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1. Introduction

This chapter is concerned with structural methods for the
representation and recognition of planar shapes. In particular, we will
consider relational network models and syntactic models for shape
representation. In general, when shapes are modeled by relational
networks, then graph matching procedures are used for recognition. A
graph matching procedure will be described which includes a retaxation
component, and its application to recognizing pieces of shapes (which
correspond to coastlines of islands of the world) will be presented.
When shapes are modeled using grammars, then a parsing procedure is used
to recognize an unknown shape. Syntactic models can be regarded as a
generalization of relational networks which supports a hierarchical
organization of relational models. A parsing procedure will be presented,
called a hierarchical relaxation process, which recognizes shapes using
syntactic models. Its application to the recognition of shapes of
airplanes will be discussed, and it will be compared to other shape
parsing procedures.

This chapter will not discuss problems related to recognizing a
three-dimensional object based on the shapes of one or more two-dimensional
projections of that object. The interested reader is referred to, e.g.,
Marr and Nishihara [1] for a discussion of this problem. We will also
not consider the vast variety of shape models based on colliections of
scalar shape features (for example, Fourier features, central moments,
etc.). The reader js referred to Pavlidis [2] for a discussion of such

models and to Duda and Hart [3] for an introduction to the statistical



recognition procedures for these models.

Although a considerable amount of effort has been directed towards
the problem of planar shape recognition, it is nevertheless true that
no general solution to the problem has been discovered. Some of the
factors to which this failure can be attributed are:

1) orijentation -- One needs to be able to recognize a shape
independent of jts orientation. For example, in chromosome recognition,
there is no way to control the orientation of the chromosomes on the
slide.

2) size -- One also needs to recognize a shape over a wide
range of sizes. For example, in airplane recognition based on aerial
reconnaissance imagery, the size of the airplane in the image depends
on several factors including the characteristics of the sensor, the
altitude of the surveillance aircraft and the computational resources
available for recognition (which determine the spatial resolution of
the digital image). Furthermore, the appearance of objects changes
with scale; the shape model should, ideally, account for those changes.

3) distortion -- It is quite possible that parts of the shape,
or perhaps the entire shape, may appear distorted. "Distortion" may be
due to the fact that the object is viewed from an oblique angle (as in
aerial reconnaissance where we view this problem as two-dimensional
since the airplanes are on the ground and so give rise to a rather
limited variety of two-dimensional projections which we intuitively
regard as distortions of some prototype shape), or to imperfections in
the image segmentation procedures which attempt to recover the shape

for subsequent recognition.



4) partial information -- Often, one must recognize a shape
based on only partial information, i.e., an entire shape is not available
for analysis possibly because of occlusion in the image or deficiencies
in the segmentation procedures. So, for example, the camouflage of an
airplane may preclude our segmenting the entire airplane outline from an
image. We would hope, nevertheless, to be able to recognize the airplane
based on the available information.

5) agglomeration -- A complementary problem to partial
information is when an agglomeration of several shapes is presented to
the recognition algorithm. This is a particularly difficult problem to
deal with since so many subpieces of the agglomeration might correspond
to individual objects. One is faced with such problems in chromosome
analysis, where overlapping chromosomes are often extracted as one shape
by the segmentation procedures.

It will be important to keep these factors in mind during the
discussion of network and syntactic shape models in order to appreciate

the strengths and weaknesses of the various approaches.



2. Relatijonal Network Shape Models

A relational network model for shape representation is composed of

two parts:

1) a model for decomposing the shape into pieces, and

2) a model for computing salient relations between those pieces.
So, for example, we might attempt to decompose a shape into a central
piece and lobes, or into convex subsets (see Pavlidis [4]). The relations
might include adjacency of pieces, collinearity of pieces (if we associate
an axis with each piece -- say in the direction of elongation -- then we

can compute the collinearity of axes), parallelness of pieces, etc.

(See also the discussion in Section 4.1.)

If the shape is not closed, then an areal decomposition is quite hard

to obtain because of difficulties associated with determining a closure

for the available pieces. In such situations, one might consider
decomposing the available perimeter into simple pieces such as straight
1ines, circular and elliptical arcs, etc. Methods of piecewise
approximation of shapes are discussed in detail in Pavlidis [5]. We will
present a simple example involving angle detection.

Suppose that {(Xi’yi)}?=1 is a vector representation of the boundary

points of a shape, S. At each point in S we compute a number related to

the curvature of S at that point:
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Points whose Ck values are (1) local maxima and (2) above threshold
are marked as angles (see Figure 1). The pieces of the shapes are then
taken to be the angles along with the segments of shape between the angles
(possibly approximated by straight lines). It is precisely this
representation which we shall use in our shape matching procedure based

on relational networks.



a) Ck = cos ~(9)

b) shape with one sharp angle (al) and one shallow angle (a2)
A
Ck
threshold | ""”
,,-.«-»’// \\ e ——
a, aq curve point

c) both Ck(al) and Ck(az) are local maxima, but Ck(a2)<<thresho1d,
so it is not marked as an angle.

Figure 1. Angle detection base on Ck’



2.1 Relation Network Matching Using Relaxation

In this section we present a shape matching procedure based on the
representation of a shape as a network of angles (and sides). This
procedure is invariant to rotation and a wide range of scale changes;
it will construct and manipulate a structure called an association graph.
An important property of this approach is its ability to deal with
incomplete information (point 4 in the introduction), sometimes called
the segment matching problem in shape recognition (see Freeman [6]).
Shapiro [7] describes a shape matching procedure similar to the one
described below.

Let 0 = 01’02""’On be the polygonal path representation of some
object curve in a data base of curves. Each Oi is a triple, <X1,Y1,MAG€>,
where X and Y are the coordinates of Oi’ and MAGi is the magnitude of
the angle. Similarly, let T = Tl’T2""’Tm’ m<n, be the polygonal
representation of an unknown curve segment that we wish to match against 0.
Informally, a match of T to 0 has two components:

1) a function providing an association of elements in T with
object elements, with proper regard to the sequencing of the elements
(called an association function);

2) a global coordinate transformation from the coordinates of
T to the coordinates of 0 that provides a spatial registration of T with 0.

The matching process to be described is a simplification of the
relaxation scheme used in Davis and Rosenfeld [8]. There, the goal was
to recognize noisy upright squares on a noisy background. The template
for the square was made of four subtemplates -- one for each corner of

the square. A node was entered into a network corresponding to each



picture point at which some local evaluation function designed to detect

corners detected a match with one of the four corners. Each node in the
network had a fixed label set associated with it. These labels included
four labels representing the interpretation of that node as one of the
four corners of the square and one label corresponding to that node being
a false alarm. Each label was assigned an estimate of the probability of
it being the correct label for that node based on the results of the local
evaluation function. Pairs of nodes that corresponded to image points
that might form part of a single square were connected in the network.

The probability of a particular node having a particular label was then
iteratively updated on the basis of the probabilities of labels at
neighboring nodes in the network. Each iteration of this updating occurred
in parallel at every node in the network.

The process has been simplified in the following way. The local
evaluation function will determine, for each angle in T, a subset of
object angles that the angle in T may be associated with. Each association
of an angle in T with a single matching object angle will correspond to
a node in a graph, called the association graph. Thus, each node in the
graph corresponds to an association of an angle in T with a single angle
in 0, rather than with all of the angles in 0 (i.e., all of the corners
of the square). Each node will be assigned a weight reflecting how well
the object angle and the angle in T match according to some local evaluation
function.

Connections between nodes are determined based on our relation models.
Denote a node in the graph by <Oi’Tj>' Suppose <01’Tj>’ <Oi,,T..> are two

J
such nodes, and suppose that prior knowiedge is available concerning the



scale of O relative to T. Then the two nodes can be connected if

d(oi’oi')/d(Tj’Tj') is consistent with our prior knowledge of scale

(here d(Oi,Oi.) is the distance between Oi and 01.).

Nodes are pruned from the graph if some evaluation function applied
to the neighborhood of the node is below threshold. For example, consider
the following evaluation function. Let G = <N,V> be the association graph
with node set N and arc set V. Suppose M(n), for neN, is the weight, or

merit, of node n. Then the function

simply sums the weights of all the neighbors of node n. The node deletion
process using a particular threshold t on E(n) will define a sequence of

associjation graphs G = GO’Gl""’G » Where Gi is obtained by Gi-l as

S

follows:
1) Ni = Ni—l - {n: nE:Ni and E(n) <t}
2) Vi = {(n,n")fn,n'eNIav,

When G. = G;_;, the process terminates. We will Tet G~ denote the fixed
point of this process. Figure 2 shows a simple example of this process.

O

Proposition: For some finite s, Gs =G .

Proof: Immediate, since G. is finite, and each iteration which does not

0
reach the fixed point reduces the size of the network (and the empty

network is a fixed point).
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¢) angle match table

Example of node deletion process.
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d) Association graph to which we will apply the node deletion
criteria: "Delete all nodes of degree < 3."
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e) Result of applying one iteration of node deletion to Figure 2d.
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f) Result of applying one iteration of node deletion to Figure Z2e.
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g) Result of applying one iteration of node deletion
to Figure 2f. The resulting network is now stable.
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Thus we have a "discrete" relaxation operation. It is discrete
because it is a Tabel discarding process (deleting a node is really
eliminating one possible interpretation of an unknown angle). On the
other hand, it does not require that a node be absolutely consistent
with all of its neighbors, but only that it be adequately consistent
with enough of its neighbors.

We will now attach information to the edges of the graph, and
introduce an edge filtering process which will further enhance the
results of the local evaluation function based on local similarity
transform equivalence between pieces of the unknown and of the object.

An edge in the association graph connects two associations <01’Tj>
and <015,Tj.>. The similarity transformation that maps the 1ine segment
joining Tj to Tj' onto the 1line segment joining Oi to Oi' is unique, and
corresponds to a local hypothesis of the best coordinate transformation
that minimizes the mean squared distance between T and 0 given that
<01’Tj> and <Oi"Tj'> are part of the best overall association. The
parameters of this transformation will be associated with the edge joining
<Oi’Tj> and <Oi"Tj'>' If these associations are in fact part of the best
association function from T to 0, then many other edges in the network
should be labeled with similar parameters. In particular, these
transformations should be found attached to the other edges that are
incident on <01’Tj> and <Oi'3Tj’>'

This suggests that the following new graph (the line graph), G',

be built from the given association graph, G.

15



Definition: Let G = <N,V> be an undirected graph with node set N and
edge set V = NxN. Then the line graph, G', of G is the graph (N',V') -
where

1) for each veV we have a node n' eN';

2) (ni,né)s:V' iff ni,né correspond to edges in V that have

one common endpoint.

Then, a node can be deleted by a parallel filtering algorithm if, say,
the value of some evaluation function applied to that node is less than
éeN‘.
Suppose ni corresponds to the edge joining <011’Tj1> to <012’Tj2> in
the original association graph, G. Then the similarity transformation

some threshold. This can be done in the following way. Let ni,n

labeling ni is the 4-tuple (a,b,c,d) where

2

2 2 _
L [Xir - (axjr + ijr + c)J + [Yir - (anr + bxjr + d)} =0

Then node né must correspond to an edge in G connecting some <Oi3’Tj3>
to eijther <0il’Tj1> or <0i2’Tj2>' Suppose it is <011,T11>. If both
ni and né were part of the same perfect match of T to 0, then it would
be the case that
s(ny|ny) = 7} [X. - (aX. _ + by,
2'1 r=1,3 ir jr jr

* [Yir - (anr * bxjr

If the match were not perfect, or if ni and né were not part of a single
match, then, in general, s(nélni):>0. We can see that s(né]ni) measures
the support of the pair of associations corresponding to né for the pair
of associations corresponding to ni.

16



We can use the evaluation function
E'(n') =) s(n"|n")
with (n',n") eV’

to create a sequence of graphs G' = Gj,G; ,G;, where Gi is related

LIRS
to G%—l by
1) N;= N - {nteNi JJE"(n") <ths
2) V% = {(n ,n"){n',n“e:N%}r1V%_1.

By introducing the line graph, the same system of programs that performed
node deletion can now be applied to the edge deletion process. Also note
that if G' is the fixed point of this process, then it is reached after a
finite number of steps.

Deleting a node from the line graph is equivalent to erasing an edge

of the original graph. If all of the edges of a node in the original

graph are erased in this way, then that node can be deleted. This process
can disconnect the association graph, and this has important consequences
for the search processes described in the next section.

If the association graph is examined after both filtering operations
have been applied to it, it will usually be the case that it contains at
most a few connected components of nodes with highly consistent similarity
transformations attached to the edges of these components. Searching for
a best association function should almost always be trivial. We have also
constructed powerful clues as to the best global similarity transformation

between T and 0.

17



2.2 Searching the Pruned Association Graph

This section discusses methods for extracting a "best" association
function from the filtered graph. These techniques would be applicable
to the original graph. However, since they have a sequential component,
it would be computationaily more costly to directly process the unfiltered
graph.

Let Gf represent the final association graph produced by the node and
edge deletion processes; Gf represents a reduced and more informed set of
guesses as to which Oi should be associated with a particular Tj' We will
discuss the use of ordered search techniques to find the best association
function contained in Gf. The combination of state-space search and
"discrete" relaxation processes is very similar to the incorporation of
probabilistic relaxation with heuristic sé;rch in MSYS (Barrow and
Tenenbaum [9]).

The states in the search space will be described by association
functions and contexts (see below) and the search process will consist
of choosing the state S with minimal cost, and extending the association
function described by that state by adding an additional association to
it chosen from the context of that state.

Given a state, S, let FS denote the state association function for
S and let CS denote the context for S.

F_ is a set of ordered pairs {(01 T )5(0

LT
S 1 91 T2

J.2),...,(01. ’Tj )}

satisfying the properties that

]_) O1P:O1q = pP=g

2 R = T = =
) Tip = Tyq = P9
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It represents the partial development of some association function from
T into 0.

Fach CS is a subgraph of Gf. The nodes of Cs represent the possible
associations which may be used to construct extensions to FS; these
extensions will become the state association functions of the immediate
descendents of S. There are three important points to note about these
contexts. The first concerns the connectedness of any given context,
while the second two concern the generation of contexts during the
expansion of a state during search.

First, the context of any state must be a subgraph of a single
connected component of Gf. This is because a pair of nodes are contained
in different connected components of Gf because they did not satisfy the
relation model.

The second point involves the way that the context of a state is
constructed from the context of its father. Suppose that state S is the
father of state S', and that Fs' is obtained by adding the association
(oi’Tj) to Fs' Then Cs' is constructed from CS in the following simple
way (Algorithm H-Hypothesize):

1) set €= co- {100, T £} U (0T 013 30
i.e., delete from CS any associations involving either Oi or Tj except
(Oi’Tj)'
2) Apply the node and edge deletion procedures iteratively to
0 1 .2 k

g to obtain CS,,C .,...,CS.,

¢ S

where Cz. is the fixed point. Set
C, = Ck., provisionally.
s S

There are logically three relations that Fs' might have to Cs‘:

1) Some of the associations contained 1in FS. are deleted by the

19



filtering process. This indicates that Fs‘ was constructed from
incompatible associations, and does not describe the best association
function.

2) Cs' is disconnected by the filtering process, and the
associations of Fs‘ are split among the various connected components of
the CS.. Once again, FS. was constructed from incompatible associations.

3) The associations of Fs' are all contained in a single
connected component of the CS.. In this case, that connected component
becomes Cs"

The only allowable extensions will be those that fall in the third
category. The association functions for such states will be called

constraint compatible. Any state S that cannot be extended to an S'

because all attempts at extension result in one of the first two
conditions will be marked with very high cost. The association functions

for such states will be called constraint incompatible. In this way,

these states need not be considered during the remainder of the search
process.

The third point involves refining CS in order to reduce the number
of sons that might be generated from S. Basically, the question we must
answer is: Given that we have generated one son of S by extending FS
with some association (Oi’Tj) in Cs’ is it necessary to consider all
other nodes in CS as other possible extensions for FS? The answer to
this question is that in general we do not. 1In fact, the set of
associations that must be considered, given that (Oi’Tj) has already been
used to generate a son, can be computed by the following process

(Algorithm S-Suppress):

20



0 _
1) Set Ci7 = C - (0,,T))

2) Iteratively apply the node and edge deletion processes to

2,...,c;k, with c;k the fixed point.

Set the refined context of S, C; = C;k.

obtain the sequence of graphs C;l,C;

The following propositions demonstrate that it is sufficient to consider

only elements of C; as other possible extensions to FS.

Lemma: CS is independent of the order of acquisition of the association
in Fs'
Proof: Can be found in [19]. The Lemma assures us that there is,

effectively, only a single way to reach any state.//

Proposition: Let S = (FS,CS). If Fs is constraint-compatible, then all
constraint-compatible extensions of FS can be constructed along a path

constrained to contain state S.

Proof: Immediate, from the Temma and the definitions of the node and

edge deletion operators.//

Proposition: Let S = (FS,CS), and Tet (Oi’Tj) be a node in CS. Let CS
be constructed by applying Algorithm S to CS and (O@’Tj)- If (01,,Tj,)
is a node in CS, but is not contained in C;, then any constraint
compatible extension of FS which does not contain (Oi’Tj) cannot contain

(O-il’le)‘

21



Proof: Since deleting (Oi’Tj) from CS and applying the node and edge
deletion operator caused (Oi"Tj') to be deleted from CS, then postponing
the deletion of <Oi’Tj> until some later stage (which must occur since,
by hypothesis, (01,Tj) will not be part of any constraint compatible

extension to FS) obviously will only delay the deletion of (01.,Tj,).ﬂ

In summary, the state-space contains states S that are ordered pairs
(FS,CS). The start space is (p,G) and a final state is a pair (FS,CS)
where the nodes in CS are identical to the associations in FS (i.e., there
is no way to expand FS). Given some cost function C and a method for
computing a lower bound estimate for each state of the cost of a minimal
cost association function constrained to include that state, we can
describe the search algorithm as follows (Algorithm F):

(0) Put (P,G) on the Tist of OPEN states.

(1) Choose that state S from OPEN that has minimal cost
estimate. If CS contains only the associations in FSa
stop with FS being the optimal association function.

(2) Pick some <Oi’Tj> from CS to build S':

(24) FS, = FSlJ<01,Tj>
(2")  Obtain Cs' by Algorithm H
(2"™)  Refine CS to C; by Algorithm S

(3) Start again at step (1).

Ordered search techniques can be used both to direct search towards
the best terminal state and also to terminate search along a path that
could not conceivably be optimal. See [10] for a discussion of a general
cost function and cost estimating procedure which can be used to guide the

search.
22



3. Experimental Study

A matching experiment was performed using the coastlines of several
islands as the input shapes. The source of the data was World Data Bank I,
a digital representation of the coastlines and boundaries of the world
specifically designed for automated mapping systems [11]. World Data
Bank I is in the form of (longitude, Tatitude) coordinates. The coastlines
were transformed to Cartesian coordinates using the Lambert normal conical
projection based on a standard parallel. The data base of objects was
created using one set of standard parallels, while the unknowns were
produced using a different set of standard parallels. This introduced
systematic distortions between the objects and unknowns.

After the projection, each individual coastline was scaled to fit
into a 127x127 array so that gross differences in the physical sizes of
the coastlines would not serve as a cue for the matching process.

Five coastlines were chosen -- Baffin Island, Cape Breton Island,

Cuba, the Dominican Republic, and Guadeloupe. The unknowns were segments
chosen from the same coastlines, but projected at different latitudes.
Polygonal path representations for the objects and the unknowns were
constructed using the angle detection procedure described previously.

In an attempt to provide a difficult matching environment for the

matching processes, the unknown shapes were degraded according to the
following procedure: Given shape T=={(X1,Yi)}?=1, choose an arbitrary
scale factor, a, and a noise factor, g. Each element of T is multiplied
by a+s, where s is chosen from the normal distribution with mean 0 and

variance q. That is, we construct a T' = {(X%,Y%)}?zl where

23



Xi = Xi(a+s), and

Yi = Yi(a+s)

Figure 3 contains the polygonal approximations of the data base for
k=10 and Figure 4 shows the 10 scaled, noisy unknown shapes.

The threshold for connecting nodes in the association graph was
defined so that two nodes were connected if the associated distances, d1
(for the template elements) and d2 (for the object elements), satisfied
.4«<ABS(d1-d2)/d1<:2.5, allowing for a wide range of scale changes. The
values of these thresholds determine the degree of scale invariance of
the procedures. It should be pointed out that allowing such a wide range
of scale changes will clearly place most of the burden on the edge
deletion process, and that the node deletion process will only be able
to delete the grossest mismatches.

The node deletion criterion was to delete a node when the sum of
the weights on its neighbors was less than a threshold, td. If the
unknown were an exact match to a segment of one of the objects, then
we would use a threshold of ty= (m-1)c, (c=minimum value of local angle
matches allowed for introducing a node into the network), since every
correct association <Oi’Tj> would be connected to m-1 other correct
associations. However, since we do not have exact matches, but only
approximate matches, we have adopted the following ruie which was used
consistently: set td equal to 2/5 of the number of prominent angles in
the unknown shape, where a prominent angle was taken to be one with a
magnitude less than 60 degrees. In this way, we allow for matches that

only approximately account for the most salient features.
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(e) Guadeloupe
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Figure 3. Data base.
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Figure 4. Noisy, scaled templates.
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Figure 4. (continued)
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The edge deletion process is defined as follows: Consider the triple
of nodes shown in Figure 5, and suppose we are evaluating edge a. The
similarity transformation associated with edge a is applied to Oi"’ and
the distance between the transformed 01“ and Tj“ is computed. If this
distance is less than some threshold, one piece of evidence is counted
for edge a.

In 47 out of the 50 match trials, the edge deletion process deleted
all mismatch associations, while preserving all of the match assocjations,
thus eliminating the need to search the association graph. In the
remaining three cases where this situation did not occur, only nominal

searching was required (see [10] for more details).
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Figure 5. Edge deletion.

29



4. Syntactic Models

In this section we will turn our attention to syntactic pattern
analysis. After a brief review of syntactic pattern analysis we will
discuss how relaxation techniques can be integrated with syntactic
techniques.

As described by Fu [12], a syntactic pattern analysis system can
ordinarily be regarded as consisting of three stages:

1) a preprocessing stage

2) a pattern description stage, and

3) a syntax analysis stage.
The goal of the preprocessing stage is to transform the input pattern into
a form from which the description of the second stage can be most easily
and reliably computed. The goal of the second stage is to segment the
pattern into a set of primitives and to discover the relations between
these primitives. The representation constructed by the pattern
description algorithm is then examined by the syntax analyzer. It is the
responsibility of this last process to determine if the representation is
syntactically well-formed, and if so, to produce as a side effect of that
decision a parse tree of the representation. This tree is often used for
the actual subsequent recognition of the pattern -- i.e., the goal of the
syntax analysis is not to recognize the pattern, but rather to impose a
natural organization on the pattern using the vocabulary of the grammar
so that Tater processes can recognize the pattern based on this
organization. As an example, consider the parsing of a shape which is

the outline of an airplane -- the goal of the parse might be to decompose
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this outline into natural pieces such as wings, tail, body, etc. Once
this is accomplished, then the specific type of the airplane might be

determined on the basis of physically meaningful measurements made on

that outline, such as ratio of wingspan to body length, etc.

One of the difficulties in applying the syntactic approach is the
reliable extraction of primitives from the original pattern. Methods for
preprocessing patterns will not be discussed, since they are quite varied
and do not, in most cases, transform the pattern into a form where the
desired primitives can be discovered with complete reliability. Instead,
we will first discuss general procedures for segmenting a shape into
pieces which should often be appropriate for the subsequent organization
of that shape according to a grammar. We will then turn our attention to

the design and use of such grammars for shape analysis.
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4.1 Primitive Detection

This section briefly reviews the relevant literature on shape
segmentation. The literature on the subject is quite large; Pavlidis [ 5]
contains a more complete review of shape segmentation schemes.

It should be stressed that the specific choice of primitives will
depend on the particular set of patterns to be analyzed. However, for a
wide variety of shapes, segmentation of the border of the shape into
pieces described by Tow order polynomials (of degree less than or equal
to 2) will be sufficient. Procedures for segmenting a shape into pieces
based on the distribution of area of the shape will not be considered
because one of our principle goals is to be able to recognize a shape
even if the entire shape is not available (possibly due to difficulties
in segmenting the images containing the shapes, or because of occlusion in
these images). In such situations, it is difficult to decompose the shape
into areal segments because of the uncertainty associated with defining
the closure of the available pieces.

Perhaps the most frequently used shape boundary representation is the
piecewise Tinear approximation of the boundary. Many algorithms have been
proposed for computing various piecewise linear approximations -- see, e.g.,
Pavlidis [13], Ramer [14], Rosenfeld and Johnston [151, and Davis [16].
These procedures can be categorized as being either one of two types --
those that attempt to find the lines directly and those that attempt to
find the breakpoints between the Tines directly. The first class of
procedures search for boundary segments which are well fit by lines, while
the second class search for boundary points which have locally high

curvature -- they are angle detection procedures. Of all these algorithms,
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the split-and-merge algorithm proposed by Pavlidis [13] seems to be the
most robust (i.e., it has very slight sensitivity to small changes in the
underlying shape) yet is at the same time computationally efficient. One
can obtain higher order approximation using this split-and-merge algorithm
with higher degree polynomials, but as Pavlidis discusses [1771, the
computational cost increases dramatically as one raises the degree of the
approximating curves. Furthermore, the algorithms become numerically
Tess stable. Pavlidis suggests using the results of the piecewise linear
approximation to selectively guide the application of higher order
approximation procedures to pieces of the shape boundary, or to actually
parse the piecewise Tinear approximation using a regular grammar which
describes quadratic arcs as sequences of linear segments.

Once the segments are obtained, the relations between the segments
can be computed. The specific relations computed depend both on the
dimensionality of the grammar (e.g., string, tree, graph, see below) and
on the semantics associated with the symbols of the grammar. If the
grammar is a string grammar, then the relationship of concatenation
between primitives must be computed. Notice that for a set of primitives
corresponding to linear segments obtained by computing several piecewise
Tinear approximations of the border of the shape (which is how the
~ hierarchical relaxation processes to be described compute primitives),
it is not straightforward to compute even the simple concatenation
relationship, since we would not expect that segments obtained from
different approximations would exactly coincide at their endpoints,
rather than overlap slightly. For relations more complicated than

adjaéent, such as "left of", "right of", "inside", the correct
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definitions become more elusive (see Freeman [18] for a survey of models
for computing spatial relations and a discussion of the difficulties
associated with making such computations).

For the shape grammars to be defined, the only relations that need
to be computed between the primitives are relations of concatenation. As
the syntax analysis proceeds, more complex relations, such as collinearity
and symmetry, need to be computed, but their computation is heavily

directed by the results of the syntax analysis.
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4.2 Syntax Analysis

Once the representation of the pattern in terms of primitives and
relations between the primitives has been formed, that representation is
presented to the syntax analyzer (this strict separation of stages 2 and 3
is a simplification -- see the discussion of top-down parsing strategies
below). The complexity of the syntax analysis is a function both of the
type of the grammar, and the dimension of the representations which it is
designed to analyze. The simplest grammar is a finite state string
grammar. Here, the only relations between primitives allowed are string
concatenation and the parser can analyze its input in time linear in the
number of symbols in the input. Pavlidis [17] has suggested that a wide
variety of shape analysis problems can be solved using what are
essentially finite state grammars. It should be pointed out that few of
the grammars described in the literature for shape analysis are parsed
using pure syntactic analyzers, but that all have substantial semantic
components. This is necessary because the primitives used do not
ordinarily constitute a finite set, but rather are described by a few
real numbers along with a type--e.g., a straight primitive might have
the semantic attributes of length, slope, etc. To attempt to directly
account for the variability of possible straight 1ines by independent
syntactic entities would Tead to an explosion in the size of the grammar.

As the generality of the grammar is increased from finite state to
context free and context sensitive, the computational complexity of the
parsing procedure necessarily increases. Context sensitive grammars have
almost never been used to describe pattern classes. Context free grammars,

on the other hand, have been used extensively. Examples include grammars
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for chromosome analysis (Ledley [19]), English characters (Narasimhan [20]),
and fingerprints (Moayer and Fu [211); Fu [12] contains an extensive list
of other applications. In the next section we will suggest the use of
stratified context free grammars for shape description. They represent a
restriction on the class of context free grammars which allows for the
computation of Tocal constraints on the spatial arrangement of shape

pieces at many levels of description. These constraints are what allow

the hierarchical relaxation process to eliminate "dead-end" hypotheses
about the shape while at the same time producing a parse of the shape.

The syntax analysis can also be made more complex by increasing the
dimensionality of the representations. One is ordinarily forced in this
direction because the one dimensional relation of concatenation is not
powerful enough to allow for the natural description of two dimensional
patterns. Several generalizations to string grammars have been introduced
to overcome these problems. Shaw [22] increased the number of concatenation
relations between primitives by associating a "head" and a "tail" with
each primitive. Feder [23] introduced the notion of a "plex" grammar
where the number of attachment points for syntactic entities was arbitrary.
The languages described by plex grammars are very much like graph languages,
and in fact string grammars have also been generalized to graph languages
(see Pfaltz and Rosenfeld [24]). If one restricts the class of graphs to
trees, then one can construct tree grammars (see Moayer and Fu 211).

Parsing structures generated by higher dimensional grammars can
present severe computational difficulties. The worst case analysis for
parsing a graph grammar is that the parsing problem is in the class of

NP-complete problems, since rule matching requires solving the subgraph
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isomorphism problem.

Parsing algorithms used to analyze patterns can generally be
classified as being either bottom-up or top-down. Aho and Ullman [25]
contain an extensive treatment of parsing procedures for string languages.

Top-down parsers have often been used in syntactic pattern analysis
(see, e.g., [26]). One of the advantages of a top-down parsing algorithm
is that it naturally allows for the selective application of the primitive
detection procedures to the pattern, since these procedures are invoked
only when a primitive is predicted to occur at a specific location in the
pattern.

However, in a situation where the primitives cannot be reljably
detected, a pure top-down parsing procedure may be particularly
ineffective since the pattern Tocations at which predictions are made
are determined by a particular pattern scan procedure (usually left-to-
right) built into the parser, rather than through investigation of the
pattern itself. Thus, the top-down parsing procedures can be expected
to perform a significant amount of backing up during the syntax analysis,
since their predictions about particularly ambiguous sections of the shape
will often be in error. This situation is analogous to the thrashing
behavior of backtrack programming (see Mackworth [27]). There, the
situation can often be alleviated by introducing certain simple constraint
application operators {see Haralick and Gordon [28]). The hierarchical
relaxation procedures attempt to solve the parsing problem in a similar
way -- i.e., by the application of a set of local contextual constraints

to hypotheses about the correct descriptions of shape pieces.
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5. Hierarchical Relaxation Using Syntactic Models

In this section we will present the design of a hierarchical
constraint analysis procedure which can apply a syntactic model to an
unknown shape. Section 5.1 describes the class of syntactic models,
called stratified context-free grammars. Section 5.2 is devoted to a
discussion of the hierarchical relaxation system, and Section 5.3

describes the application of this system to airplane recognition.

5.1 Grammatical Shape Models

Grammatical models for shape analysis have been developed and
investigated by Fu [12]. With some simple modifications these kinds of
models can be integrated in a natural way with relaxation techniques.
An extension of the geometrical grammars of Vdmos [29] and Gallo [30]

will be used to model shapes.

Definition: A stratified context-free grammar, G, is a quadruple

(T,N, P,S), where
T is the set of terminal symbols,
N is the set of non-terminal symbols,
P is the set of productions, and
S is the set of start symbols.
Let V=(NuT) be the set of vocabulary symbols. Associated with
every symbol veV is a level number, fn(v): V-{0,1,...,n}. For every

veT, £n(v) =0.
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1)

T -- corresponds to relatively large pieces of the shapes to be modeled,

e.g., straight-edge approximations to the boundary of the shape.

N --consists of a set of symbols, each of which has a level number

from 1 to n associated with it. A start symbol has level number n,

and in any rule v: =a (the rewrite part of a production), if Zn(v) =k,

I1<k<n, then every symbol in the string a is at level k-1.

Furthermore, for every velV,

v: =<name part> {attachment part} [semantic part], where

a) <name part> is a unique name by which the symbol v 1is known,

b) {attachment part} is a set of attachment points of the symbol,

c) [semantic part] is a set of predicates which describe certain
aspects of the symbol.

P --consists of productions of the form (v:=a, A, C, Ga’ Gs) » where

a) v:=a is the rewrite part that indicates the replacement of the
symbol v by the group of symbols a, where

veN, and
3=V sVosaaasVy (Vi eV and En(vi) =Ln(v)-1), i=1,k)

b) A--set of applicability conditions on the syntactic arrangement
of the Vis i=1,k.

c) C--semantic consistency of the Vis i=1,k. C consists of
various predicates describing geometric relations and other
constraints that must hold between the Vi-

d) G_--rules for generating the attachment part for v.

a

e) GS --rules for generating the semantic part of v.
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As an example of the productions of the grammar, consider how engines
are formed (see Figure 6):
<engine> {el,ez} [a,span]: =
<engine side> {ei,eé} [a'] +
<engine front> {ei,eg} [a"] +

<engine side> {efbeg? [a"]

A: [Join (ei or eé, e;) and Join (e1 or ey, eg)

or Join (ef' or eg‘, e;) and Join (ei or eé, eg)]

C: [Parallel (a',a') and Length (a') = Length (a"')
and Perpendicular (a',a")

and Parallel (a", Vector (Midpt (a'), Midpt (a'')))]

Ga: [elz = Unjoined (ei,eé) and ey: = Unjoined (e1 ,eg')

or e;: = Unjoined (ei”,eé“) and eyt = Unjoined (ei,eé)]

GS: f[a: = (a' + a')/2 and span: = a"]

This rule specifies that an "engine" is composed of two "engine side"
symbols and an "engine front" symbol. A, C, Ga and GS can be viewed as a
program for producing "engine" from symbols on the right-hand side of the
rewrite rule. A specifies the physical connections of the symbols on the
right-hand side, i.e., that each end of the "engine front" has an "engine
side" attached to it, but the "engine side" symbols are not connected to
each other. C indicates that the two "engine side" symbols should be
parallel, of the same length, perpendicular to the "engine front" symbol,

and on the same side of the "engine front". Ga and GS describe the
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41



derivation of real values for the attachment points and semantic features
for "engine"; the unjoined end points of the "engine side" symbols can be
given either attachment point name due to the symmetry of the symbol. The
main axis is the average of those of the "engine side" symbols, and the
span is exactly that of "engine front".

Stratified grammars naturally give rise to a large set of contextual
constraints on the organization of a shape. It is these constraints which

the hierarchical relaxation will utilize to analyze shape.
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5.2 Hierarchical Relaxation

As discussed previously, a major problem of any syntactic pattern
recognition scheme is the segmentation of the object into pieces which
correspond to the terminal symbols of the grammar. A high false alarm
rate implies that many primitives will be generated, and correspondingly
many terminal symbols hypothesized from them, thus implying a large

search space. In order to overcome these difficulties, a hierarchical

relaxation process (HRP) uses hierarchical models of objects and

model derived constraints to eliminate inconsistent hypotheses at each
Tevel of the model. In particular, using the stratified context-free
grammars already described, syntactic (e.g., spatial concatenation) and
semantic (e.g., symmetry, collinearity, etc.) constraints can be
automatically generated to guide the analysis of the shape.

Primitives for the grammatical analysis are generated by computing

several piecewise linear approximations to the boundary of the shape.

A modified split-and-merge algorithm fits straight edges to the boundary
using the cornerity measure proposed by Freeman and Davis [31] to choose
break points. Primitives are generated at various error thresholds, and
stricter thresholds are applied to segmentations already generated to
generate more segments. By computing several segmentations, it is hoped
that almost all of the necessary primitives will be found. The search
will be made feasible by the constraints implicit in the grammar and
imposed by the relaxation techniques.

HRP operates by iteratively applying a set of local contextual
constraints to a hierarchical network of hypotheses about a pattern. The

application of the constraints causes nodes to be removed from the network.
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If a node 1is removed from the nth

level of the network, then this may lead
to other nodes at levels n-1, n or ntl being deleted from the network.
When the network is stable, HRP builds the next layer of the network
corresponding to hypotheses about the next level of description of the
pattern. When the top-most level is constructed, all nodes at that level

represent alternate (although not necessarily independent) parses of the

original pattern.

We will first deséfibe how the Tocal consfraints can be compiled
from a stratified grammar, and then discuss how HRP utilizes these
constraints. We will restrict our attention to conventional string
grammars. The extension to shape grammars is presented in Davis and
Henderson [32].

Let V be the vocabulary of our grammar, and let seV. Then, define
the set

s(k) = {s': s'eV, level (s) = Tevel (s'), and there is some
sentential form of level (s) symbols Xl’XZ""’xn’
with X; = s and xytk = s'}.

Thus, s(k) is the set of symbols which can be found a distance k
from s in a level(s) sentential form of the grammar. These sets can be
easily computed, given the grammar.

We use the sets s(k) to construct local contextual constraints as
follows: Let (s,pl,pz) denote a node in our network representing

the hypothesis that the pattern segment from position p, to position p
1 2

is described by the symbol s. Then we can use the set s(1) to produce the

local constraint: Retain the node (s,pl,pz) in the network onily if there

js another node (s',p2+1,p3) with s' es(l). Similarly, we can create a
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local constraint based on s(-1), or any other s(k).

The hierarchical relaxation system computes a bottom-up parse of the
shape by applying the constraints to a network of low-level hypotheses
about pieces of the shape. The processing of this network can be easily
described by specifying three simple procedures and two sets which these
procedures manipulate.

BUILD. Given level k of the network, BUILD uses the productions of
the grammar to make Tevel k+1 hypotheses. Any level k symbols which are
used to generate a node at level k+1 are associated with that Tevel k+1
node as supporting it, and it in turn is recorded as being supported by
them. After all nodes are generated, nodes corresponding to boundary
segments sharing an endpoint are linked only if the constraints allow the
symbols hypothesized for each node to be adjacent at that endpoint.
Building Tevel 0 involves applying the segmentation strategy to the shape
to generate the level 0 nodes.

ngéﬁ, Since each node corresponds to a single hypothesis, and since
nodes are only linked to compatible nodes, the within layer relaxation
simply involves removing a node if it has no neighbor at some endpoint.
Note that the process can be given some noise resistance by just demanding
that some endpoints have neighbors, rather than all.

REDUCE. After BUILD generates level k+1, any Tevel k node which
does not support a level k+1 node will be removed. For any level k node
which is removed, all level k-1 nodes which support only it are removed.
If a Tevel k node is removed, any level k+1 node it supports is removed.

These procedures operate on two sets of nodes, RX and RC, both of

which are initially empty. When at Tevel k with RX and RC empty, BUILD
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produces the Tevel k+1 hypotheses (or stops if k=n), and puts them into

Rx while putting all level k nodes into Rc’ RELAX then removes nodes from
Rx’ taking no action if the node has a neighbor at all endpoints, but
otherwise deleting the node from the network and putting its same level
neighbors in RX and its across level neighbors in Rc‘ REDUCE removes
nodes from Rc’ taking no action if all the node's original supporting
nodes still exist at level k-1 and the node still supports at least one
Tevel k+1 node (if level k+1 has been built); otherwise, REDUCE deletes
the node from the network and puts its same level neighbors in Rx and its

across level neighbors in Rc'
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5.3 Examples

A PASCAL program (4600 1ines, 50k) implementing HRP has been written
and runs on the DEC-10 computer at the University of Texas. Input to HRP
consists of a stratified shape grammar defining the class of shapes to be
analyzed and a set of primitives, i.e., Tine segment descriptions including
orientation, length and endpoints. HRP produces a (possibly empty) network
of hypotheses relating primitives to the vocabulary symbols at each level
of the grammar. Thus, any level n hypothesis corresponds to a shape in
the grammar.

A grammar describing the top view of airplane shapes (down to the
Tevel of detail of engines) has been developed. The grammar consists of
33 productions and has seven levels of vocabulary symbols. Note that the
grammar was not designed to describe a particular airplane (such as a 747),
but rather to model a wide class of airplanes. We do not view parsing as
a recognition procedure but rather as a process which imposes organization
on the shape (by forming engines, wings, etc.). Recognition is subsequently
performed by analyzing the organization.

We will describe the application of HRP to the top view of the airbus
in Figure 7 (copied from You and Fu [33]). The split-and-merge algorithm
was used to obtain piecewise Tinear approximations to the boundary of the
airbus at several thresholds of goodness of fit. For this shape using
three thresholds, a total of 35 primitives were found, of which only 27
were needed to define the shape of the airbus.

Once the primitives are generated, each one must be associated with
an initial set of level zero hypotheses. Analysis of the nistograms of

segment lengths and orientations allows many hypotheses to be rejected,
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Figure 7. Airbus
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e.g., the very longest segments, if substantially longer than the rest,
are not very likely to be wing tips. When the initial set of labels was
restricted to only the correct hypotheses, a total of 87 nodes were
generated during a complete parse, and HRP required one minute and eleven
seconds of CPU time to analyze the shape. Table 1 describes the results
of runs with 1, 2 and 3 initial hypotheses per primitive. At each level
RELAX and REDUCE eliminated unsupported hypotheses, and the last column
of Table 1 shows the complete stable network. Run times for these sets
of initial hypotheses were 1 minute 11 seconds, 2 minutes 22 seconds, and

4 minutes 51 seconds, respectively.
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Level generated 0 1

A. 1.0 hyp/prim

New hypotheses 35 27
After Relax and Reduce
0 31 31
1 27
2
3
4
5
6
B. 2.3 hyp/prim
New hypotheses 81 55
After Relax and Reduce
0 59 59
1 55
2
3
4
5
6
C. 3.2 hyp/prim
New hypotheses 114 74
After Relax and Reduce
80 75
71

Table 1 -
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6. Summary

This chapter has discussed planar shape matching based on relational
network representations and syntactic representations. Both shape
matching procedures relied heavily on constraint propagation techniques,
often referred to as relaxation procedures. To conclude this chapter,
we will discuss to what extent these two matching procedures deal with
the five factors (described in Section 1) which contribute to making the
shape recognition problem difficult.

1) orientation--both matching procedures solve the orientation
problem by basing their computations on orientation invariant features --
e.g., angles, adjacency, etc.

2) size--the graph matching procedure deals with variations in size
by explicitly computing a similarity transformation for the best match
which includes scale information. HRP does not compute a scale factor in
the same way that the graph matcher does, because its models are generic
(i.e., meant to represent a variety of shapes), while the graph matcher
models are highly specific (e.g., the coastline of Cuba). Neither
representation, however, can currently account for the changes in
appearance of an object as size changes, although the syntactic models
that HRP uses can primitively deal with this by having many “lowest”
levels (i.e., Tevels where the symbols correspond to entities that can be
simply and directly extracted from the shape). However, this in no way
accounts for the continuous changes in appearance that accompany
continuous size changes.

3) distortion--both matching procedures deal with distortion
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implicitly by allowing local discrepancies in matching, but demanding a
high Tevel of global consistency between model and unknown. So, for
example, the graph matcher is very lenient when matching pairs of angles
between the model and the unknown, but subsequently applies a more
stringent global consistency check during node and edge deletion. A
weakness of both procedures is their lTack of any explicit model for
distortion. This is quite difficult to obtain, but see Ullmann [34] for
a specific model of distortion for character recognition, and Grenander
[35] for a more general discussion of pattern distortion.

4) partial information--as discussed in Section 2, the graph matcher
was specifically designed to solve the segment matching problem. HRP can
also naturally be adapted to recognize shapes based on partial information
by simply applying HRP using a subgrammar of the original grammar. For
example, if there is reason to believe that only partial information is
available (e.g., the shape may not be closed), HRP can apply the subgrammar
rooted at "wing" to find any wings in the available data. Of course, once
a wing is found, it can be used to predict the location of other pieces,
so that the maximal amount of the shape data available can be analyzed
with respect to the model. We are currently constructing a shape analysis
system which uses HRP to solve the partial information problem in just
this way.

5) agglomeration--although neither system has been applied to a
shape matching probiem involving agglomeration, it seems clear that HRP
could more naturally deal with agglomeration than the graph matcher, whose
node and edge deletion criteria are, in practice, determined by the size

(i.e., number of angles) in the unknown. HRP could approach the
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agglomeration problem in much the same way that it would solve the partial
information problem -- j.e., by finding maximal subsets of the available

data that can be consistently accounted for by the model.
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