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ABSTRACT

The design ;nd development of a useful database system requires that
the physical organization of the database usefully reflecté its logical organi-
zation . Views (classes of queries given by a Query model) are an appropriate
intermediate logical representation for many databases. Frequently accessed
views of databases need to be supported by indexing to eﬁhance retrieval
time. This paper investigates the problem of selecting an optimal index set
of views and describes an efficient algorithm for this selection. The intro-
duced redundancy in.the database is controlled by an upper~bound storage

constraint which is an input parameter to the algorithm.
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1. INTRODUCTION

Indexing is a valuable technique for enhancing retrieval effiéiency of
large databases. There are many variations of indexing organizations, but
they all basically allow searching to be performed via certain levels of
indirectioﬁ which drastically reduce the search effort.

Indexing in a database introduces overhead because it requires additional
storage and processing to maintain the index sets during updates. However,
in many applications the retrieval efficiency obtained through indexing more
than offsets the storage and maintenance overheéd.

Most previous research in database indexing concentrated on the selection
of secondary indexes for a single file [AND77,CAR7S,FARTS,KIN74,MAR7S,SCHTS,
SCH78]. A secondary index on an attribute of a particular file is a collection
of linked lists each of which links all of the records from that file which
have the same value for that attribute. All the above studies assumed that
accesses tothe databases were described by a query model. The query model
ordinarily consists of a set of ordered pairs, {(qi,pi)}, where 1 is the
probability that query 9y will be made against the database. Then, an
optimization objective function is developed which reflects the cost of
answering all queries involving a particular file given a specific indexing
of the file. Finally, algorithms are described which select a subset of the
attributes of the file to be indexed which optimize the objective function.

In this paper we investigate the problem of selecting an optimal index
set for efficient retrieval of iiggg. Views are files (or relations) which
are obtained from the original base- relations using the relational algebra.

Views have been incorporated im relational database systems such as



ZETA [MYL75], System R [AST76] and INGRESS [sTO76].
A system which supports the creation of views can either

1) store the definition of each view, (i.e. the sequence of operators
used to construct it) or, ‘

2) store an index whose elements point to the tuples of the base
relations which comprise the view, or

3 exﬁlicitly store the ﬁuples of the view.

This last option is impractical because of the high cost of storage and
maintenance. Clearly, retrieval of a view using the index set would be much
more efficient with respect to both I/0 operations and CPU time than executing
the definition of the view. However, the cost of maintaining an index for
each view may be very high with respect to storage and CPU needed to update
the indexes whenever a change in the base relations is made.

Schkolnick [SCH78] characterized the cost of answering queries in a data-
base system as a function of the resources available to that system. He
points out that different cost functions should be developed for systems that
are either

a) secondary storage bound,

b) 1I/0 bound, or

¢) CPU bound. ‘

Schkolnick notes that I/0 and CPU af; highly interdépendent since a substan-
tial CPU load is due to I/0 handling.

In dealing with views we note that all three costfunﬁttbnsare highly
interdependent. 1/0 and CPU costs are high for a view if no index set is
maintaiﬁed since large parts of the database must be read and then processed
using the view definition to produce the view. On the other hand, in a

large database system with a large number of views, the overall secondary




storage and maintenance cost associated with indexes is very high.

The cost of answering a query against an indexed view is estimated in
terms of I/0 operations needed to retrieve the actual data. If the view is
not indexed, the construction cost of the index is added. This construction
cost depends on the size of the operands appearing in the definition of the
view as weli as on the complexity of computing the operations which defing
the view (e.g., the join operator has higher const?uction cost than the
restriction or the projection operators).

We now define an optimization problem associated with view retrieval and
storage. We assume that we are given

1) a set of views

2) the sizes of the indexes for those views,

3) the construction cost of those indexes, and

4) the probabilities of making queries against those views.

We would like to find the subset of these views which, when iﬁdexed,
minimizes the total cost of answering all queries in the query model. Clearly,
the choice of which indexes to store explicitly depends on the amount of
secondary storage available - i.e., the storage constraint. If the storage
is large enough to accommodate the i?dexes of all views, then the optimal
subset would be the set of all views. If, on the other hand, the available
secondary storage excludes any index to be stored explicitly, then the optimal
subset is the empty set.

The above optimization problem does not deal directly with the cost of
maintaining view indexes during updates. However, this maintenarce cost is
implicitly dealt with by the overall secondary storage constraint. ‘That is,

the maintenance cost of indexes can be adjusted by tuning the redundancy




1mpiied by the storage constraint.

There are 2N subsets of views, where N is the total number of views
considered. Therefore a simple enumeration algorﬁ:hm which computes the
total cost of answering all queries in each subset is not a practical solution
to the problem. In fact, the above problem is equivalent to the class of
equivalent'problems (NP-complete) for which no known polynomial algorithm
exists.

In this paper we present an efficient algoritilm which selects a set of
indexes that satisfy the overall storage constraint while maximizing the
optimization criteria. Alghough the algorithm has exponential worst case
complexity (e.g., when all costs of index construction and sizes are iden-
tical), in practice we have found that oﬁly a very small percentage of the
2N possible subsets are examined.

The query model, which we will assume is given, contains queries which
are obtained th}ough any relationally complete language. A complex query
may generate intermediate rélations which could be views for other queries.
Therefore a "composition" of all these views is necessary prior to the
application of the index selection algorithm. Chang & Cheng in [CHA78]
bave considered similar organization of databases although they considered
only two relational operators: rest;iction and projection.

The remainder of the paper is organized as follows. Section 2 contains
the problem formulation. This secti§n assumes that all views that are con-
sidered for indexing have been composed and given to the algorithm in a graph
notation. Section 3 describes the algorithm and proves that it is "admis-
gible", i.e., that it is guaranteed to find the optimal solution. Section 4
describes the rules for obtaining the graph composition of views created by

the query model. Section 5 describes some experimental results and, finally

Section 6 contains conclusions.




in the database. Otherwise, R

2. PROBLEM FORMULATION

In this section we will describe a general form of the optimization
problem outlined in the_previous section. Here, we assume that the database
is organized in a specific graph structure called a directed, acyclic AND/OR

graph (DAAOG). A directed AND/OR graph is defined as follows:

Definition: Gb= <N, E,D>1is a directed AND/OR graph (DAOG) where:
1) N = {nl,nz,...,nm} is a set of nodes

2) ECNXx N is a set of directed edges, and

3) 1let a(n,) = {n,: (n\,n ) € E}. Then D: n, » Za(ni) is called the
i 3 j’i i

decomposition mapping for the DAOG.

An acyclic DAOG (DAAOG) is a DAOG with no cycles.

Intuitively, each node in the DAAOG is associated with a relation,

Ri' 1f a(ni) = @, then Ri is one of the original relations or base relations

" is called a derived relation. 1If Ri is a

derived relation, and if 2 €'D(ni), then Ri can be constructed using suitable

operations (union, join, etc. - see séction 4) from the relations associated

with the nodes in 2. D(ni) denotes the set of all possible sets L's from

whitali view n, can be contructed.

Each relation, Ri’ has a size, IRil , which corresponds to the amount of
storage required to store Ri' In practice, as discussed in Section 1, R is
not stored explicitly, but is represented by an appropriate index set into
the base relatiomns.

Each node, n,, also has a probability, P, associated with it. This is the

probability that a query entering the database system will be answered



based on the information in Ri.

Our goal is to choose a subset of the Ri

minimizes.the cost of answering queries while satisfying a secondary storage

to store explicitly which

constraint. Now, if there were no constraint on storage capacity, then

independent of our cost model for answering a query, we could do no better

than storing all the Ri'
m

However, if there is a storage capacity constraint,

i.e., if available storage S < z ]Ril then certain relations cannot be

stored explicitly, but must be constructed as needed.
which Ri to store explicitly, we will need a specific
a query. In order to define our cost model, we first

definitions:

Definition: An allocation function, A, over a DAAOG,

mapping A: N - {0,1}.

Definition: A construction cost function, cons, over

is a mapping
cons: (l,ni)-+ [0,) , where & € D(ni).

7

In order to choose

cost model for answering

need the following

< N, E, D> is a

a DAAOG, < N, E,D >

A construction cost function measures the cost of constructing R; from the

sets in D(ni).

Next, we define the cost of answering a query at node n, given the alloca-

tion, A, and the construction cost function, cons, as

c_(R,)), if A(n,) =1
C(ni) - r i i

leD(ni) njel

min [ cons (z,ni) + ZC(nj)], if A(ni) =0

e e e



C is designed to reflect the cost, in I/0 operations, of answering a
query at mn,. The function c/ reflects the cost in I/0 operations of
acquiring Ri' 1f Ri is stored explicitly, then . is a function linear in

|R If cons (z,ni) reflects the number of I/0 operations required to

N
construct Ri from % then cons (z,ni) +§ :inj) obviously reflects the

3
number of I/0 operations required to first construct g and then Ri' Clearly,
C can be changed to reflect, e.g., a measure of CPU cost for answering a
query.

Finally, we define an optimal allocation, A, for a DAAOG, < N, E, D >

and a storage constraint, §, to be any A such that:

m
1) Z C(ni) 1 is minimal, and
i=1

m

2) EzlA(ni) lRil <S

Our optimality criteria does not explicitly take into account the cost of
updating a database organized as a DAAOG. There are two reasons for this
omission:

1) updates can conceivably cause’ gross changes in the organization of
the database, and are thefefore difficult to model, and

2) 1if the Ri are stored as index sets, then updates require few operations
relative to the costly retrieval of the index sets.

Notice that we could have reversed the optimization criterion - i.e.,
choose A to make ZA6%Q|R1| minimal while keeping EC(ni) Py below some

threshold. Or, we could have modified the criteria to make ZA(ni) \Ril
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minimal while keeping C(ni) below thieshold for all i. This would guarantee
that the cost of answering any query will never exceed the given threshold.
This optimization criterion would make the cost of answering queries more
uniform than the two previous criteria.

The optimal allocation problem is equivalent to the data allocation
problem and has been shown [CHA77] to be difficult even when some simplifying
assumptions are made (such as assuming all relations have equal size). It
belongs to a class of equally difficult problems called NP-complete problems
and no polynomial algorithm is known for this class. In the following
section we describe a solﬁtion to the problem of constructing an optimal
allocation for a database. The solution is based on the A* algorithm described
in [NIL71]. Experimental results (Section 5) indicate that the algorithm

performs much better than its worst case analysis would suggest.
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3. COMPUTING OPTIMAL ALLOCATIONS

In this section we will describe the procedure for computing the optimal

indexing allocation function A. The procedure is based on the A* algorithm

(see [NIL71]) and uses a fast approximate algoritim for the Knapsack problem

to compute a heuristic function (see [SAH75] for a description of tﬁe Knap-
sack algorithm).

Let N = {nl,nz,.....,nm} be the nodes of the DAAOG, < N,E,D > . Let
r(ni) be the size of the index set for the relation associated with node n,.
Let C(ni) denote the cos'tcf answefing a query using the index set at n.. Let
pﬁQ be the probability that a query entering the system will be answered
using the index set stored at n,. Finally, suppose S is a global storage
constraint governing the total size of the index sets which may be stored
explicitly.

. Then the goal is to find the allocation A such that

m
}_capeey)

is minimal, while guaranteeing feasibility, i.e.,

m

) r@)A(Mm) <S8

=1 1 i

We will define a state-—space representation for this problem, and then
define an ordering function of the form f = g+ﬁ which is guaranteed to

guide search towards the optimal solution. We should point out that the

optimization problem can also be formulated as a dynamic programming (OP)
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problem. However, the storage requirements of a DP solution to our problem
are prohibitive.

We define a state, s, to be a 5-tuple .
N 8
< s’As’Ss’gs’ s>

where
1) ng N subject to the constraint that if nie NS, then a(ni)s Ns.

Thus, when we add a node to Ns to produce a new state, s', (see below), we
can compute the actual cost (contingent on AS) of answering a query based

on the index set at ni or the index set of its ancestors a(ni).

2) As: NS + {0,1} is the allocation function for state s. Clearly

L t@a (n) <8

n€ Ns
Ss is the storage left at state s available
3) s =5 - Z A (n)r(n). to be allocated to ithe remaining N-N nodes
s s * S
neN
s
4) g, = z Cs(n)P(n), Cs(n) is the recursive cost function as
neN
s

defined in Section 2. The subscript s indicates that it is contingent on
As; g reflects the total actual cost of answering queries involving only
those nodes in Ns'

5) ﬁs is an estimate of the incremental cost that must be incurred in

extending As from an allocation on Ns to an allocation on N.

ﬁs = k X p(n) Szn) min[cons,(ﬁ,n)]
neN—Ns 2eD(n)

where 6 is the complement of another allocation function §:

§: N—NS + {0,1}
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computed by the knapsack algorithm (see below) and k is a constant. 1f hs
is the minimal cost of all possible extensions of As to AN’ then we will show

that

h < h.
s s

It is this lower bound property that guarantees that search ordered by the
evaluation function fs = 8 + ﬁs will terminate with the optimal allocation
AN (see [NIL7X]).

The start state is
<NR) AR! SR’ gR’ hR>

where
1) NR is the set of nodes associated with the base relations
2) AR : NR + {1}. This guarantees that all base relations are stored.
3) Sp=5- ) r(n). 1If Sx > S» there are no feasible solutions. If
neNR

SR = S, no redundancy is allowed. In both situations the algorithm stops

immediately.

4) gy = y  C@p@)

n€NR )

5) fp=k Y} p(n) & (n) min[cons(2,n)]
n€ N-NR LeD(n)

A final state is of the form < N, AN’ SN’ g, 0>
Given a state, s, we generate its successors s' by

1) choosing an ni€ N---NS such that a(ni)g 'NS . In other words 0, is chosen

only if its ancestors have already been considered.

2) Let n @e such a node. We will create at least one and possibly two new

i
states. There will always be the new state with As'(ni) = 0.
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If

S —Zr(n) > r(ni)

neNS

then we can also create the state s" with As"(ni)' = 1.
Search proceeds by first putting the start state on a list called OPEN.
At each stage of the search, we remove from OPEN the state s with minimal

=g <+ hs. If s is a final state, search halts. Otherwise, we generate

m}‘f\)

S

the successors at s and place them on OPEN.

In order to prove that the first final state removed from OPEN represents
the optimal solution, we must show ﬁs f_hs. We shall first describe our
heuristic function.

Let s = < Ng, Ag, SS, 8> fxs> be a state. We use an approximate solution
to the knapsack problem to make a good guess as to which nodes in N-Ns
will receive the remaining storage Ss' In the knapsack problem we are given
a set of ordered pairs, E = {(Slfpl)’ (sz,pz),...,(st,gt)} , of storage costs
(si) and profits (pi), and a knapsack of capacity G. We want to find the
subset E' € E such that

Py = L Py

(si,pi)é E'
is maximal, subject to the constraint that
Z 84 < G.
(s;,p )€ E
An alternative statement of the problem is that we want to find an allocation,
8,
§: E > {0,1} such that

y py 8((s;5p,))
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is maximal, subject to the above constraint.

It is well known that the knapsack problem is in the class of NP-complete
problems [KAR72]. However, fast approximate solutions have been described
(see, e.g. [SAH75]).

For our problem G = Ss, and E = {(si,pi): s, = r(ni), n{EN-Ns and

i

min[cons(8,n)]

2€ D(n)

i

The approximate algorithm for the knapsack problem computes a set E"

such that

1
where k is a positive integer input parameter to the algorithm. The larger

the value of k the larger the computational requirements of the algorithm and
the better the approximation of P(E") to P(E').

Let &: E » {0,1} be defined as follows

1 if (s,,p,)EE"
a(ni) = i1
0 otherwise

we then define
= (1+ -) ) p@) 5 (n) min[cons(2,n)]
neN~N LeD(n)

rd
where § is the complement of §.

Proposition: h <h
S = 8

Proof: Let 8h be the optimal allocation which best extends A 'to AN and
— . s

me ) c(ny)

n eN--N

be the minimal incremental cost that is incurred by éh .
s
Let

}E:p(n ) 6 (n ) min{cons (Z,n )]
€ N- 2eD(n )
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where 1 if ni corresponds to a base relatioﬁ

§, (n,) =
bs i 0 otherwise

-Let also

P(E*) = ZP(ni) §h (n,) min[cons(%,n,)]

n,eN-N s
s

i nieD(ni)
Then clearly

hé > MS - P(E%) 2)

because P(E*) is only the sum of the costs of constructing the non-allocated

views by Gh without any consideration to the recursive cost. But
s
M_ - P(E*¥) 2 M_ - P(E") (3)

because E* and E' are both feasible solutions to the knapsack problem and
E' is the optimal ome.

From equations (1) and (3) we obtain

~

1 - 1 ny ’
M, - P(E') 2 M ()P (EY) h (4)
and from (2), (3) and (4)

1 "
- * - ' - "y -
hs > MS P(E*) > Ms P(E') > MS (1+E) P(E"™) hs.

It should be pointed out that the constant l+l can be replaced by

k
{14, QED
et e PE™-p

where p 1is the kt+l-st largest Py passed to the knapsack algorithm [SAH75],

without affecting the proof of the above proposition. In most cases

PE") is a better lower bound and thus the resulting hs a better

approximation of hs'
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4. CREATING DAAOG REPRESENTATIONS FOR RELATIONAL DATA BASES

In this section we will briefly describe one way to organize a Rela-
tional Database into a DAAOG. A more detailed discussion is available in
Roussopoulos and Davis [ROU79].

We assume that the database designer has a set of relatioms (or files),
R = {Ri}ril=l which will form the database . In ad&ition, he has a query
model, QM = {(qi,pi)}?=l . Here, 4y is a query and Py is the probability
that this query will be directed at the system. ThusAg L 1 =1, The 9
will ordinarily represent a class of general queries ra;her than a query
concerning specific values of relational attributes - e.g., q; might repre-
sent any query involving male, graduate students. AQM may have been obtained
from the prior requirements of the system, or from observations of an
existing database system over a period of time.

Each 9y will be represented by what we call a query graph which is

composed of views. We will first define what is meant by a view, and then

present query graphs for several queries.

Definition 1: A view is defined recursively as follows:
7/

1) 1f R, € R, then R, is a view

2) Let Vi,

a. hP(Vi) is a view, where hP is called the horizontal selector or

Vj be two views. Then

restriction operator; hP(vi) is the subset of Vi which satisfies predicate P.
For Example, if Vi is the set of students, then P might be the predicate

GRADUATE. We adopt the graphical notation in Figure la to represent a
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horizontal selector. The construction cost; cons, of obtaining hp(vi) is
a function linear in the size of Vi'

b. VA(Vi) is a view, where VA is the vertical selector or projection

operator. A is a subset of the attributes of Vi’ and v, (Vi) = "Avi’
where T is the standard projection operator. Figure 1b contains the graphi-
ical notation of Vye As with hp, cons (VA) is linear in the size of Vi.

c. jA(vi’vj) is a view, where jA is the join operator. Here, A is

again a subset of the attributes of Vi and Vj‘ Figure lc shows the graph-
ical notation for the join operator; cons (jA) is linear in the product of

the sizes of Vi and Vj.

d. u(Vi,V ) is a view, where u is the union operator; u(Vi,Vj) = ViL—JVj

3

Figure 1d shows the graphical notation for union; cons (u) is linear in the

sum of the sizes of Vi and Vj.

e. 1i(v,,V,) is a view, where i is the intersection operator,
i3 .
i(Vi,Vj) = Vif—]Vj. Figure le shows the graphical notation for intersection;

cons(i) is again, linear in the sum of the sizes of Vi and Vj.

£. d(Vi,V ) is a view, where v is the difference operator;

3

d(Vi,Vj) = Vi—Vj. Figure 1f shows the graphical notation for difference;
cons(d) is also linear in the sum of the sizes of Vi and Vj.

g. there are no other views.

Any query can be represented by a query graph because the set of the
operators is relationally complete. A node in the query graph is a view,
and views are related to one another through the operators defined above.
As an example, Figure 2 contains a query graph for queries involving
graduate student employees. Here, both STUDENT and EMPLOYEE are elements

of R. Notice that corresponding to any query there are an infinite
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number of query graphs (since, for example, projectioﬁs and join are in-
verse operators when the projection is determined by a functional
dependency). We will assume that the data base designer constructs a
single query graph for each query in the query model.

Attached to each node in the query for 9 will be Pss the probability
of that quefy. The pi's are used as described in Section 3-to decidé which
of fhe views in the query graph will be stored explicitly in the database
system, and which will be constructed as needed.

Two query graphs can be merged to form a single graph. We will describe
the merging process through examples; a rigorous description is possible,
but it is not included here (see [ROU79] for details). We will first
consider merging query graphs containing the operators hE,i,u and d only.
Successive merges of query graphs results in an organization of the under-

lying views which has been called an ISA hierarchy [ROU76].

Figure 3a contains query graphs for the queries (ql,gg and (qz,pz) where

1) 4y ¢ MALE-STUDENT, and

2) 9y GRADUATE~STUDENT

Figure 3b contains the merged gr%phs. Nofice that since it is not the
case that either

MALE~-STUDENT (X) - GRADUATE~-STUDENT (X), or

GRADUATE-STUDENT (X) - MALE~STUDENT (X)
the depth of the graph in Figure 3b is 1. If qzhad been MALE-GRADUATE-
STUDENT then the result of the merge would be as in Figure 3c. Note that
if there are identical nodes in the graphs which are being merged, (such

as the STUDENT nodes in Figure 3a), then the probability of the corresponding




18
node in the merged graph is the sum of the probabilities of the nodes in the
original graphs.

Suppose, now; that we add the query (q3,p3) where 9, is EMPLOYED~
GRADUATE-STUDENTS. 1Its query graph is shown in Figure 4a. We caQ merge it
with Figure 3b to obtain Figure 4b. Finally, if query (qa,p4) with q,
being EMPLCYED—FEMALE—GRADUATE—STUDENTS is added (with query graph as shown
in Figure 5a), then the final merged structures (ignoring the broken lines)
is shown in Figure 5b.

After all of the query graphs have been merged, the data base designer
may notice that simple alternatives might be available for constructing some
of the views. So, for example, EMPLOYED-FEMALE~GRAUDATE-STUDENT can also
be constructed by computing the intersection of FEMALE-GRADUATE STUDENT and
EMPLOYED-GRADUATE~-STUDENT. The dotted arc in Figure 5b can be added to
represent this alternative. Note that if the designer does add this arc,
then the proﬁability of EMPLOYED-GRADUATE-STUDENT is increased by P,- We
could, conceivably, compute all alternative ways td construct any view from
other views, but this computation would be quite expensive; instead the

designer is relied on to add alternatives.

The result 6f the meréing operations is a parfial ordering very similafrn
to the ISA hierarchy [ROU76]. The only distinction is that some transitive
arcs are explicitly represented in the merged graph, while in the ISA-
hierarchy, which is represented by a Hasse diagram, they would be implicit.

The second stage of the merge operation involves the projection and
join operators. Consider the queries (qs,ps), (q6,p6) where:

1) 95 GRADUATE-—STUDENT-GRADE—RECORDS, and

2) Qg MALE~-GRADUATE-STUDENT~GRADE-RECORDS
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Figure 6a-b contains query‘graphs for those queries, while Figure 6c
contains the merged graph. In general, when dealing with join and projection
operators, query graphs are merged as shown in Figure 7. Here v(a, B, C,)
represents a view based on attributes A B and C.

Once all the query graphs have been merged, the result is a structure
which can be represented as a DAAOG, which can in turn be analyzed based

on the approach presented in Sections 2-3.
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5. TIMPLEMENTATION OF THE ALGORITHM

The algorithm described in this paper was implemented in PASCAL and
runs on a CDC-6600 computer here at the University of Texas. Two significant
modifications were made to improve computation time and reduce the size of
the OPEN list.

The first was made after noticing that when the program generates a pair
of states s' and s" one that corresponds to As,(ni) = 0 and the other to
As"(ni) = 1 (see section 3), it is only necessary to call the approximate knap-
sack algorithm once. This can be done by looking at the result of the call

of the ancestor state s of s' or s" in the OPEN list. Suppose that As(ni-l) =0

and the call KNAP(S_,E_), with E_={(s,,p,), iZjzn}, produced a § from which

we computed hs' Now at state s', we know that if gs(ni)=0, then the call
KNAP(SS,=SS,ES,) with Es‘={(sj,pj), i+1<j<m} , would produce a ES, which is
equal to 35 in all places but the i-th, (i.e. 58,(nj)=§s(nj) for i+l<j<m),
because SS,=SS, Es,=ES—{(si,pi)} and (Si’pi) was not put in the knapsack
at the first call of the algorithm. Thus, we can compute the heuristic ﬁs'
without calling again the approximate knapsack program. If, on the other
hand, gs(ni) was 1, then the call has/to be made.

The other case is for the state s", i.e. AS"(n15=l. The call
KNAP(SSH=SS~r(ni),ES") with Es"={(sj,pj), i+1<j<m} needs not to be made if
Ss(ni)=l. This is because the knapsack program would produce a gs" which
is equal to Es’ i.e. gs"(nj)zgs(nj)’ i+l<j<m. Therefore, again in this case,
the heuristic function ﬁs" can be computed without a separate call. For As"(ni)=l
and Es(ni)=0 the call has to be made. This improvement is significant with

respect to CPU time because half of the calls to the approximate knapsack

algorithm are avoided.
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The second modification was to improve the heuristic %S and make it as
close to hS but still bound by hs’ i.e. ﬁs < hs,-in order to guarantee its
admissibility. It was noticed that the algorithm was behaving quite wéll in
relatively‘large storage constraints and/or shallow DAOG's but not as well

when the storage constraint was relatively small and/or the height of the

DAOG's large. This is true because the contributed accumulating recursive

cost is large and Fhe described heuristic function was not taking this recursive

cost into account. When the storage is large enough or in shallow trees,
however, this accumulating recursive cost is very small.

To overcome this problem we added an additional factor to the heuristic
function which accounts for some of the accumulating cost. Let hS = hsl + h
be the optimal incremental cost at a state s. Here hs1 corresponds to the
cost contributed by the construction costs of the non-indexed unvisited nodes
in an optimal allqcation (assuming that their immediate parents are indexed).
h._  is the recursive accumulated cost of the same allocation.

82
Also, let

Mg = nze: N-N_ p(ny) C(ny)

S2

Then we know that the accumlating cost of any allocation is less than or equal to

= ' R ad 4
AMS Mg Ms y
where MS is as defined in the prdpositicn of section 3, i.e.

Ms = % N-N p(ni) Eb (ny) min| cons(z,ni)]
i s s lsD(ni)

with 5 (n.) = 1 if n, corresponds to a base relation
bg 1 0 otherwise

Therefore hs2 < AMs' AMS is the maximum accumulating cost assuming that no

unvisited node is indexed.
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We now define the quantity RAC (Reduction of the Accumulating Cost) by

fnj) C(nj)] - P(ni) min[cons(l,ni)]

RAC(n,) = M' - [ o p(n) 8
O YT i 2eD(n,)

where

1 if nj=n or nj corresponds to a base relation

i
§ (n,) =
ni J 0 otherwise.

This quantity corresponds to the reduction of the accumulating recursive

cost attained by allocating storage to node n, only. Note that for any feasible

i
allocation the sum of the corresponding RAC's of the allocated nodes is clearly
larger than the reduction in actual accumulating cost. This is because the
RAC's were computed as if they were independent of each othe;.

Using the RAC's, the storage requirements of the nodes, and the same
storage constraint SS at each state, the knapsack algorithm is run again. Let
P(E'z) be the optimal solution to the knapsack problem using RAC's and let
P(E"Z) be the one that the approximate algorithm computes. Then again, we have

P(E' D2 (1 +i )P(E",) (1)
27 = k 2

7

P(E'z) is a quantity which corresponds to an allocation that produces the
largest possible reduction of the accumulating cost and therefore is larger

than or equal to the reduction produced by the overall optimal allocation P(Eg)

P(E5 ) P(E',) 2)

But then from (1) and (2) we have

1
= - * - ' - > "
hzs AMS P(EZ) >AMS P(E 2)> AMS a1+ x YP(E 2)

and thus if we let

~ 1
= AM -~ o "
hsz-min{O, s (1 + ; YP(E 2)}
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we have

b

The hsz component increases the heuristic function and speeds up the search
especially at the early stages without destroying the admissibility of the
algorithm. “ |

It is important to note here that the RAC's and the Am's are computed only
once before the search starts. This saves a great deal of computation. Further-
more, when AM is O or has a small value, then the extra call to the knapsack
is not made. This situation occurs in relatively flat DAOG's or during the
late stages of the search when the structure of the remaining unvisited DAOG
is flat.

In order to simplify the above proof of admissibility, we assumed that the
local cost of retrieving an indexed view cr(ni) is 0. However, the algorithm

is still admissible even if we assume that there is a_uniform distribution of

these costs proportional to the view size.

We present below a number of examples and the results produced by the
program. In order to make these tab;es interpretable we used the same prob-
abilities for all views and assumed that the cost of answering a query at every
indexed node is zero.

Each example was run using a number of different storage constraints start-
ing with SB’ which is the storage required to store all base relations, and
up to S which is all the storage it takes to index all views. The figures

ALL
under the cost column refer to the cost of the optimal allocation, which is the

cost to answer all queries. CPU time required to generate each solution is not
given but can be inferred by the length of the OPEN list. It took about three

minutes to generate 10,000 entries for the OPEN list.
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Next to the OPEN list length is the ratio of this length over the total
number of possible allocations. Finally, the last column is the optimal allo-
cation for the given storage constraint. Both ekamples, shown here were created

using the unary operators horizontal and vertical selector because these are

easier to verify.

STORAGE COST OPEN LIST RATIO NODE OPTIMAL ALLOCATION

CONSTRAINT LENGTH 0/00 1238656789 : i 3 ;
s 657 26 0 0000

1.2, 577 66 0
1.4 5, 357 66 8 100100 0
1.6 5, 305 136 16 1001000000100
1.85, 234 120 14 1001001000000
2.0 8, 184 - 82 10 1001101000000
2.25, 164 144 17 1001101000010
2.4, 140 162 19 1001101100011
2.6 5, 121 196 23 100111100001 0
2.8 55 97 134 16 1001111100011
3.0 8, 86 176 21 1001111100111
3.4 8, 67 312 38 1101011100011
3.8, 46 320 39 1101111100111
4.2, 28 176 21 1111110101111
S, 1=4-85 Sp 0 26 3 1111111111111

Table for figure 8
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STORAGE CcosT

OPEN LIST RATIO NODE OPTIMAL ALLOCATION

CONSTRAINT LENGTH 0/00 111111111122
345 012345678901
3330 42 0 1000000 000001000000
1.2 SB 2715 638 0.3 100000 000001001000
1.4 SB 2130 4132 1.9 1000 000001001110
1.6 SB 1645 9024 4.3 1000 00 1 1110
1.8 SB 1230 9420 4.5 110001110010101011100
2.0 SB 910 6832 3.2 110101110011101110000
2.2 SB 630 1830 0.8 110101110011111111000
2.4 SB 500 2154 1.0 110101110111111111000
2.6 SB 380 1874 0.8 111101110011111111110

2.8 SB 250 772 0.3 1 01 1

3.0 SB 130 266 0.1 1 11

ALL—B'B SB 0 42 0 111111111111111111111

Table for figure
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6. CONCLUSIONS

The design and development of a useful database system requires that the
physical representation of the database usefully reflects its logical organizationm.

We suggest that views are an appropriate intermediate logical representation for

many databases. This paper has shown how the physical organization of a data-
base can be determined by a set of views and a query model, in an optimal way.
There are several important issues, however, which this paper did not address,
but which ére currently under investigation:

1) If a database has many views, then the efficiency of the algorithms
presented in Sections 3 and 4 can be enhanced by introducing a hierarchical
organization over set of views, and then performing a staged optimization--
i.e., first allocating storage to the views at the highest level in the hier-
archy, and then subsequently distributing that storage at lower and lower
levels. It is important, for a variety of reasons, that the structure of the
hierarchy reflects the semantic organization of the database as well as its
syntactic organization. By the 'semantic'" organization we mean a logical
description of how the various data are related to one another (perhaps as
reflected in the query model which indicates which sets of data are generally
required to answer queries). By the‘;yntactic organization, we refer to
certain formal relations between parts of the database which can be defined
independent of its semantics--e.g., subset relationms.

2) Methods should be developed for mapping queries into operations on
views to complete the link from the logical organization of the data:base,
through the views, to its physical organization. Once this is accomplished
problems such as planning answer strategies can bé treated at the level of
views, which Qre relatively abstract but sufficiently simple so that both

semantic and syntactic constraints can be brought to bear on the planning process.
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