A THEOREM PROVER FOR META THEORY

BY

Frank M. Brown

TR-85 Oct. 1978

Department of Computer Sciences, The University of Texas at Austin

[gy e g J
Yt P
S’ ¥ £ & S

A Theorem Prover for Meta theory

Frank Brown
Dept. of Computer Science

g The University of Texas at Austin

; Austin, Texas

78712

;ABSTRACT

We describe an automatic theorem prover for
‘meta theory which is capable of proving the
- completeness of quantificational logic from
.intuitively true assumptions.

. 1. INTRODUCTION

This is a report of some of our research
.carried out mainly during the spring of 1978. It
tdescribes an implementation of a deductive system
' for meta theory which 1s capable of proving the
y completeness of quantificational logic. This
i deductive system is similar to earlier theorem
provers developed by the author [1,2,3]. This
imeta-theory is based on a modal logic and a theory
jof meaning which have recently been developed by
!the author [4,5,6]. The meta theory and its de-
%ductive system are described in section 2.
{Finally, in section 3 we discuss an example
. theorem which the system has proven, namely the
‘completeness of quantificational logic.

|
§2. DESCRIPTION OF THE THEOREM PROVER
|

Our theorem prover consists of an interpreter
ifor mathematical expressions and many items of
@mathematical knowledge. This interpreter is a
jfairly complex mechanism, but it may be viewed as
iapplying items of mathematical knowledge of the
iform: ¢ +> § or ¢ = Y to the theorem being
iproven, in the following manner. The interpreter
revaluates the theorem recursively in a call-by-
ineed manner. That is, 1f (fal...an) is a sub-

{expression being evaluated, then the interpreter
itries to apply its items of knowledge to that
isub-expression before evaluating the arguments
%al...an. For each sub—expression that the

interpreter evaluates, in turn it tries to match
‘the ¢ expression of an item to that sub-expression.
'If, however, during the application process an
.argument ag does not match the corresponding
iargument of the ¢ expression, then a, is
ievaluated, and the system then tries to match the
‘result of that evaluation. 1If ever the inter-
preter finds a sub-expression ¢8 which is an
instance of ¢ of some item, then it replaces that
expression by the corresponding instance ¢8 of ¢ .
At this point all memory of the sub-expression ¢8
is immediately lost and the interpreter now
‘evaluates $0. If no items can be applied to a
.sub-expression then the sub-expression is not
‘evaluated again but 1s simply returned.

) Sometimes it will be the case that our inter-
preter will need to usc items which are valid

only in certain domains . In such a case we
lcould represent the item as a conditional item of
ithe form:

jor Ilx + (¢x = ¥x)

i

Frank Brown-Page 1

Chattrpags Printing

! x » (¢x +> §x) -

The interpreter handles conditional items
in the same way in which it handles non-
conditional items until it has found a ¢8 which
matches the sub-expression being evaluated.

At this point on a conditional item, the in-
terpreter tries to match each element in the
conjunction Mx with some expression which it
believes to be true, If such matches are found
with substitution 80 then Y080 is returned.
Otherwise the interpreter tries to apply another
item as previously described.

However, in this theorem prover we will not
bother to represent such items as conditiomal
items, but simply use items of the form ¢x <« yx
and ¢x = yx. We will trust the theorem prover
itself not to confuse the various domains and in
particular not to instantiate any variable x to
some term representing an entity in the wrong
domain.

The rationale behind this trust is that if

: the domains are reasonably disjoint then since

the theorem prover can only instantiate variables
by a process of matching expressions, each
variable can only be instantiated to something
of the right domain.

There is certainly some sort of moral here
and we think it is this: Don't worry about the
details, just get on with the proof. We are not
here arguing that this is a deep theoretical
issue (although perhaps it is) but this approach
to domain dependent items is advantageous in that
it allows the theorem prover to obtain the proofs
more quickly, and more importantly, the proofs
obtained are shorter.

It may be argued that proofs obtained by
such a theorem prover are worthless, since it
would be very difficult to prove that a theorem
prover using this method is sound, but as we
have argued in [1], the real issue is not whether
the theorem prover is sound but merely whether
any particular proof is correct or not.

2.1 Logical Knowledge

Our theorem prover has knowledge about
twelve logical symbols which are listed below
with their English translations:

and

or

not

true

false

implies

iff

there exists

for all

equal

implies (This symbol is called a se-
quent arrow)

*“<Wi*ﬂl?<>

ET’\?’ ngm?{zf
BosAd i

“aae

;na-v. and (This symbol is used to form an

2.1.3 Replica Creation Schemata

implicit conjunction of sequents)
. The sequent arrow may be defined as follows: VO~ : E-'::Ex--'lix --;* ‘) **)
; -+ ceesq_ = c(piALAP) A AL 15 Y LN T
! P1e Pa T Pmo dETY /P where * is a new unification variable
: foxd e} and no more than one unification variable
\‘il‘l"'v‘l’
: m occurs in (x...).
‘ where py and qj are sentences. Thus a sequent 30 ¢ .~ ..3 (x...)0x..) +—

may be thought of as being a database of state-
ments Pysecen Py called assertions which occur

before the sequent arrow, and statements
ql,...,qm called goals which occur after the se-

quent arrow. The implicit conjunction of
different sequents may be thought of as being a

. group of different databases.

The items of logical knowledge, which are

i all schemata because they involve ellipses (i.e.
i dots representing arbitrary expressions), are
© listed below:

2.1.1 Assertion schemata:
g>: (@& ... (...> L)
og-+: ...+ ..) R
A (ee W v) = (he el op L)
A+ (oo pAG e) e Loy e L)
Y *: (.. PVgqg..>..) = (.p..>..)eand
(oo Qoo > 2)
D-»: (..p*q..>..)« (..) and
T R —
“++: (b.p*eq.. ..) (..p,q ..+ ..) and
(ev oo *P,q «.)
J-> o+ (Ixex .. +..) <« (.. ¢(f*1 *n)
e L)

where f is a new skolem function and

*1 cee *n are all the unification

variables which occur in ¢x.
oV dx .0 > L)
GV (xE)dx, o* .. > ..)

where * is a new unification variable,

(a ... §a=t} .. Ta~> ¢a ... pa)y—r
t=a
(e .. T't = ¢t .. Yt)
where a is of the form (f*l... *n) and
£ 1is a skolem function
not occurring in t. This is our version
of the law of Leibniz.- :
. 2.1.2 Goal schemata:
@ : (.~..@a.)@
S e g e e .e)
s 1 (b0 vp ls) = (epr el L)
A ¢ (. .PAQ)+ (oo .. p ..) and
(e > 00 g .0)
2N ¢ (. .. pVG L) = (o> L Pbg L)
7 1 (o ..prq L) e (Pl g e)
i+ s (oo 0. perq..) = (Lo p> .. q..) and
(.. qgr .. p..)
*\f CO U - P > S B
(.. + .. ¢(f*1... *n) o)

(

where f is a new skolem function and
*1 . *n are all the unification

variables which occur in ¢x.
(.. 3 x ¢x)
.= .03 (x®)ox, ¢* ..0)

where * is a new unification variable,

Frank Brown - Page 2

Camiptes Pt

(o> oogGeaai®)ox, 0% L)

where * is a new unification variable and

no more than one unification variable

occurs in (x...).
The items Y¥()» and +3J() are used to create
additional replicas: ¢*, a universally quanti-~
fied assertion V(x...)¢x, and an existentially
quantified goal F(x...)¢x. The replica ¢* is
exactly like the original formula except that
the initial quantifier is deleted and the bound
variable associated with that quantifier is
replaced by a new free unification variable.

A Unification Variable is a free variable
which is created by ¥», +3, YO, or »+3() items,
and which may later be instantiated to some term
by the unification item (see section 2.1.4).
Unification variables are written as a star
sign: * possibly with numeric subscripts, such
ast *,, ¥, ¥ .

1’ 2 3

In these four items we have seen formulae of
the form Y/ (x...)¢x and F(x...)¢x which are not
usually thought of as being well formed sentences
of logic. Such formulae should be interpreted
as respectively Yx¢x and 3x¢x which are well
formed sentences of logic. The ... list, which
is called the replica instance list, is used
merely to store certain pragmatic information
used by the deductive system. This information
is basically the list of unification variables
(or more precisely the list of instantiations of
the unification variables, see section 2.1.4)
that were produced from this quantifier by
applications of the V~, =3, Y()~, and »3() items.

2.1.4 The Unification schema:
Unify:

[¢.. Py - >

(.. P, -

-+ 9y ..) and .. and ..

- Q4 e)] e

[c.. Py ee > ey ..) and .. and ..
(.. P, - -4, .01 0

where 1 < i< nand © is any one of the sets of
substitutions of terms for unification variables
which satisfy both the forcing restriction and
the instantiation restriction. These two re-
strictions are described below.

The forcing restriction is the requirement
that the substitution makes tautologous the
greatest number of sequents starting with the
first sequent and progressing towards the nth
sequent.

In the case that there actually is some
substitution which will make all the sequents
tautologous, without further unification
variables being created by the ¥~ and ~Jitems,
then © will be one such substitution. As a
minor point, if O makes all the sequents
tautologous, then the unification schema is de-
fined to return M.

T

For A7

i L3
§

g The instantiation restriction is the require-
‘ment that no unification variable be instantiated
to a term which already occurs in the replica
'{nstance 1list of the quantifier of the given
sequent which contains the unification variable.
'fhe rationale behind this restriction is that

if a term t occurs in the replica instance list
‘of a quantifier such as V in GoVxex o0 > L)
then the sub-formulae of ¢t must already occur in
some sequent which must be proven in order to
.prove the theorem.

;2.1.5 Other-logical schemata

! atom: (..P.o*.ep..) B

| and: (.. and @B and ..) «<>(.. and ..)

: The logical items are not all used at the
‘same time. In particular the V()-, »3(), and
unify items are used in a special way. Initially,
| the interpreter evaluates each sequent trying to
-apply the items in the following order:

: (1) Non splitting assertion items:

-"y 0": had A",a", = >
Non splitting goal items:
+®, +0, o oV, > DY
(3) Non logical items
(4) The atom and "and" items
(5) Splitting goal items: +A,> >
(6) Splitting assertion items:

| 2)

.

strong modal logic which is described in {4, 5].
It consists of a single primitive unary symbol:
b which is interpreted as logical truth. This
modal loglc is stronger than S5 and can be de-
scribed by the following minimal set of in-
ference rules and axioms:

ROy from p infer ¥ p

Al:- Ppp>p

A2: pG > > (bp >)

A3: yp vk b

Al (Wq World*q + }* ¢ p) » Fp
The inference rule RO and the axioms Al, A2 and
A3 are essentially the S5 modal logic. The last
axiom A4 expresses Leibniz's intuition that some-
thing is Jogicallv true onlv if it is true in all
worlds. The World* and |} * symbols have the same :
meaning as respcctively the World and the binary
I symbols. World and binary } are both defined ;

in section 2.2.2.

Our automatic theorem prover does not use the

‘above axioms but is based on the sequent calculus

derived from these axioms which is described in
{5]. We describe this modal sequent calculus in
section 2.2.1 and then list some definitions of
modal concepts used by the theorem prover in
section 2.2.2. Finally, in section 2.2.3 we dis-
cuss the possibility problem of modal logic.

2.2.1 Rules of the Sequent Calculus

We list below thirteen theorems of our modal

n -3
&) v

After the above items have been applied as
many times as possible,, the interpreter then tries
&to apply the unify item to the resulting conjunc-
ition of sequents.
{ If the application of the unification item
;results in j@ then the processes terminates
;because the theorem has been proven. But, if the
lapplication of the unification item does not
iresult in f§ , then the interpreter applies the
i\/() + and + J() items to certain formulas, and

then repeats the whole process starting at step

i(1).

i
!
!
;
- V=, D, o
|
1
|

: However, because the proof described in this
paper is obtained without using the W() ~ and fa()
i{tems we will not bother to describe the exact way
 they are used. The way they are used, along with
‘more details about the Unify item, has however,
been described in previous publications [2, 3].

i One major difference between this theorem
prover and our previous sequent logic theorem
provers {2, 3] is that the +3J and ¥+ have been in-
serted into the initial evaluation procedure as
steps 7 and 8, and thus one instance of every
quantifier is initially created before the Unify
lrule is ever applied. The reason for this is due
‘to the vast numbers of trivial quantifiers pro-
iduced by the modal sequent logic described in
section 2.2. It was found that unless instances
of these quantifiers were produced before
unification takes place, many important bindings
~would not be found quickly enough and irrelevant
bindings would be produced by the forcing re-

i striction, due to the fact that the relevant

| formulae would be available for matching.

12,2 Theory of Modality

i

Our theory of modality is based on a very
l

logic of the form p =+ q or r - (p <> q) which may
be used as rewrite rules replacing p by q in any
context in which r 1is a hypothesis. The symbols
World* and f-* have the same meaning respectively
as World and } , but are never to be replaced by
their definitions in a proof procedure using these
rules. Furthermore any initial theorem given to
such a proof procedure must not itself contain
the World* or F-* symbols, although it could of
course contain the World and | symbols.
k: (b VY w(World* w) ~ p*w p
FA: (World* w) - ((F*w(P A Q) «~
(P*v pAP*w q))
Fv: (World* w) » ((F*w(p V @) «

(F* pYF*v q))
(World* w) » ((F*u(p > q)) +>
(k% p > F*v q))
(World* w) » ((F*u(p <> q)) <>
(F*v p <% q))
(World* w) » ((p*w(v p)) <>~ F* - w p)
8 (World* w) » ((p-*vig) «— B)
0 (World* w) » ((P*w 1) <« &I)
Y (World* w) » ((F*w(¥x ¢x)) <>

vk F*w ¢x))
(World* w) » ((F*w@x ¢x)) <

_,.
!

b

s ss o8 w0

k3 Gx F* gw))

Fa: (World* w) » ((F*w(fp ¢p))
(p F*w ¢p))

be: (World* w) ~ ((F *w@p ¢p))

Gp F*w ¢p))
t 2 (World* w) » ((F*w(kp)) <> bp)

The +V and k3 theorems pertain to quanti-
fiers of object language variables whereas the
ta, Fe theorems pertain to quantifiers for
propositional variables. The IV and I3 theorems
are equivalent to the fact that something is an
object iff it is logically true that it is an
object. All these theorems hold regardless of

Frank Brown - Page 3

Compus Ponting

¢ whether propositions are ohjects or not.

In order to try to prove a theovem ¥ with a
proof procedure using these rules, sometimes it
must actually try to prove b ¢ instead. There is
. a deep and beautiful reason for this which is
* basically that this initial F inserted befored
“{s a symbol of the metatanguage of-this Yogic as
" are all the } * and World* symbols. Essentially

I is the statement in the methatheory that ¢
. is logically true, and it is this rather than ¢
jtself which we are trying to prove.
o Our theorem prover also contains the follow-
ing special laws dealing with equality.

=k e F(p<rq)p=4
S R TR N «— p =0
= = N (—-—)p:.

. These laws are used only on assertions in a se-

i quent, and only in the case that either p or q is
! a skolem function.

: These three laws are not derivable from the

' minimal axiomatization described earlier, but are
' derivable if the following axiom is added:

1 sz
PP Fé”""i’ﬂ"‘. R
UL UPIE I LA B

SE e

logic over a finite domain since it reduces to
propositional logic, one sufficient but in-
efficient axiomatization would be to assert the
possibility of all consistent disjunctions of
conjunctions of literals as additional non-
logical axioms:
: ,,,,,,,,,,,O(VQ“Li,gezals) —
A computationally better axiomatization which
is obtained by noting that the possibility of a
disjunction of sentences is implied by the
possibility of any one of those sentences:
Ox2 Qxvy)

is to assert only the possibility of all
consistent conjunctions of literals:

<> (Aliterals)

Using the meaning function M defined in
section 2.4 this may be done in a finite manner
by adding the single axiom:

Prop Pos Ax: (Conj S) A (Consist S)=> Q@M S)
where Conj and Consist are recursive functions
defined as follows:

(Conj S)= df (Lit S)v AT 3R (s=[T ARIA

'OAS: Fpe) v P4 (Lit T) A (Conj R)D”
, 2.2.2 Modal Concepts (Lit 8) = 4f @T s=[~#T] A (Atomicsent T))V
' D : V+pgq - (Atomicsent S)
N ad§:Bee q) "p entails q" (Consist [1) =4df B
D=+ pZ=q Rd (Consist [S.L]) = df (Comsist2 S L)A
s R~ q) "p is synonomous to q" (Consist L)
DO Qp > (Consist2 S[N=df
v b op "p is possible” (Consist2 S[T.L]) = df ~(Opp § TN
I"Ddet v (Det pq) +> (Consist2 S L) .
ltpag vEprag "p determines q" (Opp S T) = df s=[AT]v T=["S]
| Dcom :(Complete p)<
i " " .
ivgég:t ?(32:1& p) p is complete : The methods for representing object
i OP A (Complete p) "» is a world" . language expressions in our logic and for ob-
' pval :(Valid p) <> : ;aining their meanings are defined in sections
" " 3. and 2.4,
ygézgrlf(g:t*ggq P - p is valid It is important to note that it is unlikely
3q(Wor1d QAbqp "p is satisfiable" that this finite recursive axiomatization of the
“puniq :(Uniq p ¢p)— possibility problem for propositional logic,
WG)VQ op A $q -p =q "5 is unique in " could be extended to even first order quantifica-
" Done :(One D 6P tional logic. The reason is that if it could
;aq \&(¢r ~ qF 1) "p is one in " then it would provide a positive solution to
| Deat :(Cat p) - Hilbert's Einscheingunts problem. However, if

(One q(World q A Fq p)) "p is categorical”

! Dmaxp :{(Maxpos p) <>

' (One q(<q Al a p))"p is maximally possible"
| Dmax :(Max p) -
(0ne q(|~ q p))

2,2.3 The Possibility Problem

"p is maximal"

The possibility problem of modal logic is

' that from the logical axioms of modal logic we
cannot prove certain elementary facts about the
possibility of conjunctions of distinct possibly
negated atomlic expressions consisting of non-
logical symbols. For example, if we have a
theory formulated in our modal logic which con-
tains the nonlogical atomic expression (ON A B)
then since ~(ON A B) is not logically true, it
follows that (ON A B) must be possible. Yet
¢O(ON A B) is not a theorem of our modal logic.
. Thus, for any theory expressed in modal

! lopic, a certain number of axioms dealing with
 possibility should also be added.

| For example, in the case of the propositional
logic, or in the case of the quantificational

Carnpas Prntoey

we are willing to forgo the requirement of
recursiveness then by letting S in PropPosAx be
an infinite conjunction of variable free
literals then it is possible to produce an
axiomatization for a first order quantificational
logic object language. See section 2.7.

2.3 Theory of Syntax

Our theory of syntax contains two basic
primitive symbols, a binary symbol: Cons and
a zeroary symbol: Nil. It also contains a
number of other zeroary symbols
A, 'V, T, e, ", e, 'a, 'Y, T, T, T
each of which may be thought of as being a
name of the symbol obtained from it by deleting
the accent sign. The accented symbols may, how-
ever, be thought of as being defined in terms
of Cons and Nil and thus need not be viewed as
additional primitive symbols.

Our theory of syntax currently consists
of only one definition "scheme:
Dlist: [xl...xn} = df (Cons Xyeeo

(Cons X, Nil)...)

Frank Brown - Page 4 R

. G
e ST A
t) R N

Our theory of syntax 1s described in more
detail in [6].

2.4 The Theory of Meaning

The syntax of our theory of meaning cur-
rently consists of one binary primitive symbol:

R I S
R

i

.

r%bm
: ' h
IR S

D$MVal (Modelval p)<-»¥q (Model q) - Farp
"p is true in all models”
D$MCat (Modelcat p)<> (One g Model qA aqm
" b is true in exactly one model”
Note that a model is essentially nothing more
than a $World with respect to the subdomain of

m, such that (m § A) is intcrpreted as the
meaning of an expression S in the assoc¢iation
1ist A. It also consists of one unary defined
symbol: M, which stands for the meaning of an
expression in a null association list.

We assume that the definition and recursive
" axioms for meaning are all logically true.
: Our theory of meaning is based on the re-
cursive meaning function m described in [6]. This
function consists of the following recursive
axioms:

: (M S) = df (m S Nil)
A (m[S 'A TIA) > (m SAYA (mT A)
m{S 'V T]A) <> (m S AV (mT A)
"9 (m[s '?TIA) ~+ (mSA) >+ (mT A)
(m[S ‘<> T]A) <> (m S A) «> (m T A)
(m['~ SJA) <> ~(m S A)
(m '@ A) > ®
(m'o A) « 0O
(m 'V V 8]A) VX s{{v.X].A])
®{'3 v 5]A) <3 X(m s[[v.X].A]D
(m{'V U S]A) > ¥p(mn S[[U.p].A])
(n['3 U S]A) <> Ip(m S[[U.p].A])
: (mV A) <> (Val V A) ’
¢ URY e (VAL U A)

e ®

l

1

. e

peWA<pDm o 1

et = w e om o= o=

concepts which are-expressible-in-the-cbject

language.

2.6 Proof Theory

Our proof consists of a single unary primi-
tive symbol: H-such that }fS is interpreted to
mean that the sentence S is a theorem, or rather
that S is provable.

Our proof theory also contains several de-
fined symbols which are listed below with their
definitions and interpretations.

DW s HT § <+ H#IT » s
s is a theorem of T"
p & :Q S <+« '~ S]
s {s consistent"
PG :Qp S > M '™ S)
"S is consistent”
Ddec :(Dec T S) < HT S V H T 3]
"7 decides S"

DThCom :(ThComplete T)+*> YS(Dec T S)
"T is a complete theory"
DThWor :(ThWorld T) <> T /A (ThComplete T)

"T is a world theory"
DThWor :(ThWorld T)<«> ¢ T A (ThComplete T)

m szsszsspspBEBERX

' :(m['¢Sl...Sn]A) > (¢(mSlA)...(mSnA))

t

|

|

1

i

|

; for each non-logical symbol ¢ of the

! object language.

t In these rules the notation [al...an] is an

jabbreviation for (Cons al...(Cons o Nil)) and

i

é the notation [a.B] is an abbreviation for

! (Cons o B). Thus, for example the m 'V law

| actually is:

(m(Cons '~{Cons S Nil))A) <+ ~v(m S A)

.8 and T range over expressions, usually sentences.
A ranges over association lists. V ranges over
object variables and U ranges over propositional
variables. . ’

The Val function is defined as follows:

V2 §X§£Yx['[>x'({?]aiAH=[%.z].A])=(Va1 X A)

2.5 Model Theory

Our Model Theory consists of the following
definitions: . .
' p$Com ($Complete p q $q) <> (¥q ¢q > (Det p q))
"p is complete for ¢"

. D$Wor ($World p g $q) +>{dpA(SComplete p géq)

' "p is a world for ¢"

| pSVal($Valid p q $q¥—¥q ($World q r ér) ~ Fap

"p is valid for ¢"

p$sat($Sat p q ¢q) <> Jq ($World q r ¢r)Akap

i “p is satisfiable for ¢"
p$Cat{ Cat p g ¢q) +*(One g ($Worldq r ¢r)AFq P

"p is categorical for ¢"
DSM (Model p) <> ($Worldp q (S (M S) q))

; "s is a model”

! psMSat (Modelsat p) +>Jq (Model QA bkq

i "y is satisfied by some model”

i

1

-

rewrite rules in various proofs.

"T is a world theory"
DthWExt :(ThWorldext S)«> 3T (ThWorld YA KT §
T has a world theory extension”
The purpose of the ° and ThWorld°

definitions is pragmatic and will be explained
in section 2.7.

Furthermore, the variables S and T in the
jast definition (DThWExt) are notof the same sort.
The sort distinctions have been omitted in

accordance with this theorem prover's basic

rational for handling sorts as discussed in
section 2. In this last definition the variable
S ranges over finite sentences whereas the
variable T ranges over both finite and infinite
sentences. Infinite conjunctions of finite
sentences, however, are probably sufficient.

2.7 Miscellaneous Lemmas

The following lemmas are assumed as extra
In particular
they are necessary for a proof of the complete-
ness theorem.
Sound: Hs + FM S)
1IND: &S ~(ThWorldext §)

It should not be thought that the axiom
LIND is either logically false or even that it
is false in a meta theory which is strong enough
to derive Godel's incompleteness theorem
because LIND claims only that there is a complete
consistent extention, and not that this
extention is a finite sentence.

PosAx: (ThWorld S) ~{X(M S) A (ThWorld S)

The PosAx theoren is equivalent to:
(ThWorld S)-= © (MS)

_ The intuitive justification for this axiom lies

Frank Brown - Page 5

Campns Printing

Y

- .
i L3 L
kit 3 I
E %;)gd ¢ Jf IR

. {n the fact that a Thworld may be thought of as
"being an infinite conjunction of variable free
literals. Viewed in this manner we sec that
PosAx is nothing more than a solution to the
possibility problem for those concepts which are
ihble in the obhject language.

LpXpre

S

oo w

P N AT
SOUITRION

provability to the modal concept of logical
truth. The notion of truth unlike set theoretic
characterizations [8,9] can be shown to satisfy
Tarski's famous criteria for truth in a world
{10] namely that (in that world) something is a
true sentence in a world iff it is the case.

The above three axioms which are only impli-
‘ cations are used as rewrite rules only on asser-
tions in a sequent. Thus, for example, the se-
quent:
ks + ¢
.would become:
M SY > ¢
by application of the soundness lemma:

| the assertion HS.
The Soundness lemma would not be applied to the

Sound, to

| sequent
: ¢+ WS
because WS is a goal.

{
!
; It is easy to see that if unrestricted

{ Lindenbaum Lemma: LIND could be applied an in-
! finite number of times, since ¢S is rewritten
i as (ThWorldext §) which in turn may, by using
:various definitions, be rewritten as:

' @u PUA (ThComplete U) A # U S), thus producing
' a new formulae ¢»U to which LIND can_again be

. applied. For this reason we restrict LIND to

. being applied only to s formulas not generated
by previous applications of LIND, This restric~
| tion is implemented by simply defining ThWorldext

Fv (ke (MS) > (MS))
(in w) (S is a true sentence iff (MS)).
One final advantage of this completencss proof
is that it is a proof purely from the laws of
logic (plus a few recursive functions which
are probably definable in second order logic)
alone, and assumes no axioms of set theory such
as the axiom of choice. So in fact it has shown
that not. only does completeness follow from
certain strong set theoretic principles, but that
it is logically true which is a much more general
result.

Acknowledgements

It has taken me over one half of a decade to
develop the meta theory on which the automatic
theorem prover is based. I thank Professor
B. Meltzer for supporting this research over this
long period, and for commenting on various drafts
of this theory, the first of which was written
five and one half years ago. I also thank the
many other people who have interacted on various
aspects of this theory, including Dr. R.
Kowalski, Dr. K. Clark, Dr. B. Richards, Dr. W.

S to produce du QOUA (ThComplete U) A WU S)

1
i
I
¢

' it has exactly the same meaning.

t It is also easy to see that PosAx would have

!the same sort of problem, and for this reason

}1t uses the symbol ThWorldo.

| One final point worth noting about these

‘ lemmas is that even though they are all implica-

' tions and not equivalences, they would be true

even if they were equivalences. The reason we

, do not make Sound and PosAx equivalences is that

‘we don't need to know these facts in order to

prove, for example, the completeness theorem, and

furthermore for pragmatic reasons we would never

.want to apply them to goal formulas anyway. In

. the case of the soundness theorem, the reason we
do not assume an equivalence is that the equiva-

“lence is itself a version of the completeness
theorem, and it obviously makes no sense to
_assume the completeness theorem while trying to
prove it.

:3. THE COMPLETENESS THEOREM

‘ The theorem prover for metatheory is capable-

of proving the completeness of quantificational

» logic from intuitively true assumptions. Speci-

fically the theorems described in section 2 are

assumed as axioms. The completeness theorem

which states that the meaning of every consistent

theory is possible is written as follows:

: s =+ Ms)

' This thcorem was proven by our theorem prover on

a DEC KI10 computer in 38 seconds. The number

of sequents produced was 326 octal. See [7].
This proof, by the way, is probably the

first proof of a completeness theorem relating

Sampas Ponting

where Oo is a distinct symbol from9 even though .

Bibel, Dr. §. Tarnlund, and especially Dr.C.
Schwind.)

References

1. Brown, F.M. "An investigation into the goals
of research in Automatic Theorem Proving
as related to Mathematical Reasoning", DAIX
Research Report 49, 1978.

2. Brown, F.M. "A Theorem Prover for Elementary
Set Theory", IJCAI5 Conf. Proc., MIT, 1977.

3. Brown, F.M. "Towards the Automation of Set
Theory and its Logic", DAI Research Report
34, 1977.

4. Brown, F.M. "A Theory of Meaning', DAL
Working Paper, 17, 1976.

5. Brown, F.M. "A Sequent Calculus for Modal
Quantificational Logic", 3rd AISB/GI
Conf. Proc., Hamburgh, 1978.

6. Brown, F.M. "The Theory of Meaning", DAL
Research Report 35, 1977.

7. Brown, F.M. "An Automatic Proof of the
Completeness of Quantificational Logic"
DAI Research Report 52, 1978.

8. Henkin, L. "The Completeness of the First
Order Functional Calculus”, JSL, Vol. 14,
1949.

9. Mendelson, E. Introduction to Mathematical

Logic, van Nostrand Reinhold Company,
New York, 1964.

Tarski, A. "The Concept of Truth in
Formalized Languages" (1931) Logic,
Semantics, Mata mathematics, trans by
J.H. Woodger, Oxford, Clarendon Press,
1956.

10,

Frank Brown - Page 6

I

