XBSW 3.3
A PARSER GENERATOR

Version November 1981

by Wilhelm F. Burger Scftware Systems International, Inc.
2500 Q Street NW 310
Washington, DC 20007
(202) 337-4335

Copyright (C) 1979,1981

Table

of Conter

ts

i. Introdu

ction

2. The XBSW System . e
2.1 Input Module co
2.2 Table Generation Module
2.3 Optimization Module .
2.4 Transformation Module
2.5 Qutput Module . . . coe

3. Input to the XBSW System
3.1 Terminal Section . .

3.2 Production Section .

4. The Parser e e e
4.1 Parse Tables and Parsing Algorithm
4.2 Error Recovery .. . AN
4.3 Error Recovery by Error Proﬁ“ctLOra

5. The Lexical Scanner

6. The Skeleton Compiler
6.1 Parser Interface . . Coe .
6.2 Semantic Interface
6.3 Interactive Usage .

7. Some Results . . R .

Appendix A
Options

Appendix B
Constants of

Appendix C
Parse Table

Appendix F
XBSW System

Appendix G
XBSW System

the Parse

Table

Generator

Generation (Example) . . .

on

on

on

o1

VAX/VMS .

OhoON U o W

foed
R B

faoch ok Jond prac
4O e

ju—
oo

RS AN S]
W e OO

3]
=~

Page 1

1. Introduction

The XBSW system is a general tool for quickly implementing the

front-end of applications which require language-type input. The system
can be used to advantage for the implementation of

~ compilers,

- data management languages,
- special purpose languages.

There are numerous advantages in using an automated system over
hand-coding. A few of these advantages are:

- reduced implementatiocn time and cost,

- veduced probability of error,

- high degree of machine independence,

- easy modifiability of the parser when the languag
specification changes,

- compact code due to the use of tables.

The parsing speed of the generated parser is comparable to the speed of a
hand-coded recursive descent parser.

The XBSW system is an enhanced version of the BOBSY 3.0 system [7].
This system is based on the ideas of DeRemer [1], Lalonde [2], and Aho
and Ullman [3,4,5]. It is a parser generator for LR(O), SLQ(l and
TALR(1) grammars. These grammars have the property that by look t
most one symbol ahead in the input string, it can be decided whet}er a
reduction can be made or more input is required. This has the obvious
advantage that the input string can be parsed without backtra rgimg.
Ambiguous grammars are also accepted by the XBSW system if disambigua
rules are given which assure the one symbol lookahead property.

L‘%
Q
w
t

1

The system consists of three major parts: the table generator, table
transformation programs, and skeleton compilers. he table generator
produces for a given grammar a machine and language independent parse
table. This table is then transformed by a table transformation program
to suit a particular skeleton compiler. Lexical scanner information is
also generated in this step. The skeleton compiler is available in
several languages and on different machines. The skeleton compiler
consists of a lexical scanner and a parser with error recovery.

The XBSW 3.3 system is at present available on CDC Cyber, DEC-10,
DEC-20, Burroughs 6700, Prime, IBM 370, and VAX machines. Skeleton
compilers are available also for other machines, e.g. the 8080
micro-processor. The XBSW system has been and is being used in industrial
and academic environments for a variety of projects. Compilers for Gypsy
[13], Alphard [14], and the DoD-1 language ADA [15,16] are based on this
system. The system has been used for query languages, e.g. FAST [17],
data base languages, e.g. E/S-DBMS [18] and APRIL[19], and for special

AT

urpose languages, e.g. BAMS [207.
& 3 L

Page 2

3

Section 2 describes the XBSW system briefly. Section 3 gives detailed
instructions on how to use the system. The table structures and the
parsing algorithm are described in section 4. Lexical scanner and
skeleton compilers are handled in section 5 a 6. Some results on table
sizes for various grammars are included. Special attention is given to

m

the generation of tables which can be used with micro-computers [9,10].
The appendix contains an example for a subset of Pascal suggested in [5].

The use of the XBSW system is best learned by examples. Several
grammars and skeleton compilers are deliver o i
purpose. The grammars which are usually provided include grammars for
ADA, Pascal, and C. Some of the important te
by the examples are:

- the formulation of grammars,

- the use of semantic actions for syntax directed tramslation,

- the interactive use of the parser in conjunction with a
command language.

he examples are provided as self-contained control card files (or
trol command procedures) where feasible. Local documentatic
uld be consulted for their use.

2. The XB3W System

The table generator of the XBSW system consists of five modules. T

»
¥

I. Input
- input of grammar
- grammar checks
- grammar modifications

II. Table Generation
- generation of LR(0) machine
- generation of lookahead transitions for SLR(1) or LALR(1)
grammars and removal of ambiguities
- generation of lookback states

I1I. Optimization
- simple preoduction removal
- table compaction
- generation of errcr numbers

1V. Transforma
structuring of tables

V. QOutput
- output of parser tables

2.1 Input Module

Input comnsists of two parts: Definition of terminal symbols and
specification of grammar productions. The proper input syntax is
described in Section 3. Terminal symbols are grouped into tokens and
lexemes. Tokens are strings of characters which represent themselvés,
e.g. reserved words of the language. Lexemes stand for a class of strings
which are recognized by some lexical scanner algorithm, e.g. identifiers

and numbers. Lexemes may be introduced also for other purposes, e.g. to
handle some context-sensitive aspects of a language. Tokens are used to

generate tables for the lexical scanner.

=]

The grammar is formulated din a notation similar to BNF. Each
production may be associated with a semantic action number. Additional
information may be required for a production, e.g. a set of disambiguation
symbols.

Other input facilities include the definition of precedence levels of
terminal symbols and the definition of alternate goal symbols of the
grammar.

After the input is read several comnsistency checks are carried out. A11
nonterminals (except the goal symbols) must appear in both the left side
and the right side of some production. Each nonterminal must be able to

Page &

produce a string consisting of only terminal symbols. A non-fatal warning
is given if mnot all terminal symbols are used in the grammar.
Nonterminals can be both left and right recursive if the grammar is
processed as ambiguous grammar. Nonterminals which are not reachable from
the goal symbols are detected when the IR(0) machine is constructed.

Some grammar moed

fications mav also take place. Identical productions
are removed. Simple p

roductions of the form <A> ::= are eliminated if
<A> does not appear on the left side of any other production, and if no
semantic action number is associated with the production. 1If requested
the grammar can be modified so that no nonterminal can produce the empty
symbol.

i
e

2.2 Table Generation Module

{eds

The LR{0) machine is generated according to DeRemer and describe
in [1]. (Other references are Aho and Ullman [5] and Thompson [8]). I
essence, 1t is a finite s scans from left to right unti
it finds the leftmost reduction. It makes the reduction and then continues
scanning for the next leftmost reduction. A pushdown stack is used ¢
eliminate unnecessary rescanning after each reduction.

O W o 3

.S N R 11y
quce contiiclts cecur.

s
States with conflicts are called "inadequate' states. Conflicts are
i et

created by states which must make a choice b
terminal symbol and a reduction, or between several reductions.

In many cases it is possible to resolve the conflict by locking at the
erminal following the nonterminal of the reduction. In essence an
attempt is made to build disjoint sets of terminals which direct the state
transition. There are two ways to obtain one-symbol lookahead sets. The
terminals following a nonterminal are collected according te the grammar.
The grammar is SLR(1) if this set is sufficient to solve the conflict. A
more restricted lookahead set can be found by considering also the state
of the machine. The grammar is LALR(1) if conflicts can be resolved in
this mamner. Additional disambiguation rules can be defined to partition
the lookahead sets (cbtained by either method) to resclve the conflicts

[3].

Disambiguation rules <can be defined wusing precedence levels.
Terminals are associated with an dinternal precedence number in the
precedence sectiom. Each production is given a precedence number
according to the last terminal in the right side. (Precedence levels may
be also explicitly assigned to productions). A read transition is carried
out if the precedence of the terminal is higher than the precedence of the
production calling for a reduction. If the precedence levels are the same
then additional properties are required, namely if the terminal is right
associative, left associative, or if it is a binary terminal. In the
first case a read transition, and in the second case a reduce transition

€

is carried out. If the terminal is binary then an error state is entered.

Page 5

Another way to supply disambiguation information is by defining the set
of terminal symbols which are to be used for read tramsitiomns, reduce
transitions, or error transitions. The disambiguation symbals are
defined together with the production causing the conflict.

If it is not possible to resolve the conflicts with one of the above
methods then the grammar does not have the one-symbol lookahead property.
The program stops 1if states W‘th conflicts exist which could not be
resolved. The grammar must i
lockahead property.

& revwy

tten to achieve the one-symbo

ok

o

Transitions under ﬁohtermina’s are eliminated by introducing lockback
states. (This corresponds to "goto" tables in [5]). Whenever a read state
is entered, its state number is pushed onto the stack. After a reduction
the state number on top of the stack is used to establish the context in
which the reduction took place and which state is to be entered next. All
this information can be precomput@d For each terminal a state is created
which consists of the pairs: ead state and next state to go to.
Lookback states are only entered from reduce states.

Simple productions which are not associated with a semantic action
number are cand 6ates for simple production removal. Only simple
productions which are marked (see section 3.2.1) participate in the simple

roduction removal process. The basic ddea is described in [&].

Information associated with the simple production is distributed to othex
states so that a reduction with the simple production can be avoided.
This has the effect that long chains of simple reductions are replaced by
just one transition.

Space optimizations are realized by introducing default transitions.
For example a lockahead state mlght contain & transition to a given stat
for several symbols. The largest set of those transitions is found 4nd
replaced by an unconditional transition to this state. This does not
influence the error detection ability of the state. In a few cases,
however, due to resolving ambiguities with error transitions, this
optimization may not be pessible.

The same optimization can be carried out for lookback states. Here the
largest set of tra 1sitions to the same state is replaced by an
unconditional transition to this state. If the lookback state comntains
only one entry then the state is deleted and the information distributed
to the corresponding reduce states

Another space optimization can be achieved by overlapping read
transitions. A simple algorithm is used which overlaps the tail ends of
read states if this is possible. The transformation module provides a
more sophisticated algorithm which can achieve additional space savings.

Fach read state has associated with it a set of expected terminal
symbols. These sets are identified and numbered. The number is used as

error message when the input symbol in the respective state is not in the
set of expected symbols.

The states generated so far are represented by linked lists. This
structure is transformed into a more efficient representation. A state
table is created which uses positional information to cncode the state
type, e.g. if it is a read, lookback, or reduce state. Information which
is associated with read and looback states is stored in a separate table.

The table structures are described in section 4.

When placing the read states into the new table structure add'
space optimizations can be carried out. An algorithm is imple ted
finds a near optimal overlap of read tramsitions. This Optlml zation
optional.

The lookback states are always transformed into a "direct lockup
structure. A heuristic was develcoped to interleave lookback states so
that they require the least amount of space. The structure of lookback
states is described in section 4.

2.5 Output Module

The generated parser tables are written to a file in a language and
machine independent form. The file is written in two parts. First the

lexical scanner information is provided. It consists of the terminal
symbols together with their intermal encoding which is used by the parserxr
tables. This is followed by the parser tables, which are a collection of
numbers. rtran-style formatting information precedes each sub-section

to help w;th,further processing.

Other output is generated for the user's information. Most of the
cutput is controlled by options. The following lists only the most
important output. The grammar is "pretty'-printed in Backus-Naur form
(together with semantic action numbers if they were prov1ded;. Error
numbers together with their expected symbols are listed. Inadequate
states are displayed. The space requirements of the system are reported.
Finally information about the size of the generated tables and the
internal encoding of lexemes is given.

3. Using the XBSW System

This chapter describes the input to the table generator. Each input
section starts with a kevword. All keywords must begin in column 1. The
input is format free except for column 1 which is used for special
purposes. The sections must be in the following order:

OPTIONS
VERSION
EMPTY
CI.ASSES
TERMINALS
LEXEMES
SCANNER
SPECIAL
PRECEDENCE
STRINGCH
ENDCH
PRODUCTIONS

O DN e

N Q0 s~ O

[S S Y

[N

Any of the sections except TERMINALS and PRODUCTIONS may be omitted.

Sections 1 to 11 are described in the "terminal section", section 12 is
. . 31 . .

described in the "production section”

3.1 Terminal Section

1 letters and di
2 all other char
3 space

[¢]
ot ot
o 0
]
i
®
b
(@]
[
o]
&
¢3]
ol
[$53
e]
0]

. e te . e .
Terminals by default either consist of characters of group 1 or charactérs
of group 2. A terminal which belongs to group 1 must start with a letter.
Termlnafls‘ may !be up 11:0 20 characters 10ng.. (The length can be changed by
recompiling the table generator). Terminal symbols may consist of
characters of group 1 and of group 2 if option 5 is used.

The character set accepted by the table generator depends on the
machine where the generator is wused. If necessary ''place holder™
terminals must be used for terminals which consist of characters which are
not in the accepted character set. The place holder terminals appear in
the generated table file. For further processing they must be replaced
here with the actual terminals.

Comment lines may appear in the XBSW input. Comment lines in the
terminal section start with an asterisk in column 1. Comments in the
production section have a different form; they are described in 3.2.

b
o
0Q
]
oo

OPTIONS

The keyword OPTIONS is followed by one or several integers separated
by commas. The available options are listed in Appendix A.
y p PP

Example: OPTIONS .1,2,26

The text following on the same line as VERSION is passed to the
skeleton compilers. The text is limited to 60 characters. It may be used
to identify the grammar and its version.

Example: VERSION ADA-1 MARCH 79

Terminals (tokens as define in 2.1) with the same syntactic

properties can be grouped together into a syntax class. Only the first
element of a class may be used to formulate productions. The beginning
of a class is indicated by + in column 1.
Example: CLASSES

+ % / DIV MOD

+ 4+ -

Terminals are associated with an internal number which is used by the
parser. All terminals in a class have the same number. Each terminal in a
class is also associated with a "variant" number. Variant numbers are
assigned to terminals in the sequence they appear in the dinput, starting
with zero. The lexical scanner returns these two numbers when a terminal
is recognized. Parse tables are smaller if terminals are grouped into
classes.

TERMINALS

A1l terminals of the language {(tokens as
+his section (unless they are already define

Page 9

Example: TERMINALS

BEGIN END IF THEN ELSE

=,
Fach terminal is associated with an internal number which is used by the
parser. The variant number of a terminal in this section is 0.

Lexemes are terminals for parsing purposes only. They are in general
recognized with some lexical scanner algorithm. Lexemes can be used for a

variety of purposes, e.g. to express certain context-sensitive aspects of
a language.

The standard skeleton compilers are written with the assumption that
three lexemes are defined which represent ddentifiers, numbers and
r

ings.

Example: LEXEMES

The standard skeleton compiler must be modified if more lexemes are
used. For example, two lexemes IDENT and PIDENT may be defined if for a
particular langunage the syntax of predefined procedures is different from
user defined procedures. In this e .
the symbol table and decide if a name is to be giv:
the parser.

Terminal symbols which must be handled by the lexdical scanner but which
do not appear in the grammar are defined in this section. The standard
skeleton compilers assume that the symbol which starts a comment is
defined here.

Example: SCANNER

Any of the terminals defined in the previous sections may be flagged
to be special. This can be used to invoke immediate actions whenever the
lexical scanner has recognized the terminal.

Example: SPECIAL
BEGIN END

PRECEDENCE

This section defines the precedence of termin
associativity. o m

disambiguate Lead/Leduce
precedence of its rightmost ter
be redefined (see section 3.2.3).

1 symbols and their
roduction is used to

production is the

A terminal is either right associative, left associative or it is
binary. Terminals with the lowest precedence come first. A precedence
definition starts out with a keyword in oiumn 1. The keyword is either
RIGHT, LEFT or BINARY. Terminals of the same precedence level are
formulated together. If they require more than one line then any extra
lines must start with a blank in column 1.

Example: PRECEDENCE
LEFT OR
LEFT AND
BINAR = <>
LEFT + -
LEFT =/
RIGHT Felt

STRINGCH

This section defines the string escape character. It is only
if a lexeme of kind string is defined. The string escape rac
be on the same line as the keyword. The standard skeleton compiler
recognize a character sequence enclosed in the s'flﬂg escape character

string. The string escape character may be part of the string if it is
immediately followed by another string escape character.

m

[}
&
£
o
9]

0w w b

Example: STRINGCH "

ENDCH

The closing symbol of a comment is provided in this section. The
symbol may consist of one or two characters. The symbol must be defined
on the same line as the kevword. The terminal symbol which starts a
comment is provided in the section SCANNER. If the section ENDCH is
omitted then a comment (if defined) is delimited by the end of line.

s
#

Example: ENDCH h)

Page 11

2 Production Section

Four metasymbols are required to formulate productions. Any character
except blank may serve as metasymbol. The metasymbols must be different
from each cther. A metasymbol definition looks as follows:

METASYMBOLS M1=' M2=§ M3=/ M4=!

METASYMBOLS is a keyword which starts in column 1. The meta- symbols by
default are: Mi=", M2=$§, M3=/, M&=!. The metasymbols are used as
follows:

Naur notation ::= .

M1 corresponds to the Backus-
sides for the same nonterminal.

M2 separates several right
M3 delimits nonterminals.

M4 indicates the end of a sequence of right sides.

4 fifth metasymbol dis available when option 2% is used This
metasymbol defines the beginning of a comment in the production section.
Comments are terminated by the end of line. The default symbol is M5=%.

Metasymbols may be redefined by & metasymbol definition anywhere in
the grammar specification in order to avoid conflicts with terminals or
nonterminals.

Nonterminals may consist of up to 30 characters and include blanks. A
nonterminal may not contain the metasymbol M3 which is in effect at tha
time.

o

The goal symbol of the grammar may be defined before the
productions are specified. The keyword GOALSYMBOL starts in coclumn 1
and is followed by the respective nonterminal. If no goal symbol is
defined then the nonterminal of the left side of the first production is
used as goal symbol.

Additional goal symbols are defined in an ENTRIES section. The keywoxd
ENTRIES starts din column 1. It dis followed by the respective
nonterminals. The list of nonterminals is ended by metasymbol M4. The
additional goal symbols make it possible to enter the parser in different
contexts, e.g. just to parse a statement in an interactive environment.
Several grammars may be also combined this way in one table. See section
6.1 on how to enter a parser with several goal symbols. A production

<PG-GOAL> ::= <GOALSYMBOL> END-OF-

the grammar for each goal symbol. (No semantic action is
associated with these productions, i.e. they have semantic action number

Example: PRODUCTIONS
METASYMBOLS Mi== MZ=§ M3=/ Mi4=! M5=%

GOALSYMBOL /PROGRALNM/
ENTRIES /STATEMENT/ /EXPR/ !

GOALSYMBOL and ENTRIES (in that order) must be specified before any
productions are defined.

The right side of a production may consist of at most 7 terminal and
nonterminal symbols. If an empty symbol is used then it must be the only
symbol on the right side. Each production can be associated a th a
semantic action number. The number must immediately follow metasymbol M2
or M&4. This number may not exceed CONST1 (see Appendix B). User sup lled
semantic action numbers are in effect 1if option 26 is used. The
connection between semantic action numbers and semantic routines is
described in section 6.2.

Example: JEXPR/ = /EXPR/ + /TERM/ 510
JTERM/ |
JTERM/ = JTERM/ * /FACTOR; $11
JFACTOR/ !

JFACTOR/ = IDENTIFIER $12
(JEXPR/) 113
/STMT LIST/ = LAMBDA $ 9 EMPTY SYMBOL

/STMT LIST/ /STATEMENT/ !

Note: The production section must be ended with metasymbol M4 in column 1.

.2.1 Simple Production Removal

Simple productions which participate in the simple production removal
process are marked with S in column 1 immediately following the
production.

Example: JTERM/ = /FACTOR/ &
JTERM/ % /FACTOR/ !

(These simple productions must not be asscciated with a semantic action
number}.

3.2.2 Disambiguation Sets

A production may be followed by disambiguation sets.
Disambiguation sets are used to resolve read-reduce conflicts. Tor a
given symbol a choice can be made whether to continue reading, to

perform a reduction, or to report an errcr. Column 1 is used to indicate
the choice:

C continue ading
R reduce
E report error

The symbols for which the choice is to be made follow on the same line. If
more than one linme is necessary then the letter of column 1 must be
repeated. The choices must be in the above order.

Example: JEXPR/ = [JEXPR/ + [JEXPR/ |
o
R+

JEXPR/ = JEXPR/ * JEXPR/ !

Before disambiguation is used one
formulation of the grammar is
disambiguation sets.

check carefully if an alte
x4

s id nat
as desirable but which avoids the ne¢ fo

rmn
Is!
ad

<
I

3.2.3 Disambiguation by Precedence

Productions may be associated with a precedence. By default the
precedence of a production is the precedence of its rightmost terminal (if
the terminal is specified in the PRECEDENCE s cct*en} ¥\ precedeqﬂa can be
explicitly assigned to a production b £
the desired precedence. The production i
the terminal.

Example: JEXPR/ = /EXPR/ + /EXPR/
P k]

Any producticn can be assigned a precedence in this manner.

Disambiguation by precedence is a global mechanism wheras
disambiguation by disambiguation sets is a local mechanism. The local
mechanism is useful if no precedence is associated with a terminal, or if
an artificial precedence would be required to make the global mechanism
work. In resolving a conflict first local and then global disambiguation
is applied. Disambiguation is a very powerful mechanism, and one has to
check carefully that the effects are the desired ones.

Page 14

The parse tables consist of a state table and a check table. The state
table is divided intc three parts: read states, lookback states, and
reduce states. The check table consists of two parts: the first part is
associated with read stat
lockback states.

o~

The parser actions together with the table structures for each state
are described in the following. The parser initially starts in a read

state.

Read State

In a read state the input symbol is compared with the expected symbols
in this state. (The expected symbols of a state are stored in t

table). If the input symbel is found among the expected symbols then an
action associated with the symbol is carried out. If the symbol is a

"read" symbol then the input is shifted, the current state of the parser
is pushed onto the stack, and the parser goes to the next state which is
associated with the symbol. If the symbol is a "lookahead” symbol then
the parser simply goes to the next state associated with the symbol. Each
expected symbol thus carries two pieces of information: the property of
being a lookahead or read symbel (encoded in a flag), and the next state.
An entry in the read state portion of the check table loocks as follows:

flag

®
¥4
3

In general a semantic stack runs in parallel with the syntactic stack.
When a ''read" symbol was encountered then semantic information is also
pushed onto the semantic stack, e.g. the variant number of the terminal is
saved. Depending on the organization of the semantic stack, the "value"
of a lexeme, or a pointer to the value of a lexeme is also stored on the
semantic stack.

If the input symbol is not among the expected symbols then the action
associated with the read state is carried out. If the read state has a
default transition then the parser goes to the indicated next state,
otherwise an error has been encountered and an error message is issued.
The read state alsc contains information on how many entries for this
state are in the check table, and where to find them. A read state entry
locks as follows:

by
jasS

s
o
}_}
W

error number

1
flag |
| or
|

index of
check table

T

next state

®
=]
ot
H
ke
®
[t

The flag indicates if the read state contains a default transition or an
error number.

So far it was assumed that the check entries of a read state are stored
consecutively. In order to save space, however, check entries of several
read states are overlapped. The different parts of the check entries of a
read state are linked together by link entries. A link entry looks as
follows:

o
check table

j}

b

"

© O
¢]

i
h

A link entry is at the end of a block of check entries. When during the
search of the expected symbols the zero entry is encountered then the
search is continued at the indicated place in the check table.

arser pops the appropriate number of elements
§ tack and performs a semantic action. Semantic information which
corresponds to the symbols of the righthand side of the production is
accessible

stacktop+0, stacktop+l, ..., stacktop+tlength-1

on the semantic stack. Length is the number of symbols on the righthand
side of the preduction. The results of a semantic action are stored at
stacktop+0 on the semantic stack. (Note this also takes care of empty
productions). After the reduction the parser goes to the next state given
by the reduce state. A reduce state entry lpoks as follows:

length of next state

production

semantic action
number

g
A
[
b
[}

Lookback State

In a lockback state the parser ''reads" the state on top of the stack
and decides which state to go to. A lookback state CO“d be organized in
the same manner as a read state by using state numbers instead of symbol
numbers.
ent ¥ he state
number is added to an offset provided by the lookback state and the
resulting value is used to index the check table. If the appropriate
1ocatlon is indexed then the parser goes to the next state which is found
at this location, otherwise the parser goes to the next state which is
associated with the lookback state. A lookback state entry locks as
fellows:

T oo - - £ E e e e oy o gy A - . -
However, a more efficient structure avoids any searches.

"

| offset next state

(I

The same place in the check table may be indexed by different
offset/state number combimations. In order to know if the computed index
is appropriate also the state number of the lookback state for which the
check entry is to be valid is stored together with the next state
information. An entry in the loockback state portion of the check table
looks as follows:

lookback state
number

S ————

Oﬁiy if the current lookback state is the same as the recorded lookback
ate then a proper index has been computed and the parser goes to the
1ndlba*ed next state

4,2 Error Recovery

When an error is encountered then the error recovery mechanism is
invoked. Input symbols and/or stack symbols are deleted until a state and
an dinput wbol is found to continue parsing. The recovery mechanism
works in 4 steps.

Step 1: Insertion

Tt is assumed that a symbol was omitted in the input. The parser
inserts one of the expected symbols of the current state and checks if it
can continue with the input symbol at hand. This is tried out for all

Page 17
symbols in this state, and if successful the first one which allows the
parser to continue is chosen.

Step 2: Deletion

The current input symbol is discarded and a the next input symbel is
obtained. The parser checks if parsing can continue with this symbol.

Step 3: Replacement

The same actions are carried out as in step 1, this time with the new
input symbol, however.

Step 4: Panic Mode

The parse stack is searched for a state in which parsing can continu
with the input symbol at hand. If no such state is found then the current
symbol is discarded, a mnew input symbol is cbtained, and step 4 is
repeated.

[0}

4.3 Error Recovery by Error Productions

A different error recovery mechanism is available if the grammar of the
. . . 1 t 5 .
language is formulated with "error” productions. A 1 a

used for this purpose.

The terminal ERROR does not appear in the input stream, however, when
an error is detected then the unread portion of the input is prefixed by
the ERROR terminal. The stack is searched for a state which has a
transition on the ERROR symbol. The following read state provides a set
of expected symbols. Input is skipped until a symbol is found which is
among the expected symbols. Parsing then continues. At least two more
symbols must be read from input without causing any new errors before
another error is reported. Error productions may be associated with
semantic action numbers.

The recovery behaviocur is demonstrated with the following productions.
< &

JDECLARATION/ = VAR /NAME LIST/ ; $
ERROR ; !

Whenever an error occurs in the name list then the parser backs up to
recognizing a declaration as this state has an error transition. Input is
skipped until a semicolon is found.

Enough error productions must be supplied by the user so that there is
always some state on the stack which has a useful error tramsition.
Poonen [11] suggests a similar error recovery mechanism.

5. Lexical Scanner

Lexical scanner tables are gc“ rated from the tokens of the language
when the output of the parse ble generator is transformed for a
particular skeleton compiler. Tnara are two basic structures which are
generated depending on the skeleton compiler.

The first structure to be handled is a forest of trees. In essence it
is a deterministic finite automaton. A table which is indexed by the
internal representation of the first character of a token contains the
roots of the trees. For example the terminal symbols CASE and CALL are
stored as follows:

<G> —> —

92!
!
Vv

e

—[2]
|
E

]
1

%
-
|
\%
o

A token is recognized by following the links of the tree according to the

characters read from dinput. A final state in the tree contains the
internal number and the variant number of the re ugdlaed terminal. These
numbers are returned to the parser when the lexical scanner is called to

obtain the next token from the input string.

The second organization is an indexed-sequential structure. Reserved
words (tokens consisting of letters) are group ed according to their
length. A directory is made in order to find a group of a particular
length. An input symbol is recognized by s a“chlng the group of tokens
with the appropriate length. For example the following storage structure
is used to store the terminals FOR, BEGIN, END:

directory token table

! I ! I 1
1 0o | o | 1 | FOR |
2 | o | o | 2 | END |
3) 1 | 2 | 3 | BEGIN |
& | o | 0o | ’ !
5 | 3 | 1 |

| etc. i

The first column of the directory gives the index where a group of tokens
starts, the second column contains the number of entries in this group.

Tokens consisting of special symbols are treated separately. They may
be stored as trees or in token tables.

The standard lexical scanner also recognizes certain lexemes, namely
identifiers, numbers, and strings. In addition comments are recognized.
The '"value" of a lexeme may be also returned to the parser. However,
depending on the language which is to be implemented, special processing

Page 19

may be required, e.g. strings might be stored in a string table after they
are recognized, or identifiers might be entered into a hash table. The

appropriate modifications of the standard lexical scanner must be made by
the user.

6. Skeleton Compiler

Skeleton compilers are available in several languages. They are
available in Pascal, Fortran, Lisp, Simula and 8080 Assembly. A skeleton
compiler consists of a 'parser" part and a "semantic' part. The parser

part consists of dinput/output routines, lexical scanner, and parsing
algorithm with error recovery. The semantic part consists of an interface
to the parser. The user must provide the routines and data structures to
implement the semantic actions.

The lexical scanner tables and parse tables are global structures. If
the language in which the skeleton compiler is written allows data
statements, then the generated tables are inserted as initializations
into the source of the skeleton compiler by the table transformaticn
program. In other cases the generated tables are read from a file before
compilation begins.

Some interface variables are provided to make it easier to adapt the
skeleton compiler to a particular language. In the following special
attention is given to the skeleton compiler written in Pascal. However,
all features described are also available in a similar way in the other
skeleton compilers.

The internal values of lexemes ar

=S red in an array LEXVAL. They are
interfaced to the lexical scanner as fo

81
1 -
OL1IOWS

Lo
4
S

NAMVA = LEXVAL[1};
K?fSTvﬁL ;= LEXVAL{2];
STRINGVAL := LEXVAL[3];
COMMENTVAL := LEXVAL[4];
If the error recovery mechanism by error productions is used then the
interface must be changed to
ERRORVAL := LEXVALI4];
COMMENTVAL := LEXVAL[5];

Additional lexemes in the language require modifications to the lexical
scanner. I1f fewer lexemes are used then the value zeroc should be assigned
to the internal variable for which no lexeme is provided.

The character set is grouped into 4 categories: letters, digits,
special characters and delimiters. The array KONV contains the group
property of each character. A character is placed into a different
category by changing its property. This e.g. may be required when option
5 is used. The accepted character set depends on machine and language.
The skeleton compiler in Pascal for example handles a 63 or 64 character
set on the CDC 6600. The skeleton compiler in Pascal on the DEC-10
handles a 96 character set.

jR3

Page 21

The parser is called with one parameter. This parameter indicates which
goal symbol is to be used. The main goal symbol has number 1. All other
goal symbols are numbered in increasing order according to the sequence
in which they are listed in the ENTRIES section.

All standard parsers provide the error recovery mechanism described in
section 4.2. The user may, however, choose the error recovery mechanism
by error productions. This error recovery mechanism, for example, is
inciuded as comment in the Pascal skeleton compiler.

The interface between parser part and semantic part is established with
the routine SEMANTICS and a semantic stack. The routine SEMANTICS is
called from the parser each time a reduction is performed {and & semantic
action is associated with the production). The semantic stack runs in
parallel with the syntactic stack. The variable STKTOP points to the stack
entry which corresponds the the first symbol on the righthand side of the
respective production when the routime is called. Other parts of the
righthand side are reached with the proper offset to STKTOP.

The structure of an object on the semantic stack depends on the
language and on the design of other semantic structures, like the symbol
table. The lexical scanner delivers the ''value' of a token on the
semantic stack. For lexemes the value for example may be the character

tring which represents an identifier, or the value may be a pointer to a
structure where the identifier is stored. TFor tokens the value is the
token itself. The type of an object on the semantic stack and the
semantic stack is defined in the Pascal parser by:

TYPE
OBJTY = RECORD
CASE N:INTEGER OF

1: (TOK: INTEGER); (** TOKEN ¥)
2: (NAM: ALFA); (¥ IDENTIFIER *) .
3: (INM: INTEGER); (¥ INTEGER NUMBER *)
4: (RNM: REAL); (* REAL NUMBER *)
5: (8TP: INTEGER); (¥ POINTER TO STRING *)
6: (PTR: INTEGER);
END;

VAR

<

SEM: ARRAY[O..STKMAX] OF 0BJTY;

The user must extend the type definition according to the objects which
will be stored on the semantic stack (for example the field PTR may be
used for pointers).

Syntax classes are handled in a similar way. The lexical scanner
stores the variant number of a terminal on the stack. In the Pascal
parser the variant number is stored on the syntaex stack in the field
CHOICE. The variant number of a token for example which is stored at
STKTOP can be made available to a semantic action by STK{STKTIOP].CHOICE.

Page 22

The routine SEMANTICS is a case statement which implements the semantic
actions. The semantic action number is used to select the appropriate
case. Semantic actions work din general by side effects, e.g. they
manipulate data structures like the symbol table. A semantic action may
also return a value. The value must be stored on top of the semantic
stack. {The top of the stack corresponds to the left side of the
production).

/FACTOR/ = IDENTIFIER 82
{ /EXPRESSION/) 13
/EXPRESSION/ = /EXPRESSION/ /OP/ /EXPRESSION/ $&
JFACTOR/ '}
The semantic action for the first production reguires the identifier to be
looked up in a symbol table. We return a pointer to the place whe the

symbol is stored (this e.g. can take care of an undefined S}mDOL by
returning zero). The second production moves the semantic contents to the
top of the stack. The third production builds a prefix form and stores a
pointer to it on the stack.

A Pascal implementation might lock as follows {the wvariable PNR
ontains the semantic action number when the semantic routine is called)}:

PROCEDURE SEMANTICS;
BEGIN

;...3;..,_.:

KTOP] DO BEGIN
R . =MKPRE SFIX(1,0,2);

The routines CHECKSYMBOL and MKPREFIX must be provided by the user.

In general semantic actions must be coded by the user. The skeleton
compiler im Lisp provides a somewhat more interesting way for specifving
semantic actions. A file is supplied which associates semantic action
numbers with Lisp functions. The file for the productions above looks as
follows:

NN UVIN
P

When the file is read the numbers are transformed into the appropriate
index operations for the semantic stack. Each semantic action returns a
value on top of the stack. Semantic acticns in this form can be quickly
prepared, e.g. to make a translator for transforming programs into some
prefix or postfix form.

6.3 Intera e Usage
Interactive use of the parser reguires some special
. . -t 3 T = 3 H .
considerations. The main problem is how the 'end-of-file' token is

chbtained in order to terminate a sentence which reduces to a goal symbol
of the language. Example:

entries /Joption /process/ |
l" i
/option/ = numbexr §
Joption/ , number !

/process/ = string |

7 o
In many cases the end-of-line Has the function of terminating the
sentence, or there is an obvious last terminal with this role.

In order to solve this problem interaction between parser and lexical
scanner 1s necessary. A special skeleton compiler is provided which
demonstrates the basic mechanism. The lexical analyser 1is divided
into a 'screener’ and a token recognizer. Depending on context an

end of-line Pondition can become significant and returned as a
"end~of-file' token. Option 23 must be used with the XBSW system to
retain the complete lookahead information for states which contain the
‘end-of-file token.
The above grammar rules could be used in conjunction with a command
parser. The following is an example of a possible user dialog.
-> option 1 i
-> option 1, 2,
P> 3
-> process "abe'
~> process
P> "abc'
-
The prompt characters from the commana processor are "->" the prompt
characters from the parse are 'P>'. The command key words 'optiom’

and 'process' are not par* of the language; they are dealt with
independently by the command processor. (This skeleton compiler for
interactive parsing is available for DEC-20, IBM-CMS, and VAX
environments).

s
0
09
[
B
I

7. Some Results

The grammars of two modern languages Pascal and C [6,12] were used to
produce parsers. The grammar for Pascal consists of 159 productions, the
grammar for C of 132 productions. (The grammar for C was taken directly
from the Unix manual). The following table gives the number of entries in

/ <
the state and check table for these grammars.

i i 1
| Pascal | C |
1 1 !
[| 1
State table | 201 | 178 | read
| 22 | 18 | lookback
§ 154 | 133 | reduce
i i i
| !]
Total: o377 | 329
1 | |
i I i
Check table | 232 | 229 | read
| 84 | 95 | lookback
| { i
i i i
Total: i 316 | 324 |
1 1 i

The following table gives the storage requirments (in 36 bit words) for
lexical scanner tables and parse tables for the Pascal parser program on

the DEC-10. (The lexical scanner does not include keywords for the C
pPreprocessor).
i ! 3
| Pascal | c |
| | %
1] !
lexical scanner | 294 | 295 |
parser [693 | 653 |
! j ;
x 1 1
Total: | 587 | 948
i ! |

The following table gives the storage requirements in bytes for a parsex
on an 8-bit machine. It is noteworthy that the tables for Pascal and C
cccupy only about ZK bytes.

i]]
| Pascal | C |
! | |
i ! z

lexical scanner | 327 | 345
parser [o1741 | 1617 |
| !]
| 1 1
Total: | 2068 | 1962 |
z i 1

4 complete skeleton compiler was written for the 8080 micro-processoxr
in assembly language. The lexical scanner algorithm requires about 800
bytes, the parsing algorithm with error recovery requires about 600 bytes.

References

DeRemer, F.L.,
Simple LR(k) Grammars.
CACM, 14,7, July 1971.

Lalonde, W.R.,
An Efficient LALR
CSR

-Parser-Generator.
Tech. Report 2

, University of Toronto, 1971.

Aho, A.V., Johmson, 5.C., and Ullman, J,D.,

Deterministic Parsing of Ambigucus Grammars.

ACHM Symposium on Principles of Programming Languages,
Boston, Octocbher 1973.

Aho, A.V., and Ullman, J.D.,
Technigue for Speeding up LR(k) Parsers.

Principles of Conpi
Addison-Wesley, 197

Jensen, K. and 11 th, N.,
PASCAL User Manual and Report.
Springer Verlag, 1975.

Burger, W.F.,

BROBSW 3.0 - A Parser G

TR-87, Department of Computer Sciences, University of Texas
at Austin, November 19

Thempson, B.H.,

The Design and TImplementation of an Advanced LALR Parse
Table Constructor.

CSRG-79, Computer Systems Research Group, University of
Toronto, April 1877.

Burger, W.F.,

Parser Generation for Micro-Computer

TR-77, Department of Computer Sﬁlences, University of Texas
at Austin, March 1978.

Burger, W.F.,
A Parser Generation Tool for Micro-Computers.
COMPSAC, November 1979.

Poonen, G.,
Error Recovery for LR(k) Parsers.
IFIP 1877.

Ritchie, D.M., et al.,
The C Programming Language.

[18]

[191]

ey
)
<D
rd

Page

CSTR-31, Bell Laboratories, Murray Hill, N.J., 1975.

Ambler, A., Good, D.I., Burger, W.F.,
Report on the Language Gypsy.
TCSCA-CMP-1, University of Texas at Austin, August 1976.

Hilfinger, P.,
Private Communication, November 1978.

Intermetrics, Inc.
REDL - Informal Language Specification.
February 1978.

Brosgol, B.,
Private Communication, August 1979.

Browne, J.C., Johnson, D.B.,
FAST: A Second Generation Program Analy
3rd Internaticnal Conference on So
Atlanta, 1978.

e

Elliot, L., Kunidi, H., Browne, J.C.,

A Data Management System for Engineering and Scientific
Computing.

Proceedings on Engineering and Scientific Data Management,
NASA, May 1978.

Carl-Mitchell, F.8., Berry, R.F., Dale, A.G.,

APRIL: Accessin ocessing Interface Language for
Database Applica

ICSCA-RDS-2, University of Texas at Austin, February 1979.

o
Q
o3
1]

Meeraus, A.,
General Algebraic Modeling System.
The World Bank, August 1977.

Appendix A

g
o
»
|
Jonsh

Options (F

art 1)

These options are used in the OPTIONS section of the input to the table

generator.
General

1

2

8
Listing

10

11

13

14

Y

The grammar is treated as LALR(1) grammar instead of SILR(1)
grammar.

The grammar may be ambiguous.

An attempt is made to fit the pretty-printed grammar into &0
celumns.

The terminal heads and tails which a nonterminal can produce
are printed.

Terminal symbols may consist of characters of both character

groups. (The character classification in the standard lexical
scanners must be adapted).

f terminals and nonterminals dis

The dinternal encoding of

The bitmatrix of the grammar is printed.

Empty productions are removed from the grammar.

Suppress listing of input.
Suppress listing of grammar checks.

Suppress printout of conflict resolution of inadequate states
by disambiguation sets.

Suppress printout of conflict resolution of inadequate states
by precedence rules.

LR(0) Generation

15

16

The states of the LR{0) machine are printed. The state of
the parse is shown together with the production involved.
(Caution: this option generates a large amount of output).

The internal form of the LR(0) machine is printed.

Page A-2

17 The internal form of lockback states is printed.

18 The SLR(1) lookahead symbols for each nonterminal are printed.

i9 The inadeguate states of the LR{(0) machine are printed.
Optimizer

2G The largest lookahead set

k is r
state. (The state is treated 1like
state).

21 States with the same tail are not folded together.

22 No attempt is made to remove simple productions.

23 Lookahead sets are not removed from states which contain the
-EQOF- token. (This option is useful in conjunction with grammar

entries and interactive parsing).

24 The final form of the parse tables (produced by the cptimization
module) is printed.

Miscellaneous

26 The user supplied semantic action numbers are associated with
the productions.

29 Metasymbol 5 is enabled.

Options (Part

of
B
N

These options are used on the control card when executing part Z of the
table generator.

S An attempt is made to overlap as many read check entries as
possible in order to save space.

M An attempt is made to keep offset values small when the lookback

states are transformed. This option is only required when
tzbles for a micro-~computer are generated.
L full listing of the final tables is produced.

With some systems it is not possible to pass options on the control card
to the program. In this case the desired options must be already provided
in part 1. The option numbers are:

30 same as S
31 same as M
32 same as L

Appendix B

Constants of the Parse Table Generator

The following constants are used to define table sizes and recoxrd
fields of the parse table generator. The values of a typical system are
given. The system must be re-compiled if any of these constants needs to
be changed.

CONST1 400 Number of productions.
CONSTZ 300 Number of terminal and nonterminal symbols.
CONST3 50 Table for counters used by optimizer.

hy

CONSTS 8000 Array for rightside of productions.

@]
Q
%)
-]
wr
~4

Maximum length of right side of a productic

]

CONSTE 12000 Array

=

or parser table.

CONST7? 63 Maximum size of a syntax class.
CONSTS 100 Table for loockahead symbols.
CONSTY 500 Stack for configuration sets.
CONST1IO 1023 Table for parser states.

CONST11 200 Array for nonterminals.
CONST1Z 500 Array for terminal tree.
CONST14 15 Stack used to compute lookahead sets.

CONST1S 63 Maximum size of a basis set.

CONST16 2000 Table for LALR(1) loockahead.

CONBT17 30 Maximum number of syntax classes.
CONST1S 31 Table for lexemes and other kevwords.

CONST19 400 Table for symbols of disambiguation sets.

CONSTZ20 200 Table used to eliminate simple productions.

CONSTZ1 100 Table used to find lcokahead-error states.
CONSTZ24 10 Maximum number of goal symbols.

CONSTZ27 20 Maxdimum length of a terminal symbol.

Appendix C

The following pages contain a complete listing of a parse table
generation. The grammar is taken from [5] and slightly modified. It is a
subset of Pascal. The grammar 1is formulated with syntax classes,
disambiguation sets and precedence rules. Semantic action numbers are
assigned by the system.

The generated parse tables are used with the Pascal parser program on
the DEC-10. A sample program is translated with the generated parser.
The sequence of semantic action calls is recorded.

.1 Parse Table Generation
Sededededededodedodeoddeded LISTING OF INPUT 27-Nov-79 11:10:12 B e o e R R

OPTIONS 1,2,3,14

* A PASCAL SUBSET
% (FROM AHO AND ULLMAN: PRINCIPLES OF COMPILER DESIGHN)

EMPTY EMPTY

it COAD OO~ ON U W DN
-

1 CLASSES

1 + + -

12 4+ <> <= >= < >

13+ % DIV MOD / AND

14+ INTEGER REAL

15

i TERMINALS

17 A I R O R

18 PROGRAM VAR ARRAY OF FUNCTION
19 PROCEDURE BEGIN END IF THEN ELSE WHILE DO NOT OR
20

]

[\
-t
[
el
ot ot
2l
4
o]
w2

NTIFIER NUMBER STRING

4 SCANNER

5 (%

6

7 PRECEDENI E
BINARY =
LEFT + Oﬁ
LEFT **

STRINGCH "
ENDCH *)

PRODUCTIONS
METASYMBOLS Ml=# M2=§ M3=/ HMé=!

O L W L LY L W MR DD MDD
Do e O OND OO0

Oy U W

38 /PROGRAM/ # /PROGRAM HEADER/ /PROGRAM BODY/ !

39 /PROGRAM HEADER/ # PROGRAM IDENTIFIER (/IDENTIFIER LIST/) ; !
40 /PROGRAM BODY/ # /DECLARATIONS/ /COMPOUND STATEMENT/ . !

41 /IDEVTIFTER LIST/ # IDENTIFIER $

42 /IDENTIFIER LIST/ , IDENTIFIER !

43 JDECLARATIONS/ # /VAR DECLARATION/ /ROUTINE DECLARATIONS/ !

44 /VAR DECLARATION/ # EMPTY $

45 VAR /DECLARATION LIST/ !

46 /DECLARATION LIST/ # /IDENTIFIER LIST/ : /TYPE/ ; $

47 /DEGCLARATION LIST/ /IDENTIFIER LIST/ : /TYPE/ ; !

Page C-3

48 /TYPE/ {# /STANDARD TYPE/ $

49 /ARRAY TYPE/ !

50 /STANDARD TYPE/ # INTEGER !

51 /ARRAY TYPE/ # ARRAY [/ARRAY INDEX/ | OF /STANDARD TYPE/ !
52 /ARRAY INDEX/ # /CONblANT/ .. JCONSTANT/ !

53 /ROUTINE DECLARATIO”S/ # EMPTY $

54 ROUTINE DECLARATIONS/ /ROUTINE DECLARATION/ !
55 /ROUTINE DECLAR m/ # /ROUTINE HEADER/ /DECLARATIONS/

56 /COMPOUND STATEMENT/ ; !

57 /ROUTINE HEADER/ # PROCEDURE IDENTIFIER /ARGUMENTS/ ; $

58 FUNCTION IDENTIFIER /ARGUMENTS/ : /STANDARD TYPE/ ; |
59 /JARGUMENTS/ # (/PARAMETER LIST/) §

60 EMPTY !

61 /PARAMETER LIST/ # /IDENTIFIER LIST/ : /TYPE/ §

62 /PARAMETER LIST/ ; /IDENTIFIER LIST/ : /TYPE/ !
63 /COMPOUND STATEMENT/ # BEGIN /STATEMENT LIST/ END !

A /STATEMENT LIST/ # /STATEMENT/ $

65 /STATEMENT LIST/ ; /STATEMENT/ !

66 /STATEMENT/ # /VARIABLE/ := /EXPRESSION/ §

67 /PROCEDURE STATEMENT/ $

68 /COMPOUND STATEMENT/ $

69 IF /EXPRESSION/ THEN /STATEMENT/ ELSE /STATEMENT/ $
70 IF /EAPPEaSIOh/ THEN /STATEMENT/ $

71 C ELSE

72 YHILE /EXPRESSION/ DO /STATEMENT/ §

73 EMPTY !

74 /VARIABLE/ # IDENTIFIER §

75 IDENTIFIER [/EXPRESSION/] !

7 /PROCEDURE STATEMENT/ # IDENTIFIER §

77 IDENTIFIER (/EXPRESSION LiIST/) !
78 /JEXPRESSION LIST/ # /EXPRESSION/ §

79 /EKPRFSSLO LIST/ , /EXPRESSION/ !

80 JEXPRESSION/ # /EXPRESSION/ = /EXPRESSION/ §

81 /EXP RESSIG\/ <> /EXPRESSION/ $§

82 JEXPRESSION/ + /EXPRESSION/ $

83 /EXPRESSION/ GR /EXPRESSION/ $

84 /JEXPRESSION/ * /EXPRESSION/ §

85 /FACTOR/ !

86 JFACTOR/ # /VARTIABLE/ $

87 w IMBER $

88 TRING $

89 (JEXPRESSION/) $

90 IDENTIFIER (/EXPRESSION LIST/) §

91 + /FACTOR/ 3

92 NOT /FACTOR/ !

93

94 /CONSTANT/ # + NUMBER $

95 NUMBER !

g6 !

latautontotunt, ot atantontantontoofstustoutonte st te s Tt otat MMAR (CUHECKS fefedefridodd L) %o bt etant antolond st antunda sl
rhiR e S e S SR D e S R A e ey L-P MMA R C f{\b Figrt it Al et et Sl er i i b ettt i oy

IT HAS BEEN CHECKED THAT ALL NONTERMINALS
EXCEPT THE GOALSYMBOL(S) APPEAR IN BOTH
LEFT AND RIGHTSIDE OF A PRODUCTIOCHN

1T HAS BEEN CHECKED THAT THERE
EXIST NO IDENTICAL PRODUCTIONS

THE GRAMMAR HAS BEEN CHECKED FOR
SIMPLE CHAINS

IT HAS BEE Y

CHECKED THAT ALL NONTERMINALS CAN
PRODUCE A STRIN

G OF CONLY TERMINAIL SYMBOLS

<EXPRESSION>

o

W

o

W

ok

Th

D
L

Fedevtdedeiedededeledede THE GRAMMAR 27-Nov-79 11:10:12 Fodrdedede Yo dede el dededele T e

<PROGRAM> ::= <PROGRAM HEADER> <PROGRAM BODY>

<PROGRAM HEADER> ::= PROGRAM IDENTIFIER (
<IDENTIFIER LIST>) ;
<PROGRAM BODY> = <DECLARATIONS> <COMPOUND STATEMENT>
<IDENTIFIER LIST> ::= IDENTIFIER
/ <IDENTIFIER LIST> , IDENTIFIER

<DECLARATIONS> ::= <VAR DECLARATION>
<RQUTINE DECLARATIONS>

<VAR DECLARATION> ::= EMPTY
/ VAR <DECLARATION LIST>

<DECLARATION LIST> ::= <IDENTIFIER LIST> <TYPE>
/ <DECLARATION LIST>
<IDENTIFIER LIST> <TYPE> ;

<STANDARD TYPE> ::= INTLEGER

/ REAL
<ARRAY TYPE> ::= ARRAY [<ARRAY INDEX>] OF
<STANDARD TYPE>
<ARRAY INDEX> ::= <CONSTANT> .. <CONSTANT>
<ROUTINE DECLARATIONS> ::= EMPTY

/ <ROUTINE DECLARATIONS>
<ROUTINE DECLARATION>

<ROUTINE DECLARATION> ::= <ROUTINE HEADER> <DECLARATIONS>
<GCOMPOUND STATEMENT>

<ROUTINE HEADER> ::= PROCEDURE IDENTIFIER <ARGUMENTS> ;
/ FUNCTION IDENTIFIER <ARGUMANTS>
<STANDARD TYPE> ;

<ARGUMENTS> ::= (<PARAMETER LIST>)

/ EMPTY
<PARAMETER LIST> ::= <IDENTIFIER LIST> : <TYPE>
/ <PARAMETER LIST> ; <IDENTIFIER LIST>

<TYPE>

<COMPOUND STATEMENT> ::= BEGIN <STATEMENT LIST> END

26
27

o
)

W W W
W N

35
36

<STATEMENT LIST>

i

<STATEMENT>

Sy M S

<STATEMENT>

T T

/ EMPTY

<VARIABLE> :=
<PR3bEDLRE STA
<COMPOUND STATEMENT>
IF <EXPRESSION> THEN

IF <EXPRESSION> TATE
WHILE <EXPRESSION> DO <STATEMENT>

= <STATEMENT>
/ <STATEMENT LIST> ;

<STATEMENT>

<STATEMENT> ELSE

THEN

<PROCEDURE STATEMENT> = IDENTIFIER
/ IDENTIFIER (<EXPRESSICN LIST>
<EXPRESSION LIST> = <EXPRESSION
/ <EXPRESSION LIST> , <EXPRESSION>

<EXPRESSION> =
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<EXPRESSION>
<FACTOR>

i

<EXPRESSION>

bt OO DO e O

[on

B R S R

\k\\\‘~\\\\\~\‘“~\~\\\\'\

<VARTABLE>
NUMBER

STRING

(<EXPRESSION>)

+ <FACTCR>
- <FACTOR>
NOT <FACTOR>

B e

0 <CONSTANT> ::= + NUMBER
1 - / - NUMBER
/ NUMBER

..............

= <EXPRESSION>
<> <EXPRESSION>
<= <EXPRESSION>
<EXPRESSICN>
< <EXPRESSION>
> <EXPRESSION>
+ <EXPRESSION>
- <EXPRESSIORN>
OR <EXPRESSION>
w <EXPRESSICN>
DIV <EXPRESSION>
MOD <EXPRESSION>
/ <EXPRESSION>
AND <EXPRESSION>

IDENTIFIER (<EXPRESSION LIST>)

INADEQUATE STATES ARE TO BE RESOLVED WITH THE FOLLOWING SETS:

2

PRODUCTION KIND

32 CONTINUE ELSE *
PRODUCTIONS WITH ASSOCIATED PRECEDENCE
41 1 42 1 43 2
4L 2 %5 3 46 3
5 2
<ARGUMENTS> 19 20 21 L
<ARRAY INDEX> 14 15 1
<ARRAY TYPE> 12 16 L
<COMPOUND STATEMENT> 3 18 25 L. 30
<CONSTANT> 15 15 54 L
<DECLARATION LIST> 8 9T 10
<DECTARATIONS> 3 6 1. 18
<EXPRESSION> 28 31 32 33 36
39 40 41 L 41 41
42 42 43 L3 Lt
44 45 L5 50
<EXPRESSION LIST> 38 39 L, 40 5
<FACTOR> L6 47 . 52 53
<IDENTIFIER LIST> 2 4L 5 9 10
23 24
<PARAMETER LIST> 21 23 L 24
<PROCEDURE STATEMENT> 29 37 T,
<PROGRAM> 1L
<PROGRAM BODY> 1 3L
<PROGRAM HEADER> 1 2 L
<ROUTINE DECLARATION> 17 18 T,
<ROUTINE DECLARATIONS> 6 16 L 17
<ROUTINE HEADER> 18 15 L
<STANDARD TYPE> 11 13 L 14 20
<STATEMENT> 26 27 28 . 31 31
32 33
<STATEMENT LIST> 25 26 1L,
<TYPE> 9 10 11 L 23 24
<VAR DECLARATION> 6 7L
<VARTABLE> 28 35 L 47

tont, ettt 4.)
e A N R T T T iy

. it Sttt . Tanda k.
piariariaridr it @A fat o i e i A S e T iy

INADEQUATE STATES (LALRL)

PRODUCTION PLACE

108 == m s e e D e omm oo -
READ 31 5 ELSE
REDUCTION 32
; END ELSE
THE CONFLICT IS RESOLVED AS FOLLOWS:
CONTINUE ELSE

Qb
5|

AN}

..... ERI)

At . Jantant K 2, LIPS
phk et it b %

o,
pid it et et b et iy

ERRORNG

Dy

g

COMPILER ERROR MESSAGES 27-Nov-79 11:10:12 Fedod
EXPECTED SYMBOL:

LI
paris

A,
Al
kS

SPECIAL ERROR

PROGRAM

IDENTIFIER

: (

. i

- 7 3
5

: : R

INTEGER ARRAY

+ NUMBER

: NUMBER

OF

14

15

16

27

INTEGER

Y .

s b1

BEGIN

NUMBER STRING (IDENTIFIER + NOT
y = <> 4+ 0OR *

1 > 3 , END THEN ELSE DO + OR =
] = < + OR *

DO = <> + OR ¥

THEN = <> + (R *

END

~-EOF -

,,,,,

STORAGE REQUIREMENTS

CONST

OV 0 PO

ALLOCATED USED
400 56 NUMBER OF PRODUCTIONS
300 74 TERMINALS AND NONTERMINALS
50 12 TABLE FOR FREQUENCY COUNTERS
8000 565 ARRAY SIZE FOR RIGHTSIDE OF PRODUCTIONS
12000 234 ARRAY SIZE FOR PARSER TABLES
767 ACTUALLY USED
100 13 TABLE FOR LOCKAHEAD SYMBOLS
5060 59 STACK USED TO GENERATE CONFIGURATION SETS
1023 168 TABLE FOR PARSER STATES
200 25 ARRAY SIZE FOR NONTERMINALS
500 68 ARRAY SIZE FOR TERMINAL TREE
91 ACTUALLY USED
2000 345 TABLE FOR LALR(1) LOCKAHEAD SYMBOLS
400 2 TABLE FOR DISAMBIGUATION SYMBOLS
100 24 TABLE USED TO FIND LOOKAHEAD-ERROR STATES

3975 MS

Lrl

C

THE SEMANTIC LABELS ARE SYSTEM GENERATED.

C.2 Parse Table Transformation

TRANSFORMATION

w2

OPTIONS:

st

=

(&N

SPACE OPTIMIZATION
MICRG HEURISTIC
LISTING

(TABLES OF 27-NOV-79 11:10:12)

ALL STATES:
(READ)
(LOOKBACK)

154
86
12
56

(TABLES OF 27-N

STATE TABLE
CHECK TABLE
TERMINAL TREE
INTERNREP

~Nov-79 11:14:54)
154 WORDS
134 WORDS
206 WORDS
35 WORDS

LEXEMES AND OTHER LEXICAL ITEMS

3z
33
34
35

VERSION INFO:

IDENTIFIER
NUMBER
STRING

(kS

XBSW 3.3

27-Nov~-79 11:14:54

27-Nov-79 11:16:08

C.4 Example Program

1 program example(input,ocutput);
2z var Xx,y:integer;

3 function gecd(a,biinteger)

4 begin

5 if b=0 then gcd:=za

& end;

7 begin

8 read(x,vy);

3 write{ged{x,y)):

10 end.

The following calls to semantic

transiation of this program:

4 5 2 4 5
13 i1 23 21 13
48 46 41 35 35
39 35 47 46 35
31 26 25 18 17
46 40 38 29 5
40 51 46 39 38

27-Nov-79 1

rinteger;

[N
e
1

ek

R N e
RSC I B e IR O V)
Era N [
O ON b
R e

o O o

N

(V]
Wt Oh

BN e
wd o= An
ML) I

b D

-]
[

:19:

gedi=gcd(b, a mod b)

4
ES

35

-~
-

51
39
35

25

£
W =1 W

DEC-10 and DEC-20

s
o
G0
)

o
i

fomnd

Appendix D

two parts. Part 1 contains the first three modules. Part
rest of the modules. The two parts must be executed in sequence.

It is assumed that the grammar is on file LAN.GRM. The command sequence
to obtain parse tables PARS.TAB is as follows:

RUN XBSW

GRAMMAR = LAN.GRM

QUTPUT = LAN.LST

TMPTAB = THMPTAB

; Intermediate tables are generated on file TMPTAB,
; a listing is produced on file LAN.LST

RUN XTRANS

TMPTAB = TMPTAB/S

OUTPUT = TRNS.LST

TABLES PARS.TABR

The program XTRANS can be used with the options S, M, and I {see appendix
A).

D.2 Pascal Skeletcon Compiler for DEC-10

The tables obtained with the table generator are transformed with the
program XPGEN for the DEC-10 Pascal skeleton compiler. It is assumed that
the output of the table generator is on file PARS.TAB. Any place holder
terminals must be subst*tupeu by their actual terminals before this file
is further processed (see section 3.1). This can be done, for example,
with a text editor.

The tables PARS.TAB are transformed into DEC-10 Pascal
"initproceders". The initprocedures may be inserted into the template

file XPRS.PAS which is the standard skeleton compiler.

RUN XPGEN

TABLES PARS.TAB
INSERT TABLES INTO A TEMPLATE FILE (Y CR N) 7 ¥
FILE = XPRS.PAS

; The parser program LS enerated on file PARS.PAS,
3
; output is sent to file PARS.CUT.

The result

ng program can be translated with the Pascal compiler and
executed. The

i
The following example assumes that a program TEST is available.

DEC-10 and DEC-20 Page D-2

EXEC PARS.PAS

SOURCE = TES
s A listing i

; the semanti
; terminal.

0w -3
\

]ed on the

The options of the parser program are:

N No program listing is produced.

An dinput line is 80 characters long instead of 72.
Display the semantic action number when the semantic
routine is called.

Y

The tables cobtained with the tab
program XGEN for the DEC-20 Pasc
either transformed into DEC-20 Pasc
used into assignment statement
transportability of the generated p

RUN XGEN

TABLES = PARS.TAB/P
PARSIN = XPRS.PAS
NEWPRS = PARS.PAS
QUTPUT = PARS.OUT

nerated on file PARS.PAS,

U
; The parser progr i e
nt to file PARS.OUT

; output is sen

The generated program can be transiated with the Pascal compiler and
executed. The following example assumes that a program TEST is available.

EXEC PARS.PAS :

SQURCE : TEST.
LISTING : TEST.LST
Option (n,p,u or <cr>):

The parser program options are described further in Section D.2.

D.4 Generation of Tables for Fortran Parser

The tables PARS.TAB are transformed into block data statements by the
program XFGEN. Option M can be used to generate block data statements
suitable for 16, 32, 36, or 60 bit machines. The default option for M is
36. Tokens of the language are stored in an indexed-seguential structure.
Reserved words can be up to 10 characters long. The file containing the
block data statements is obtained by:

-]
bl
<2
H
[
<
&
o}
[e ¥
-}
s}
O3
'
NN
()
g
o
oG
[¢3
[}
i
()

RUN XFGEN

TABLES = PARS.TAB/M:36
OUTPUT = PARS.COUT
BLKDAT = BLKDAT.FOR

There are two Fortran parser template files available: XPRS.FOR and
¥PRSE.FOR. The second template file contains the routines to do error
recovery when error productions are used. The following seguence of
commands obtains an executable parser. A program to be parsed is assumed
to be on file TEST.

EXE BLKDAT.FOR,XPRS.FOR

INPUT FILE [PRS.INP] = TEST.

QUTPUT FILE [PRS.LST] TEST.LST

SEMACT FILE [PRS.SEMj = TEST.SEM

; A listing is produced on file TEST.LST,

; the semantic actions called are written to file
; TEST.SEM.

li

D.5 Simula Skeleton Compiler for DEC-10

The tables PARS.TAB can be transformed into a Simula class or into a
text file. With the Simula class the tables are built into the compiler
when the class is translated. With the text file the arrays of the
skeleton compiler are initialized at run-time when the file is read. The
iexical scanner tables are organized in an indexed-seguential manner. T
transformations are carried out by:

e

1e

o

RUN GENSIM

TABLES = PARS.TAB

DO YOU WANT A SIMULA CLASS (Y OR N)7
; The simula class is written to file PARSTB.SIM,
; otherwise a text file PARS.SIM is generated.

The skeleton compiler consists of the files PARSER.SIM, DRIVER.SIM, and
MAIN.SIM. The parser part of the skeleton compiler is a self-contained
Simula class. MAIN.SIM is used when the tables are represented by a
Simula class, DRIVER.SIM is used when the tables are on a text file.

D.6 Lisp Skeleton Compiler for DEC-10 and DEC-20

The skeleton compiler is written in UCI-Lisp. Arrays are used to store
the parse tables. The transformation program produces two files from
PARS.TAB: one file contains array allocations (for binary program space),
the other file contains the parse tables in a form readable by the parserxr
program. In this step error numbers together with their expected symbols
can be inserted into an error message file. The transformation program
prompts for required files and reports the amount of binary program space
needed by the parser program.

DEC-10 and DEC-20 Page D~4&

RUN LSPGEN

; By default the file LSPTAB contains the parser tables,
; the file ALLC.LSP contains the array definitions.

The skeleton compiler is on file XPRS.LSP. The array allocation file must
be loaded first when the system is built. The arrays are initialized by
reading the parse table file. A file with semantic actions (see section
6.2) may be supplied also.

The tables on file PARS.TAB can be transformed into an initialization
part in C. These tables (in the example on file TAB.C) together with the
template parser XPR5.C can be used on a PDP-11.

RUN CGEHN

TABLES . PARS.TABR
TARC : TAB.C
OUTRUT : PARS.LST
[.8 Generation of Tables for an 8080

Grammars of the size of Pascal or € are suitable to generate parse
tables for &-bit machines. The second part of the table generator should
be used with the options S and M to obtain tables which require the least
amount of space.

The table transformation program first generates tables in a
byte-oriented form. If requested the tables are further transformed into
8080 assembly data statements. The tables can be inserted into a skeleton
compiler written in 8080 assembly language. The skeleton compiler is ‘on
file XPRS.808.

RUN XGEN8O
TABLES = PARS.TAB

; File SIM contains the tables in machine independent form,
; file PARS.808 contains the tables in 8080 assembly source.

The files PARS.808 and XPRS.808 can be moved to an 8080 micro-computer.
On the DEC-10 these files can be translated with the 8080 assembler MAC8O
and then interpreted with the 8080 interpreter INT8O0.

CDRC Cyber Page E-1

Appendix E

- 1

.1 Parse Table Generation on CDC Cyber

The two parts of the XBSW system must be executed in sequence. It is
assumed that the grammar is on file LANGRM. On a 64 character set machine
character 0 {colon) may not be used to formulate the grammar input. The
character 51 (percent) should be used instead. The resulting file
PARSTAB, however, can be edited so that it may contain colons. The
control card sequence to obtain the file PARSTAB is as follows:

GET,XBSW,XTRANS.
XBSW, LANGRM, OUTPUT, TEMP .
XTRANS ,TEMP,OQUTPUT ,PARSTAB/S+.

The form in which the options on the control card for XTRANS are provided
corresponds to the CDC-Pascal3 conventions. The available options are S,
M, and L (see appendix A).

E.2 Pascal Skeleton Compiler for CDC

The tables obtained with the table generator are transformed with the
program XPGEN into Pascal3 value parts, or with the program XXGEN into
Pascal procedures. (Bach procedure consists of a sequence of assignment
statements).

The Pascal skeleton compiler dis in UPDATE form on file XPRSPL. A
source form of the skeleton compiler is used for inserting the tables (as
value part or by procedures). If the tables are inserted as value part
then the modification deck NPVMOD must be applied first to XPRSPL. The
following control card sequence 1is suggested to obtain an executable
parser.

GET,XPGEN,NPVMOD , XPRSPL.
UPDATE , P=XPRSPL, I=NPVMOD,L=0,C=PRSTMP,F,D, 8.
XPGEN, PARSTAB , PRSTMP, PARSER, OUTPUT.

GET,PASCAL,PASCLIB.
PASCAL,PARSER. compile parser
LGO, <input>,<output>/<options>. execute parser

The parser program may be used with options. The options are:

N No program listing is produced.

U An input line is 80 characters long instead of 72.

P The semantic action number is recorded when the semantic
routine is called.

The tables PARSTAB are transformed into block data statements. Option
M can be used to generate block data statements suitable for 16, 32, 36,
or 60 bit machines. The default option for M is 60. Tckens of the
language are stored in an indexed-sequential structure (see section 5).
Reserved words can be up to 10 characters long. The block data file is
obtained by:

GET,XFGEN.
XFGEN,PARSTAB,OUTPUT, BLKDATA/M60

The Fortran skeleton compiler is in UPDATE form on file FPRSPL. The
following control card sequence is suggested to obtain an executable
parser:

REWIND, BLKDATA,LGO.
GET,FPRSPL.

FTN,I=BLKDATA. must be first on LGO
UPDATE , P=FPRSPL,1=0,F.

FIN,I. compile parser
LGO,<imput>,<cutput>. execute parser

1f error recovery by errer productions is used then the modification deck
ERRMOD must be applied first to the file FPRSPL.

IRM-370 Page F-1

Appendix F

The control cards described here are general suggestions on how to
use the XBSW system with 0S/VS and VM/370-CM3 operating systems. For
general use JCL procedures or command language procedures should be
installed. Local documentation describing the differences in control
cards using the Pascal system should be consulted.

F.1 Parse Table Generation on IEM-370

The two parts of the XBSW system must be executed in sequence. It is
assumed that the grammar is on file LAN.GRM, and that the XBSW system is
on file ¥BSW.LOAD. The following JCL is suggested to obtain the table
file &PRSTAB.

/] EXEC PGM=XBSW

//STEPLIB DD DSN=XBSW.LOAD,DISP=SHR

//LOCAL DD UNIT=SYSDA,SPACE=(CYL,10

//SYSPRINT DD SYSOUT=A

//GRAMMAR DD DSN=LAN.GRM,DISP=(OLD,PASS)

//TMPTAB DD DSN=&TMP,DISP=(NEW,PASS),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BIKSIZE=4000),SPACE=(TRK, (5,5))
/ EXEC PGM=XTRANS

//STEPLIB DD DSN=XBSW.LOA

//THMPTAB DD DSN=&TMP,DISP

//SYSPRINT DD SYSOUT=A
//TABLES DD DSN=&PRSTAB,DISP=(NEW,PASS),UNIT=SYSDA,

/7 CB=(RECFM=FB, LRECL=80,BLKSIZE=4000), SPACE=(TRK, (5,

SP=8HR

D,DI
=(0LD,PASS)

,D
(O

u;

3)

The program XTRANS may be used with the options 5, M, and L (see Appendix
A} if the Pascal system in use ailowc for options to be passed fto a
program. Parameters would be defined as follows:

H

PARM='S M’

In CMS the following command sequence is suggested. The file LAN
GRAMMAR contains the grammar to be processed.

FILEDEF GRAMMAR DISK LAN GRAMMAR
FILEDEF SYSPRINT DISK LAN1 LISTING
RUN XBsW

FILEDEF SYSPRINT DISK LANZ LISTING
FILEDEF TABLES DISK LAN TABLES
RUN XTRANS (S M

The output of the table generator is on the files LAN1 LISTING and LANZ
LISTING. The generated tables are on file LAN TABLES.

IBM-370 Page F-2

F.2 Fortran Skeleton Compiler

The tables on file &PRSTAB are transformed into Fortran block data
statements. Tokens of the language are stored in an
indexed-sequential structure (see section 5). Reserved words can be up
to 16 characters long. The following JCL is suggested to obtain the block
data file:

// EXEC PGM=GENFOR

//STEPLIB DD DSN=XBSW.LOAD,DISP=SHR

//TABLES DD DSN=&PRSTAB,DISP=(0OLD,PASS)

//SYSPRINT DD SYSOUT=A

//BLKDAT DD DSN=&BLKDAT,DISP=(NEW,PASS),UNIT ’SDA
:T

=5¥
/7 DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000) ,8PACE {5,317

It is assumed that the TFortran skeleton compi iler is on file FORFRS.
The block data statements and the skeleton compiler can now be compiled by
Fortran (G or H). The semantic actions are recorded on unit 4
(FTCLFO0L).

// EXEC ... (Compile and Go version of Fortran)

//FORT.SYSIN DD DSN=&BLKDAT,DISP=(0LD,PASS)

/7 DD DSN=FCORPRS,DISP=(0LD,PASS)

//GO.SYSIN DD *

GO.FTO4F001 DD SYSOUT=A

ok

~ e

/
/

Block data statements for 16, 36, or 60 bit machines can be generated

by using the M option. Example:
PARM='M 36’

The default value for M is 32.

Fh

The CMS control command seguence to obtain a
block data statements is as follows:

ile containing th

®

FILEDEF TABLES DISK LAN TABLES
FILEDEF S}bPRENT DISK LAN3 LISTING
FILEDEF BLKDAT DISK LANBLK FORTRAN
RUN GENFOR (M 32

The file LANBLK FORTRAN contains the block data statements. Unde
CMS the TFortran skeleton compiler is available as XPRS fORTﬁAN
The skeleton compiler containing the routines for error recovery by erroxr
productions is on file XPRSE FORTRAN.

F.3 Pascal Skeleton Compiler

Depending on the Pascal system available, the tables on file &PRSTAB
are transformed with the program GENPAS either into Pascal procedures

[
~e
s
i
(%)
d
<
o)
o
2
€]
"
i
L

or inteo a Pascal wvalue part. (A Pascal procedure consists of a
sequence of assignment statements). The procedures or the value part are
inserted into a skeleton parser. It 1is assumed that the skeleton

parser in Pascal is on file PASPRS. The tokens of the language are
stored in an indexed-sequential structure, Reserved words can be

up to 16 characters long. The following JCL is suggested to transform
the parser tables:

// EXEC PGM=GENPAS

//STEPLIB DD DSN=XBSW.LOAD,DISP=SHR
//TABLES DD DSN=&PRSTAB,DISP=(OLD,PASS)
g/SYSPRINT DD SYSOUT=A

/PARSIN DD DSN=PASPRS,DISP={0LD,PASS)
//PARSOUT DD JSQ“&PARSER DISP=(NEW,*ASS),UNIT=SYSDA,
/7 DCR=(RECFM=FB,LRECL=80,BLKSIZE=4000),SPACE=(TRK, (5,5))

.o

The resulting program on fi &PARSER can be compilad
ar n e

il with the Pascal
compiler. The semantic actions are recorded on fil IL

SMFILE.

// EXEC (Compile and Go version of Pascal)
//PAS.SYSIN DD DSN=&PARSER,DISP=(0LD,PASS)
//GO.S50URCE DD *

//GO.SYSPRINT DD SYSOUT=A
//GO.SMFILE DD SYSOUT=A

The CMS control command sequence for transforming the tables on file
LAN TABLES into a Pascal value part and for its insertion into the
skeleton parser XPRS PASCAL is as fellows

FILEDEF TABLES DISK Lé TABLES
FILEDEF PARSIN DISK XPRS PASCAL
FILEDEF PARSOUT DISK PARSER PASCAL
FILEDEF SYSPRINT DISK LAN4 LISTING
RUN GENPAS

The resulting program PARSER PASCAL can now be compiled with the Pascal
compiler and executed.

VAX/CM Page G-1

Appendix G

The control commands are described here at the basic command level;
for general use of the XBSW system the installation of command language-
& o <

procedures is suggested.

G.1 Parse Table Generation on VAX

The two parts of the XBSW system must be executed in sequence. It is
assumed that the grammar to be processed is on file LAN.GRM.

ASSIGN LAN.GRM GRAMMAR Ygrammar input
ASSIGN LAN1.LST PASSOUTPUT flisting

RUN XBSW

ASBIGN LANZ.LST PASSOUTPUT flisting

ASSIGN PARS.TAB TABLES !generated tables
RUN XTRANS

The program XTRANS can be alsc used with the options 5, M, and L (see
Appendix A). TFor this purpose first a symbolic name must be defined so
that options can be provided on the command line. Assuming that the
system resides in directory [¥XX] the fcllowing command lines will execute
XTRAKS with the options S and M:

XTRANS : ==$ [XXX] XTRANS . EXE

XTRANS /S,M

The tables obtained with ;He table generator are transformed with
the program GENPAS for the VAX Pascal skeleton compiler. The tables are
inserted as value part. ;

ASSTIGN PARS.TAB TABLES tables from generator
ASSIGN XPRS.PAS PARSIN Iskeleton parserxr
ASSIGN PARSER.PAS PARSOUT !generated parser
ASSIGN LAN3.LST PASSOUTPUT flisting

RUN GENPAS

The generated parser program can now be translated with the
Pascal/VMS compiler and executed. The following example assumes that a
program TEST is available.

PASCAL PARSER.PAS lcompile parser
LINK PARSER lcreate executable image
ASSIGN TEST SOURCE {parser input

RUN PARSER
Enter options (N,P,U or <cr>):

VAX/CMS Pa
The parser program options are described further in Section D.2.

The tables on file PARS.TAB are transformed into block data
statements . with the program GENFOR. Option M can be used to generate
block data statements suitable for 16, 32, 36, or 60 bit machines. The
default option for M is 32. Reserved words can be up to 16 characters
long. If the M option is wused first a symbolic name must be
defined. The following example assumes that the program resides in
directory [XXX].

ASSIGN PARS.TAB TABLES 'tables from generator
ASSIGN PARS.FOR BLKDAT 'block data statement file
ASSIGN LAN4.LST PASSOUTPUT tlisting
GENFOR:==§ [¥XX]GENFOR.EXE
GENFOR /M32
There are two Fortran parser template files ailable: ¥XPRS.FOR and

XPRSE.FOR. The se emn te file CO“»%‘&S the outines for error
recovery when error productions are used. The fcilow1ng commands
obtain an executable parser. A test program is assumed to be on file
TEST.

(7'“0
[q]
b BB

FORTRAN PARS.FOR,XPRS.FOR !compile parser

LINK PARS,XPRS

ASSIGN TEST INPUT Iparser input

ASSIGN TT OUTPUT {listing on tty

ASSIGN SEM.LST SEM flisting of semantic calls

RUN PARS

The tables on file PARS.TAB are transformed with the program GENG
into an initialization part im C.

ASSIGN PARS.TAB TABLES ‘tables from generator
ASSIGN TAB.C TABC !initialization part in C
RUN GENG

ed initialization part can be used together with the template

.C and compiled with the C compiler.

Grammars of the size of Pascal or C are suitable to generate parse
tables for 8-bit machines. The program XTRANS should be used with the
options S and M to obtain tables which require the least amount of space.

VAX/CMS

The tables PARS.TAB can be

statements with the program GEN80SO.

ASSIGN P!
ASSIGN T
ASSIGN P4
RUN GENS

RS.T iB TABLES

080.LST PASSOUTPUT
RS.808 ASSEM
80

The files PARS.808 and XPRS.
micro-computer and compiled there.
form of the 8-bit tables.

transformed into 8080 assembly

ttables from generator

L‘,O

080 assembly statements

808 can be moved to an 8080
The file T8080.LST contains a readable

