz). We would normally be interested in a minimal
S(p) (no subset of S(p) has the properties of S(p)). However, there might be
many minimal sets when the states in the model are not disjoint. Any choice
of S(p) will do if it leads to a proof using the simulation algorithm. We do
not provide any insight into how a complete model is obtained or how s{p) is
computed for simple statements. There is, of course, no algorithm to do this
éomputation. However, all existing proof techniques have equivalent problems.
Thus, the simulation algorithm works under the assumption that S(p) C M can
be computed given any simple statement S, a state p and a model M which is
complete with respect to S and p.

The simulation algorithm given below computes S(p) for a compound
statement S; in fact the algorithm computes a set of final assertions given
a set of initial assertions.

1£ C is a set of assertions from a model M and B is some predicate

define {CAB} to be a set Q such that C A B =V ¢ and QC M. If no such set
qeQ

{C A B} exists, the model is incomplete with respect to C and B. Simulate (S,C,C*):
[The initial assertions are C ¢ M; the program is S; the final assertions
are C*,

c* = S(C) = {q|peC and qeS(p)}.

The algorithm is applied recursively.]

Case S of

S is a simple statement: C*;=1j§(p) [if C =@ then C* = §#]

peC N
S=Sl; SZ: Simulate (Sl, c, Cl) :
Simulate (SZ’ C;, ™) :
S = if B then S, else S5, endif:

1 2
Simulate (S,,{CAB}, CD 3

Simulate (Szg{CAfﬁﬂ’Cg) H

*
2

while B ggﬂsi_enddo: {Ci denotes the reachable states in ikiferétioﬁé

k%
C .~C1 Ucg

s}
i

or less]

regeat
Simulate (S,,{C; A B},C');
Ciyp =€y UC g i:=i4l
until C, = C; ;3
c*:={C, ATB}.

endcase

Theorem 1: The simulation algorithm terminates for any program S.

Proof: {outline)

1. By assumption, if § is Simple S(p) can be computed. if"§2¢5’i§”56€“5_56bset

of M the model is incdﬁpiete and §héf§;gsrithm"faiis;m
2. Computation of {C A B} is finite: The computation is performed by enumera-

ting subsets of M until one (say Q) is found such that C/\ B => qu If

Q 1

none is -found, the model is incomplete-and-the elgorithm fails.

3. (Simulate S, C, C*) where S is simple is clearly a finite computation by (1

4, The loop corresponding to the "while-do-enddo" is executed a finite number
of times: |M| is finite. [C1+1|>»]Ci| unless the loop terminates after the

(i+1)thiteration. Hence the loop is executed at most !Ml times.

The correctnessof the algorithm is straightforward gnd-a-formal proof

of a program is obtained by:

(1) didentifying a model};

(ii) applying the simulation algorithm to the set of initial assertioms C,
assuming that some process or human supplies S{p), for any simple

statement S;

(i1i) verifying that for every p in the resulting Cf p implies the output

condition.

If, during simulation the model is found to be incomplete, the whole process

is repeated with an augmented model.

Proof of termination of the program involves displaying a function W from
the program variables to a well founded set such that its value decreases
with each tramsition [2].

It is easy to see that a proof by the proposed scheme can be trans-
formed to one by iInductive assertion and vice versa. The simulation algorithm
returns C° which can be written as a disjunction of the assertions in that
subset. This correspoﬁds to the output assertion of the program in an
inductive assertion proof. 1In the case of a loop, while B gg_Sl’ggggg, the
simulation algerithm finds a certain Ci’ such that Ci=Ci—l' Ci would

correspond to the loop imvariant since every further execution of Sl would

keep the system in the closed set of states C Similarly the necessary

1"

assertions for the conditional statement can be found.

Conversely, the assertion used in a proof by the inductive assertion
technique can be taken to constitute the model and the simulation algorithm

applied to that model.

3. Program Synthesis

Given a problem with a finite number of states and certain well

defined allowable transitions, it is straightforward to find a sequence of

transitions leading from some initial state to a final state. Examples are
puzzles such as the problem of missionaries and cannibals who want to cross
a river or the problem of getting a certain amount of milk in a bottle,
given certain specified amounts in other bottles.

In a general programming context the number of program states is

usually infinite and the transitions are not well defined. Human resource-

fulness is required in determining reasonable intermediate assertion states.
Typically some input assertion I and output assertion 0 are given; the
problem is to come up with a program S such that

1—20

If there is a statement in the underlying language or machine to effect.this
transition then the problem of synthesis is complete:; otherwise one or more
intermediate states and some transitions among them must be postulated.
This process is repeated as long as some transition is not directly realizable.
It may often be necessary to backtrack 1if an unwise choice was made
previously. This notion of decomposition and refinement is due to
Dijkstra [1] and Wirth [6].

This basic approach to program synthesis is utilized in conjunction
with the finite assertion approach to illustrate the usefulness of the latter

as an aid for improving understandability and as a tool for systematization.

The goal is to synthesize a correct program which inserts a key K into an
ascending sorted list kept in linked form. If P is a pointer to a list
element then P.INFO, P.LINK denote, respectively, the key and link (next

node address) of a particulsr node. R points to the first node in the list.

For simplicity, let us assume that the list contains at least one item.

The 1list representation has at least two nodes, the first ome being a dummy.

The list (a) is shown in Figure 3.

As the overall strategy it is decided to use two pointers P and Q such
that P.LINK=Q, to search the list sequentially in order to insert K at the
appropriate point, The first step in the syﬁthesis is shown in Figure 4.
Starting with P, Q undefined, a program S takes the system into the desired
final state. The system could be in the final state initially if the key is

already present,

As the next step, an intermediate state A3.(P, Q defined) is postulated.

An initialization step takes the system from Al to A3, The list is searched
in state 3. An insertion operation can take the system to the desired final
state, This level of refinement is shown in Figure 5, The initialization
is P:=R, Q:= R.LINK.

At this stage, refinement of state A3 is attempted, Two cases are
easily identified:

(i) K > Q.INFO

(ii) P,INFO < K < Q.INFO
Figure 6 illustrates the refinement. An arc from A31tx>A2’is postulated,

The refinement of A3iis now attempted leading to two substates:

(1) A31 and Q.LINK = X -

(1i) A31 and Q.LINK # A
This is illustrated in Figure 7, At this stage a well defined transition
diagram has been obtained. The meanings of "search', "insert”, etc.

are still]l intuitive. A program can now be written as follows:

Figure 3

START START

Al - P, Q undefined

- K is present in list in sorted order

)
Global assertion: list contains orginal items in sorted order;
P, Q defined implies P . LINK = Q

Figure 4

search

initialization insert k

START!

A3 ~ P, Q defined

Figure 5

search

Finsert after P

START START
A31 - K > Q.INFO AND A3
A32 - P.INFO < K < Q.INFO AND A3
Figure 6

o d i ~ insert after
initialize ~ | search . € after Q

initialize

Search

initialize

| search

START ~ insert after P START

Ay, = Q.LINK = A AND A3y

Ayyp = Q.LINK # A AND A31

Figure 7

BEGIN

P=R; Q=R,LINK

while P, Q, defined, K > Q,INFO, Q.LINK#A do "search" enddo

if P, Q defined, K > Q,INFO, Q.LINK = A then "insert after Q" :endif
if P, Q, defined, P.INFO < K < Q.INFO then "insert .after P" endif
END

Refinement of the various operations can now be attempted.

Search
P:=Q ; Q:=Q.LINK
Insert after @

obtain a node x from free list

X.LINK:=0Q.LINK
Q.LINK:=x

x. INFO:=K

Final program:

BEGIN

P, Q:=R, R.LINK;
while K > Q.INFO and Q.LINK#A do

P:=Q ; Q:=Q.LINK

enddo

W K > Q.INFO and Q.LINK=) then
obtain x from free list
X.LINK:=Q.LINK
Q.LINK:=x
x. INFO:=K

endif

if P.INFO < XK < Q.INFO then
obtain % from free list
x.LINK:=Q
x . INFO:=K
P,.LINK:=x

endif

END

In fa¢t, according to the analysis procedure presented earlier, this program

has been proven to be partially correct,

4. Discussion

We have found that the notion of assertion graphs is extremely useful
in understanding a program starting from an informal description of its
underlying algorithm. Typically, one creates a mental model of program
execution and identifies the program parts with the parts of the model. The

assertion graph makes the model explicit; hence various program parts may

either be simulated to derive the transitions or verified with respect to a

given set of transitions. Algorithm understanding and program understanding

are separated to a great extent. Once a reasonable set of assertions have
been created, little iatuition goes into applying the simulation algorithm.

The assertions have a global scope and may be appreciated even in the absence

of a program. Secondly, the transition graph (and the assertions) are fairly
robust with respect to minor implementation changes, for imstance in flow
of control. The set of assertions remain intact as they usually depend on
the global nature of the algorithm. Since the transitioms can be obtained
systematically, the major intuitive parts of the process do not have to be

repeated.

The notion of viewing a program statement as a transformer of the state

of a computation is due to Dijkstra. The synthesis approach presented here
is not too different from that given in [1]. Using assertion graphs we have
explicitly separated assertions about a program from statements in the
program and this yields the advantages mentioned above.

To conclude this discussion, we point out that the concept of assertion
graphs can be applied to parallel programs as well. The approach of Keller
[7] illustrates this point. A global assertion over data variables (corres~
ponding to a single assertion state in our scheme) is chosen and proved to
be an invariant by induction on the number of statements executed. The tech-

nique could be extended by allowing multiple assertion states.

References

Dijkstra, E. W., A Discipline of Programming, Prentice Hall, 1976.

Floyd, R. W., Assigning Meaning to Programs, Proc. of Symp. on Applied
Mathematics, Vol. 19, J. T. Schwartz (ed.), American Math. Society,
Providence, R.I., 1967, 19-32.

Henderson, P., Finite State Modeling in Prdgram Development, Proc. of the
Intl. Conf. on Reliable Software, 21-23 April 1875, Los Angeles.

Hoare, C. A. R., An Axiomatic Basis of Computer Programming, CACM 12, 10
(Oct. 1969), 576-580, 583,

King, J. C., A New Approach to Program Testing, Proc. of the Intl Conf. on
Reliable Software, 21-23 April 1975, Los Angeles.

Wirth, N., Program Development by Stepwise Refinement, CACM 14, 4 (April
1971), 221-227.

R. M. Keller, "Formal Verification of Parallel Programs," CACM Vol. 19,
No. 7, July 1976, pp 371-384.

