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ABSTRACT

Consider a partially ordered set of tasks where each task has at most
one immediate successor. The precedence graph for this task system is a
forest. Assume that all task times are independent identically distributed
exponential random variables. Then the B-schedule [2 ]minimizes the expected
time to complete the task system on two identical processors. Schedules which
are optimal when task times are deterministic are not necessarily optimal
when task times are stochastic if the precedence graph is not a forest or if
there are more than two processors. ’

It is necessary to study random task execution times since operating
systems generally cannot precisely predict execution times. We present here
the only known polynomially bounded algorithm for scheduling partially ordered
tasks with non-deterministic task execution times.
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INTRODUCTTION

There is substantial literature on the scheduling of partially
ordered tasks with fixed task execution time where the goal is to
minimize the time required to execute all tasks [2]. This paper in-
vestigates whether optimal deterministic schedules are also optimal in
the case where task execution times are independent identically
distributed (iid) exponential random variables, and where the objective
is to minimize the expected time to process all tasks.

Consider a set of partially ordered tasks T = {Tl,...,TN} and let G
be its precedence graph. We shall use T to refer to the set of vertices
in G, and we define the weight of task Ti in G to be the mean execution
time for Ti' The weight of a directed path is defined to be the sum of
the weights of all tasks along the path including the initial and final
task. An exit task is defined as one with no successors. The level of
an exit task is its weight. The level of a non-exit task is the weight
of the maximum weight path from that task to an exit task. At any given
time, an executable task is one all of whose predecessors have been

completed. A Highest Levels First (HLF) schedule, is defined as: When-

ever a processor becomes free, assign that executable task (if any) which
is at the highest level of those executable tasks not yet assigned. A
B-schedule [2] is an HLF schedule in which ties among executable highest
level tasks are broken arbitrarily. An A-schedule is an HLF-schedule in
which ties between highest level tasks are broken by a labeling scheme
[2]. Hu [7] has shown that the B-schedule is an optimal non-preemptive
schedule for forest precedence graphs (in which every task has at most one
successor), and for an arbitrary number of processors, if all task execu-
tion times are deterministic and equal. Coffman and Graham [3] have shown

that the A-schedule is an optimal non-preemptive schedule for arbitrary



task graphs given two processors and provided all task execution times are
deterministic and equal. Muntz and Coffman [8,9] have shown that processor
sharing all highest level tasks is an optimal preemptive schedule for tasks
with arbitrary deterministic execution times and either two processors and
an arbitrary precedence graph or an arbitrary number of processors and a
forest precedence graph. Adam, Chandy and Dickson [1] have shown empiri-
cally that the B-schedule is near-optimal for arbitrary precedence graphs
and stochastic task times.

In this paper we demonstrate first known results for precedence
graphs in which task times are probabilistic. Section 1 contains results
regarding the concept of flatness, a property which is used later to prove
the optimality of HLF schedules for two processors and forest precedence
graphs with independent, identically distributed (iid) exponential task
times. The results of section 1 pertain to all forest precedence graphs
in which task times are random variables with equal means.

In section 2 we demonstrate interesting properties of task graphs in
which task times are iid exponential random variables. These results apply
to general graphs and any number of processors. We know of no parallel to
these results in deterministic scheduling theory.

Section 3 contains a demonstration of the exclusive optimality of the
B-schedule (hereafter called HLF) for forest precedence graphs with iid
exponential task times and two processors. Furthermore, it is demonstrated
that preemption is not required in this case.

Sections 4 and 5 contain the results of our attempts to extend results
in deterministic scheduling theory to probabilistic scheduling theory. In
section 4 we demonstrate that Graham's bound [6] for the deterministic case
not only applies to the probabilistic case, but also contains implications

regarding a tendency for arbitrary schedules for probabilistic task graphs



to have a ratio significantly less than the stated bound. Section 5 is a
collection of further attempted extensions which demonstrate that some
but not all results in deterministic scheduling theory have a parallel in

probabilistic scheduling theory.

1. Properties of Forests
1.1 Definitions

Consider a forest precedence graph (in which every task has at most
one immediate successor), and where all task times are assumed to have
equal means (without loss of generality we assume unity). We shall refer
to such precedence graphs as Forest Precedence Graphs (FPGs). The key
theorems in this section relate to the concept of flatness of FPGs. We
now define this concept.

Let G and H be FPGs. Let Ni and Mi be the number of tasks at level
i for G and H respectively, for i = 1,2,3,...,. Clearly Ni and Mi are
non-negative integers. Let S(G,m) be the number of tasks at levels of
m or higher in G. Then

S(G,m) = N, (1)

i>m

G is defined to be as flat as H, denoted by G ~ H, if and only if:

S(G,m) = S{(H,m) for m = 1,2,3,... (2)
Note, if G ~ H then H n G.

G is defined to be as flat or flatter than H, denoted by G~{}L if

and only if:
S(G,m) < S(H,m) for m = 1,2,3,... (3)
Note, if G<LH and =< G then G ~ H. Also if G<XH and H< I then < 1.

G is defined to be flatter than H, denoted by G'<<I{, if and only if




(3) is true, and there exists some m, say m = n, such that

S(G,n) < S(H,n) (4)
The FPG in Fig. 1 is as flat as the one in Fig. 3 and flatter than the one
in Fig. 2. Note that the graphs of figs. 1 and 3 are not idenﬁical.

Let X be an HLF schedule on G which initially processes tasks Xy and

Xy if there are at least two executable tasks in G and processes task Xy

if there is only one executable task in G. Let Y and Z be schedules on

H; let Y be HLF and Z arbitrary. If H has at least two executable tasks

let Y initially process tasks and y, and let Z initially process z, and
yl 2 1

zZ If H has only one executable task let Y initially process yq and Z

2°

initially process z Let the levels of x., y. and z, be j., k, and £,
i i i i i i

1°

respectively, 1 = 1,2. When j2’k2 and £, exist, assume without loss of

2
generality that

i, 2 3,5 kg > k, and O (5)
Let G - Xy be the subgraph of G obtained by deleting X We define H - v

and H - z; similarly.

If N 1 all i, then there exists at most one executable task in G.

i/‘\

Since X is HLF,

jl = max {i | N, o> 1} (6)

If there exists some i such that Ni > 2, then

= max {i } N, > 2} (7)

i, iz

Similarly, since Y is HLF

k, = max {i | M, > 1} (8)

If there exists some i such that My > 2, then

k, = max {i | M, > 2} (9
2 i—

Note that (3), (6) and (8) imply that if G<H then

k> (10)

1~ 91



Furthermore, it is obvious from (8) and (9) that

kl<z 21 and k2
1.2 Theory
Lemma 1

Let H have two or more executable tasks.

H - yljéfl— zy

and H - yzgf\h -z

Furthermore, if

k, > %, then H - y1¢<1{

and if

ko > 22 then H - Y,

Proof:

and

S(H -~ zl,m) =

From eqns (11),

2

S(H—yl,m) ={S(H,m) -

S(H,m)

Z9

for m < k

for m > k

for m > 21

(16) - (19) we get

S(H - yl’m)<i S(H - Zl’m) all m

Eqn “20) is equivalent to (12).

If k, > 2., then

1 1

S(H - yl,kl) = S(H,kl) -1 < S(h,kl) = §(H -

(21) and (12) imply (14).

Let G and H have two or more executable tasks.

G - x,~<H
l._...

and G - x2-<H

Turthermore, if

G - xl-<:H

or G - x2‘<<H

or both (24) and (25) are true.

Y1

)

The proof for (13) is similarm

G“(H then either

Y1

)

1

1

S(H,m) - 1 for m < %

By a similar argument (15) holds when k

If 6 <H then

(11)

(14)

(15)
(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)



Proof: We first prove (23); the proof for (22) is similar. Consider two

cases: (1) jl = j2 and (2) jl > j2

Case 1, j1 = j2
S(G—xz, m) = | S(G,m) - 1 for m f_jl = j2 (26)
S(G,m) = 0 for m > j2 (since jl = j2) Q7N
Also,
S(H-yz,m) = S(H,m) - 1 for m f.kz (28)
S(H,m) for m > k2 (29)
Recall from (3) that if G'f;H then,
S(G,m) < S(H,m) all m (30)
Also note that the sum of tasks in any task graph is non-negative. In
particular,
S(H—yz,m) >0allm (31)

We now consider two subcases: (a) j2 < k2 and (b) j2 > k2
Subcase a: Jp, 2 k2
From (26), (28) and (30),

S(G—xz,m) = 8(G,m) - 1 < S(h,m) - 1= S(H—yz,m) for m ﬁ.jz f.kz (32)

From (27), and (31),

S(G-x,,m) = 0 < S(H-y,,m) for j, <m (33)
(32) and (%3) imply - -
S(G—xz,m) 5‘S(H—y2,m) for all m for subcase (a) (34)

This proves (23) for subcase (a}
Subcase b: j2 > k2

From (26), (28) and (30),

S(G—xz,m) = S(G,m) - 1 < S(H,m) - 1= S(H~y2,m) for m < k2 < j2 (35)
From (26), (29) and (30),
S(G~x2,m) = S(G,m) - 1 < S(H,m) = S(H—yz,m) For k2 <m < j2 (36)

And from (27) and (31),

S(G—xz,m) =0 j»S(H—yz,m) for kZ < j2 < m (37)



(35), (36) and (37) imply (23) for j, > k,

This completes the proof of case 1.

Case 2 jl > ds

At each level i, where jl > i > j2, there is exactly one task in G,

see (6) and (7).

Hence
S(G - xz,m) = {s(G,m) -~ 1 for m < .j, (38)
S(G,m) = 1 + jl - m for j2 <m < j1 (39)
S(G,m) = 0 for m > jl (40)

Using the same arguments as in case 1, we derive from (32), (35) and

(36) that

S(G - xz,m) < S(H - yz,m) for m < j2 (41)
From (31) and (40),

S{G - Xg,m)’=>0 < S - yz,m) for jl < m (42)
'rom (8) aﬁd (9) there must bz at least one fask at each level 4,
i kal in E - Yoo Hence,

S(H - yyom) > 1+ kg = m for m < k; (43)

From (10), (39) and (43)

S(G - xz,m) =1+ jl -m<1+k, -m<=<S(H- yz,m) for j2 <m < jl (44)

1
(40), (42) and (44) imply (23).
We now prove at least one of (24) or (25) is true. 1If G <:H, then

there exists some m, say m = n, such that:

S(G,n) < S(H,n) (45)
Clearly n j_kl since S(H,n) = 0 for n > kl'
Consider two cases: (1) n f*jl (2) jl <n < kl

Cagse 1. Since n j_jl, S(G ~ xl,n) = S$(G,n) - 1. Similarly,
S(H - yl,n) = §(H,n) - 1. Hence from (4£5),
S(G - xl,n) = §(G,n) - 1 < S(H,n) - 1 = S(H - yl,n) (46)

(46) and (22) imply (24)



Casce 2. Since n > jJ > j2

S(G - xz,n) = 5(G,n) = 0 47)
From (43)

S(H - yz,n) > 1 + kl -n> 0 (48)
(47) and (48) imply

S(G - Xzsn) < S(H - y29n) (49)

(49) and (23) imply @3)
Lemma 3
If G ~ H then G - Xy~ H - ¥i» i=1,2

Proof: 1If G~H then C}iﬁH and H :ic, and hence

7
G - xiféil- Yo i=1,2 and H - yi:2(3— X i = 1,2 which implies

Theorem 1

Let G and H have two or more executable tasks. If G.f;H then

- % Xy -
G- x; DH -z (50)
- x “XH -
and G X, —~H z, (51)
Furthermore, if G <:H then either
G- x, <H -z (52)
1 1 ;
or G ~ x2<H -z, v (53)

or both (52) and (53) are true.
Proof: (50) follows from (12) and (22), while (51) follows from (13)
and (23). (12), (13) and either (24) or (25) or both implies either

(52) or (53) or both.



2. Properties of Partially Ordered Tasks in which Task Times
are Independent Exponential Random Variables

In this section we shall consider arbitrary graphs (not necessarily
forests) in which task execution times are independent exponential random
variables. We will allow an arbitrary number of processors, and not all
processors need have the same processing speed. In this section we only
consider preemptive schedules in which there is no delay associated with
preemption.

We prove several lemmas which have no counterpart in deterministic
scheduling theory. It is surprising that stronger results can be obtained
in the probabilistic case than in the deterministic case.

The time required to complete a set of n tasks is specified by the
partial ordering over the tasks (usually specified by a graph G), the
distribution F(tl,..,tn) where ti is the execution time of the ith task,
and the processing schedule. At any instant of time, while processing is
proceeding, some tasks may have been completed, others may be partially
processed and processing may not have begun on others. The time required
to complete all tasks will depend on the partial ordering over the re-
maining tasks and on the distribution of remaining times to complete
execution of these tasks. The distribution of remaining task execution
times depends on the distribution of the times required to process the
unprocessed tasks and, in general, on the lengths of time for which the
partially processed tasks have been processed. We show in the following
lemma that if task times are independent, exponential random variables,
the distribution of remaining execution times is independent of the amount
of processing received by partially processed tasks. Hence, to compute
the time required by a schedule we may restrict attention to the partial

‘ordering (or graph) of remaining tasks.
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Temma 4

The remaining times to com>slete execution of partially processed tasks
are independent of the amount of processing received so far by these tasks
vhen task execution times are independent and exponential.
Proof: Assume at some instant that tasks j(1),...,j(k) are incomplete
(i.e.either partially processed or unprocessed), and that task i (i) has
received x(j(i)) units of processing time at this instant (x(§(i))=0 4if
i{i) is unprocessed). Let F(t,

)’

distribution of remaining execution times for tasks j(i),...,j(k) given

"’tj(k){ Xj(l)""’Xj(k)) be the

-

#{1(i)) units of procescing time recevied by task j(i), i = 1,...,k.

Since task execution times are independent

k
It F(
=1

r;(tj<1)""’tj(k) I XJ(l)’ Xj(k))= 5 tj(l) l XJ(i)>

Tt is well known [ 5 ] that
F(t, .. X, .. = F(t, .
( 3(1)[ J(l)) ( 3(1))
viner2 F(t,,.,) is the unconditioned distribution, if and only if t, .. is
() j(i)
an exponential random variable.

Hence:

F(tj(l),...,tj(k) ! Xi(g)7 Xj(k)) =T TF(t,

cor all values of xj(l)""’xj(k)

A set of partially processed tasks in which task execution times are
independent expouential random variables is completely specified by the
nartial ordering and the mean execution time of each task (since the mean
value uniquely determines the distribution for exponential random variables),
Assuming that a graph G specifies the partial ordering of partially
processed tasks and that each vertex is labeled with the mean execution
time of the corresponding task we see that G completely specifies the set

of tasks, whether they are partially processed or unprocessed. We shall

now restrict our attention to the case where remaining execution times
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are independent exponential random variables and where any set of tasks
is specified by a graph.
Let G be a graph specifying a set of tasks and let S be a schedule.
Define T(G,S) as the mean time required to complete (all tasks in) G
using schedule S. We now show that we may restrict attention to schedules
in which a task may be preempted only at those instants at which another
task is completed. (Note that there does not exist a similar property
in deterministic scheduling). The intuition behind the restriction is
simple: if the optimal policy is to make some assignment of processors
to tasks initially for a graph G, then an optimal policy is to continue
with the same assignment until G changes, because the optimal policy
depends only on the graph and is independent of the amount of processing
received by partially processed graphs. We now present a formal argument.
Let S be an optimum schedule which initially makes some assign-
ment of processors to a set of tasks a in G and if none of the tasks
finishes in some arbitrary time t it preempts one or more partially
processed tasks and switches to another schedule S'. Let S" be a schedule
which is derived from S by setting 1 to infinity, i.e. the initial
agsignment is continued until at least one of the tasks in a is completed
(for nurposes of symmetry we may think of S' as derived from S by setting
T to zero). Note that processors may have different speeds and G is any
arbitrary graph.
Lemma 5 T(G,S) =p . T(G,s’) + (1-p) - T(G,S") where p is the probability
that none of the tasks in a finishes in time Tt.
Proof: Let a = {al,,..,ak} and let the mean time required to complete ai
given the initial assignment of processorsin S be l/%i, The probability

that task ai will finish in the incremental interval (t,t + At) where t < T,
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given schedule S, before any of the other tasks in a finishes is Kievkt'
k
where A =z Ai (see [ 51 or [ &4 1). 1If a, finishes in the interval
i=1
(t,t + At), before any other task in 5, then the total execution
time from time O{(zero) will be: t + T(G—ai,S). If none of the tasks
finishes in time 1, the total execution time will be 1+ T(G,S'). The
-AT
probability that none of the tasks finshes in T is e A . Hence
S f -At
T(G,S) = f (t + T(G-a,,S8)) A, e dt
i=1 * t
0
+ e (r+ 16,5
Setting T =« , we get
kK b
T(G,8") = }' j (t + T(G-a;,8)) Ae dt
i=1 0
After some symbol manipulation we get
- Xt AT
T(G,8) = e V. T(C,8") + (1~ ') T(G,S™) (54)

Lemma 6 Either S' or S" is also an optimum schedule,

Proof: Assume S' is not an optimum schedule, i.e. T(G,S') > T(G,S).

Then from (54), T(G,S) > T(G,S"), and hence S" is an optimum schedule.

Theorem 2 There exists an optimum schedule in which a task is preempted only

at those instants when another task is completed.
Proof: Given any optimal schedule § in which a set of tasks is preempted
after arbitrary time t , if none of them completes we can create another
optimal schedule in which t = 0 or v = ». In this manner we can create
an optimal schedule in which a task is preempted only when another task
is completed.

In the following lemma we prove that a subgraph of a graph G has an

expected time to complete all tasks which is strictly less than the
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expected time to complete all tasks in G. We note that there does not
exist an equivalent result in deterministic scheduling theory.

Lemma 7 Let G be any task graph in which task times are independent
exponential random variables and let b be some executable task in G.
Let T(G,0pt) be the mean time required to complete G using an optimum
schedule. Then,

T(G-b,0pt) < T(G, Opt) (55)
Proof: By induction: The lemma is trivially true if G consists of a
single task, b, since T(G-b,0pt) = 0 < T(b,Opt). Assume the lemma to be
true for all graphs G consisting of n or fewer tasks. We shall prove
the lemma true for G having n + 1 tasks.

Let the optimum schedule for G initially assign processors to a set

of tasks a = {a,,...,a, }. Consider two cases: (1) b is not in a

1 k

and (2) b is in a.

Case 1: Consider a schedule S for G-b which makes the same initial assign-
ment of processors to tasks as the optimum schedule for G, and after one

of the tasks in a finishes it follows the optimal schedule. Let the mean
execution time for task a; given this assignment be l/ki. The mean

time until the first of the tasks in a finishes is 1/i where

>\::

Ai (see [ 5 1) The probability that task a; is the first task in a
i

1

I~

to finish is Ai/ A (see [ 5 D). Bence:

T(G,0pt)

o~

Ly
A

A T(G-a, ,Opt) (56)
i A i

1
and

fi

1 AL
5 + -1 T(G—ai—b,Opt)

1

T(G-b,S)

fI. 1

1

Since
T(G ~ a, - b,0pt)< T(G—ai,Opt) all i



by the induction assumption, it follows that 14

T(C-b,S) < T(G,0pt)
By definition  T(G-b,0pt) < T(g-b,S); hence (55) follows.

Case 2: Assume without loss of generality that b = a Consider a schedule

1
S fov G - a; which initially makes the same assignment of processors to

~asks except that the processor assigned to a, in the optimum schedule for

1 k
7 is not assigned to any task in S. Let A= X Ai
i=2
T(G,0pt) is given by (56), and
1 k A
T(G~a,,S) = — + 2 2L . T(G~a.-a ,Opt) (57)
1 o= A Tl

tipltiplying (57) by A 'Al’ recalling that T(G—al,S)zT(G—al,Opt) and adding

Kk

AT+ 2 A .Aj . T(G-a_,0Opt) to both sides we get
i=2 ' *
k k

A+ ) A" A, . T(G-a,,0pt) = A+ ) A, (AT(G-a,, Opt)
i=1 * * j=2 12

+ llT(G—ai—al,Opt)). (58

T(G—ai,Opt) > T(G—ai—a Opt) for i=2,...,k

1’

by the induction assumption. Substituting this in (58), we get

k k
L 1.
A +'Z A" aag - T(G-a,0pt) > A +.2 Ay Ao T(G-a -a,,0pt)
i=1 i=2
Dividing by AT and using (56) and (57) gives
T(G,0pt) > T(G—al,S) (59)
Bv definition T(G-b,0pt) = T(G—al,Opt) j_T(G—al,S) (60

Equation (55) follows from (59) and (60).
Lemma 8 Let A be a non-empty subset of tasks in g such that a task in
A either has no predecessors or has all its predecessors in A, Then,
T(G~A,0pt) < T(G,Opt)

Proof: Follows directly from lemma 8.
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In the following theorem we show that given any schedule S in which
a processor is idle even though there is an available executable task, we

can always find a strictly superior schedule S' in which a processor is

idle only when there are no available executable tasks. We note that
there does not exist an equally powerful theorem if task times are not
random variables.

Theorem 3 A schedule on a graph in which task times are independent

exponential random variables cannot be optimum if a processor is kept

idle when there is an available executable task.
Proof: Let S be a schedule which initially assigns processors to tasks

a = {a .,ak} in G, and leaves some processor p idle even though there

177

is an available executable task a Assume that S follows the optimum

k+1°

policy after some task in a completes. Let S' be a schedule which makes
the same assignment of processors to tasks as S, but in addition assigns

r to task .
processor p to task a, .

From lemma 7,

T(G,0pt) > T(G-a Opt)

k+1,

Hence for the given schedule S in G,

T(G,S) > T(G,Opt) > T(G—ak+l Opt) (61)
k k+1 ’
Let A =) A and X' =) A,
i=1 i=1
k A,
1 i
Then T(G,S) =3 +»2"X_ T(G-a, ,0pt) (62)
. 1
i=1
QKL AL
and T(G,S')= T+ X‘KT T(G-a, ,0pt) (63)
i=1 +

From (61) and (62)

A,
i
1 A

-% + T(G—ai,Opt) > T(G-a Opt)
i

k+1,

e~



i6

Multiplying both sides by A - Ak+l’ and then adding

Il b~

A+ A Ai T(G-ai,Opt) to both sides, we get
i=1
k k+1
A+ ) A'A, T(G-a,,Opt) > A+ ) A A, T(G-a,,Opt)
i=1 7 * i=1 * *

Dividing both sides by AA' and using (62) and (63) gives

T(G,S) > T(G,S")

Summary of section 2 We have presented results which have no parallel

in deterministic scheduling theory. We know that we should discard from
consideration any schedule in which a processor is kept idle when there

is an available task. We may (and shall) chose to discard from considera-
tion schedules in which a processor is preempted at an instant when

no other task is completed.
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3. Properties of Exponential Forest Precedence Graphs

In this section we restrict attention to forest precedence graphs
in which all task times are independent exponential random variables
with unit means. Also we restrict attention to two processor schedules
which may preempt only when a task completes.

We use the notation T(H,Z) to represent the expected time to complete
all tasks in an EFPG, H, using schedule Z and assuming two identical
processors. If H has only one executable task, then from (1) and (8),

T(H,Z) = g Moo=k (64)

Now consider the case where H has at least two available executable
tasks. Since task times are independent exponential random variables
with unit means it follows[5] that the expected time until the first
of the two tasks processed by Z is completed is 1/2 and the prob-
ability that task zi,i=l,2 finishes first is 1/2. Hence,

T(H,2) = 1/2 + 1/2 *T(H-z,,2) + 1/2 + T(H-Z,,2) (65)
Theorem 4

If G ~ H then T(G,X) = T(H,Y) where X and Y are arbitrary HLF
schedules.
Proof: Let N and M be the number of tasks in G and H respectively. Since
G " H it follows that N = M. The proof is an induction on N. For N =M = Q
we have T(G,X) = T(H,Y) = 0. Assume the theorem to be true for
N=M=0,1,..., P -1 and we prove it true for N = M = P, Consider two
cases: (1) G has only one executable task (2) G has two or more executable
tasks.
Case 1. Here G has N tasks which must be executed in sequence. Since
G 7 H, it follows that H alsd has N tasks which must be executed in sequence.

Hence T{(G,X) = T(H,Y) = N.
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Case 2. Since G ~ H, it follows that H must also have at least two

executable tasks, see (7) and (9). Hence from (65)

Ead

= ._.-l —-1 - -
T(G,X) = 5 + > T(G Xl,X) + 5 T(G X2,X) (66)
T(H,Y) = + -l— T(H - Y) + -;L' T(H - Y) (67)
5 ] Yl, 2 yz’

- X ~ H - Vo for i = 1,2

1

2
From Lemma 3, G
Therefore, by the induction assumption,

T(G - Xi) = T(H - yi), i=1,2 (68)
From (66) - (68), T(G,X) = T(H,Y)

If G and H are identical, then T(G,X) = T(G,Y). Hence all HLF
schedules for the same EFPG have the same expected completion time. We
shall use the notation T(G,HLF) to denote the expected completion time for
G with 2 identical processors using any HLF schedule.

Theorem 5

Let G have at least two executable tasks. Then

j, < T(G,HLF) <N (69)
Proof: By induction on N where N is the number of tasks in G. 1If G has
at least two executable tasks and N = 2 then G must be a forest with two
trees, each tree having one task; in other words, G has two independent
tasks. In this case, i.e., N = 2, we have jl = 1 and T(G,HLF) = 1.5 and
hence the theorem is satisfied. Assume the theorem to be true for
N=2,3,...,P-1 and we shall prove it true for N = P,

Consider two cases to prove the left part of inequality (69):

(1) N, =1 for i = l,2,...,jl - 1 and Ni = 2 for i = (2) There

i I
either exists some i < j, such that N, > 1, or N, = 1 for i = 1,2,...,
1 i i

j1 - 1 and Ni > 2 for i = jl. In either case it is sufficient to show
that for a given HLF schedule X,

jl < T(G,X) < N (70)
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Recall from (65) that

1

1 1
T(G,X) =5 + 5 TG - x,X) + 5 T(Gx,,X) (71)

Case 1. Here N = jl + 1, and G -~ Xi’ i=1,2 consists of N - 1 = j1
tasks ordered in sequence.

Hence T(G - Xi’X) = j1 for i = 1,2. Substituting in (71) yields

T(G,X) = 3, + 255
Case 2. Here G - X must have at least two executable’tasks, and further-
more G - X must have at least one task in each level i, i = 1,...,j1 - 1.
Hence

T(G - xl,X) > jl -1 (72)
by the induction assumption.

G - X, must have at least one executable task at each level i,
i= 1,2,...,j1. Obviously,

T(G - xz,x) > 3 (73)

We now prove the right part of inequality (69). G - X, has N - 1
tasks, for i = 1,2. Hence

T(G - Xi’X),i N-1fori-=1,2 (74)
From (65) and (74)

T(G,X)_<_N-—%—<N O

In theorem 6 we show that a flatter EFPG has a smaller expected time
to complete all tasks. We note that a similar result does not exist in
deterministic scheduling theory.
Theorem 6

1f ¢ < H then T(G,HLF) < T(H,HLF)

Proof: By induction on M, the number of tasks in H. If M = 1 then N =0

since G'ﬁ:H, and hence the theorem is trivially true. Asssume the theorem

to be true for M = 1,...,P-1 and we shall prove it true for M = P. It is
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sufficient to show that for given HLF schedules Xand Y, T(G,X) < T(H,Y).
Consider 4 cases: (1) Both G and H have at least two executable tasks.
(2) Both G and H have less than two executable tasks (3) H has less
than two executable tasks while G has at least two (4) G has less then
two executable tasks while H has at least two.
Case 1. From Lemma 2 either G - X1‘< H-y, orG- x2-<:H =Y,
Therefore, by the induction assumption either:

T(G - x,X) < T(H -y ,Y) (75)
or T(G - XZ’X) < T(h - yZ,Y) (76)
From Lemma 2 we have G - xiﬂ< H - yi, for both i = 1 and 1 = 2. Hence
combining Theorem 4 and the induction assumption we have:

T(G - x,X) < T(H - y,¥) i=1,2 (77)
From eqns (75) - (77) and (66), (67) we have

T(G,X) < T(H,Y)
Case 2. If G has zero executable tasks the theorem is trivially true.
It is impossible for H to have zero executable tasks since M = p-1 > 1.
Assume G and H have only one executable task each. Then G is a sequence
of N completely ordered tasks and H is a sequence of M completely ordered
tasks. Since G~<]H, it follows that N < M. Therefore

T(6,X) = N <M = T(H,Y)
Case 3. From Theorem 5

G(G,X) <N
Since G- H it follows that N < M. Since H must have one executable task
it follows that H is a sequence of M completely ordered tasks. Hence
T(H,Y) = M. Therefore

T(G,X) <N <M = T(H,Y)



21

Case 4

By Theorem 5, T(H,Y) > kl. If G has zero executable tasks the theorem
ig trivially true. Assume that G has bne executable task. Then G is
a completely ordered sequence of jl = N tasks. Hence T(G,X) = jl'
Since G=<{H it follows that iy 2 kg Therefore

T(G,X) = < kg < T(H,Y)

I1
which completes the proof.

We summarize the results below:

From theorem 4, G ~ H implies T(G,HLF) = T(H,HLF) (78)
From theorem 6, G- H implies T(G,HLF) < T(H,HLF) (79)
From (78) and (79) G-XH implies T(G,HLF) < T(H,HLF) (80)

Theorem 7
A two-processor schedule on an EFPG is optimal if and only if it is HLF.
Proof: By induction on the number of tasks. If there is only one task,
there is only one schedule, which is (trivially) an HLF schedule and
the theorem follows.
If m = 2 then either G is a chain or G is a forest with two trees.
If G is a chain then, again, there is only one schedule for G, and it is
HLF. Likewise, if G is a forest there is only one schedule and it is HLF.
Assume the theorem to be true for all EFPGs with fewer than M tasks
(M > 2). We show that the theorem holds for EFPGs with M tasks. Consider
an arbitrary EFPG H with M tasks. If H is such that all schedules on H

must be HLF schedules then the theorem is trivially true. Consider an

FFPC H which allows two schedules Y and Z where Y is HLF and Z is not HLF.
1,1 - 1 -
T(H,Y) = 2 2 T(H Yl,Y) + 2 T(H YZ,Y)
T(H,Z) = 2+ £ T - 2,,2) ++ T(H - z.,,2)
> 2 2 1’ 2 22
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Since 7Z is not HLF either (1) Kl < kl or (2) 22 < k2 or 7Z is not

HLF when applied to (3) H - z. or (4) H - z

1 The following results

9
are required prior to proving each case. By Lemma 1, H - y&ff;H -2y
i = 1,2. Therefore from (80),

T(H - yio HLF) < T(H - z;s HLF), 1 = 1,2 (81)
By the induction assumption,

T(H - z5s HLF) < T(H - zi,Z), i=1,2
Hence

T(H - yi,Y) < T(H - zi,Z), i=1,2 (82)

Case 1

If 11 < k then by Lemma 1, H - yl<<]i -z

1 and from eqn (79) and the

1
induction assumption

T(H - y,Y) < T(H - z),2)

Case 2
Similarly if 12 < k2 then
T(H - y,,Y) < T(H - z,,2)
Cases 3 and 4
If Z is not HLF when applied to H - Z,s then by the induction assumption
we have

T(H - Zi’ HLF) < T(H - zi,Z)
in which case by (81)

T(H - yi,Y) < T(H - zi,Z) (83)
Hence in all 4 cases, (83) is true for either i = 1 or i = 2, and (82) is
true for both 1 = 1 and i = 2. Hence T(H,Y) < T(H,Z) which implies that
T(H,HLF) < T(H,Z). Therefore all HLF schedules have smaller expected
completion times than any arbitrary non-HLF schedule. Hence non-HLF
schedules cannot be optimal. Therefore éii.optimal schedules are HLF.

Since all HLF schedules have the same completion time, all HLF schedules

are optimal. This completes the proof.
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This theorem is powerful because it states that any schedule which
is not HLF cannot be optimal. Furthermore, any schedule which is HLF
must be optimal. There is no parallel in deterministic theory in which
the class of optimal schedules is completely characterized.

Up to this point we have considered two processor preemptive schedules.
Now we demonstrate that preemption is not necessary by showing that there
exists a non-preemptive HLF schedule for any arbitrary EFPG.
Lemma 9 Assume a graph G with a set a of k or more executable tasks.
Then,

(1) If there are k or more executable tasks in G - a then there
exists a set A of the k highest level tasks which includes a - aj

(2) 1f there are only k-1 executable tasks in G - aj then this set
A of executable tasks is a - aj.
Proof: (1) Assume the contrary, i.e. that there exist at least k
executable tasks in G - aj and there does not exist any set A of the k
highest level tasks in G - aj which includes a - aj. If there is only 1
executable task b, not in a - aj,with a level greater than some task in
a - a5 then set A = b {) a - 3, which leads to a contradiction!

Therefore, assume there are p > 2 tasks in G - aj with a level
greater than the level of some task a; in a - aj. If br’ 1 <r <p was an
executable task in G then since the level of br exceeds that of a, it
follows that a is not a set of the k highest level tasks in G. Contradiction!
Hence br:l.i r < p cannot be executable in G. Since we have assumed Wy
that br is executable in G - aj, it follows that VWt br must have aj for
a predecessor in G, which implies that aj has p > 2 successors and hence
G is not a forest. Contradiction!
(2) By assumption there are only k-1 executable tasks in G - aj and a - aj
is a set of k - 1 executable tasks in G - aj and hence every executable

task is in a - aj.
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Theorem 8 There exists a non-preemptive HLF schedule for any arbitrary
EFPG G.

Let there be k processors. Consider 2 cases. (1) There are k or
fewer executable tasks (2) There are more than k executable tasks.
Case 1: Since G is a forest, there will be k or fewer executable tasks
in every subgraph of G. Hence any schedule in which every executable
task is assigned a free processor is HLF and non-preemptive.
Case 2: Assign processors to a set of k highest-level tasks a = {a,...,ak} .
Let aj be the first task to complete. Choose a new set a' of k highest-
level tasks where a' includes a - aj; note that from the previous lemma
such a set always exists. Suppose a' = (a - aj) U b. Do not change the
assignment of processors to a - aj but merely assign the processor which
was assigned to aj to b. We now have achieved a transition from an HLF
assignment of processors to tasks in G to an HLF assignment of processors
to tasks in G - aj without preempting any processor. We now apply the
same method to assign processors for all subgraphs that result in processing
G - aj.

Corollary 1l: Even if zero-delay preemption were permissible, there exists

an optimum non-preemptive (HLF) schedule for 2 processor schedules on
EFPGs; in other words preemption provides no advantage! Once again, it
is instructive to contrast this result with deterministic theory where

preemption may provide an advantage [8,9]
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4. Bounds for Scheduling when Task Times Are Unknown.

In section 5 we present a number of configurations of processors
and probabilistic task graphs for which HLF schedules are not necessarily
optimal. At this time there are no known optimal scheduling algorithms
for the general cases of the examples we give. However, we have found
that it is possible to place a bound on the ratio between an optimal
scheduling algorithm, whatever it may be, and an arbitrary scheduling
algorithm, for certain configurations of processors and task graph types.

Consider the scheduling algorithms for a given deterministic task
graph and m identical processors where the algorithms are non-preemptive
and never leave a processor idle if a task is available. Among these
algorithms is one which is (not necessarily exclusively) optimal for the
given task graph. Call this schedule "0". Graham [6] has shown that the
relation between the completion time, Wos using 0, and the completion
time, © s using an arbitrary schedule "a", is

ma < (2 - 1/m) Wy (84)

Now we consider the case where task times are selected from a
probability distribution. For a given instantiation of a probabilistic
task graph we consider the theoretical optimal schedule "0" given the

task execution times in advance. Of course since it is not possible to

know task execution times in advance we can never determine O in advance

in practice. However, we shall use O in some "thought"experiments. Also
we consider an arbitrary schedule "a'" which may be derived independent

of the task execution times. For any particular instantiation of a task

"a'", Graham's bound

graph, the derived schedule "0", and any schedule
still applies.

Over the space of all possible instantiations of a probabilistic
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task graph, Wy and w, are random variables. While the distributions for
wg and wa can be obtained from the distributions of the instantiations of
a given probabilistic task graph, we restrict our attention to the mean
values for W and w, -

Because w, and W are random variables we may substitute expected
values for them into the inequality (84):

E[ma]_i (2 - 1/m) . E[mo] (85)

The interpretation of this inequality is that the expected value of
the completion time for an arbitrary schedule is not greater than (2 - 1/m)

times the expected value of completion times for optimal schedules given

task times in advance.

We now consider another schedule "b". Assuming w,_ is the completion

b
time for "b" for a given instantiation of a probabilistic task graph, then
for any given instantiation

w, 2 W

b 0

Hence

E[w ] > Elwg] (86)

0

From (85) and (86), given arbitrary schedules "a" and "b" and any

precedence graph with probabilistic task times,

E[wa] < (2-1/m) E[wb]

The significance of (87) is twofold. First,it places bounds on the
relationship between two arbitrary schedules. Essentially, no pair of
schedules can produce finishing times that, on the average, differ by more
than a factor of (2 - 1/m) when task times are probabilistic.

Second, and perhaps more important, (86) implies that we might expect
the factor (2-1/m) to diminish in (87). For example, despite the fact

HLF is optimal for EFPGs on the average, it is easy to comstruct forest
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precedence graphs with fixed task times which clearly make HLF a suboptimal
algorithm. Thus, due to randomness, we can expect even an optimal
algorithm such as HLF and an arbitrary algorithm to be more closely

related than (2 - 1/m). This observation has been borne out in empirical

studies reported in [17.
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5. Extensions

In this section we investigate cases which represent extensions to the
restrictions assumed in section 3. For example, what happens if we allow
three processors with EFPGsS, or two processors but allow any type of
precedence graph? Section 5.1 presents two cases in which the results
of section 3 are extendable. Remaining sections demonstrate that "simple"
modifications to EFPGs or to the two processors assumption can nullify
the optimality of the HLF algorithm.

For the latter cases we have not found any optimal polynomial algorithms
nor have we established NP-completeness [10].

5.1 EFPGS  with two non-identical processors

5.1.1 The preemptive case
The results of section 3 can be extended to the case where the two
processors have different rates. The proofs for this case are an extension
of the proofs in section 3 and are not presented here. Instead we present
an outline of the differences created by assuming non-identical processors.
If the mean execution time for tasks assigned to the fast processor
is unity then we can represent the time for tasks on the slow processor
as 1/a, where a < 1. If, fér schedule X, the fast processor is assigned

task Xy in EEPG G and the slow processor is assigned x then (65) is

2)
modified to
1 1

T(G,x) = Tra + Er T(G—xl,X) +

a__

1+a T(G-x

2’ X)
A schedule is defined to be HLF if and only if, at all times the

fast processor is assigned an executable task at a higher level than all

other executable tasks and the slow processor is then assigned an executable

task at the highest level among the remaining executable tasks. Thus,

a task assigned to the slow processor may be preempted and assigned to

the fast processor, resulting in a maximum of N - 1 task preemptions.
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5.1.2 The non~preemptive case

It has been shown for non-preemptive scheduling of some deterministic
models that keeping a processor idle even when there is a ready task can
produce smaller finishing times [6]1. The same result applies to EFPGsS when
there are two or more non-identical processors. A two processor example
is given in Figure 5 where, initially, the slow processor is assigned to
task 1 and the fast processor is assigned to task 2 (Fig. 5a). If the
fast processor completes its task first then it is assigned next to task
3 (Fig. 5b). Assuming that the slow processor completes task 1 next, it
now becomes possible, given widely differing processor speeds, that it
would be advantageous to not assign the slow processor to task 4 but
rather to wait for the fast processor to complete task 3 so that it could
then be assigned to task 4, and subsequently the remainder of the chain
(Fig. 5c¢).

5.2 Three processor EFPG schedules

The optimal three processor schedule for the EFPG shown in figure
4 is not an HLF schedule; tasks 1, 2 and 4 are processed initially in
the optimal schedule whereas tasks 1,2 and 3 are processed initially in
the HLF schedule. This fact (i.e. that 1,2 and 4 are the optimum
selection of tasks initially) is not obvious; it can only be shown by
laboriously computing mean execution times for the different schedules,
and we have written a program to do so.

The advantages of flatness as established in section 3 do not hold
in this case. 1If H has 3 executable tasks and G1§ H, and G and H have
the same number of tasks; it is possible that G has only two executable
tasks (Figs. 1,3). Hence, given three processors H offers more opportunity
for exploiting parallelism and as a result has a smaller expected

completion time.
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5.3 Precedence Graphs which are not forests

The optimal two-processor schedule for the graph shown in Fig. 6
in which task times are iid exponential is not HLF; the optimal solution
is to process tasks 1 and 3 initially whereas the HLF schedule processes
tasks 1 and 2 initially. The reason that the HLF algorithm is not optimal
in this case is that task 3 has many more successors than task 2; hence
completing task 3 opens up more opportunity for parallelism.

5.4 TForests with unequal exponentially distributed task times

The optimal two processor schedule for the forest precedence graph
shown in Fig. 7 is not an HLF schedule. An optimal solution in this case
is to first schedule tasks 1 and 2 and then to schedule the remaining
task with task 3. An HLF schedule would have selected task 3 and either

task 1 or task 2 initially.
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6.0 Conclusion

Until now the polynomial time heuristics for optimally scheduling
partially ordered tasks have required that task times be known or known
to be equal. The successful relaxing of this constraint to iid exponential/
distributiom is a first indication that it may be possible to derive other
results for partially ordered tasks with probabilistic task times. For
example, there is evidence that HLF schedules may be optimal for forest
precedence graphs where task times are iid distributions in which the
expected time to completion for a task is a monotonically non-increasing
function of the amount of processing received so far. Proofs for these
conditions have not been completed by the authors.

Examples given in section 5 (namely, 5,2,5,3,5,4) demonstrate that
results in deterministic scheduling, such as those found in [8,9] do not
necessarily generalize to the probabilistic task time case. We expect
in these cases that optimal algorithms will be found to be NP-complete.

The power of theorems obtained in the stochastic case relative to
those in the deterministic case are worth noting . It is indeed
fascinating to note that any optimal algorithm with 2 processors must be
HLF, while HLF algorithms may be suboptimal with 3 processors. There
appears to be no characterization of optimal schedules that applies to
2 and 3 processor cases.

In terms of practical applications the extension of Graham's bound
has interesting implications. As observed in the proof of its applica-
bility to probabilistic task times we can expect, due to randomness, that
the average completion times for two schedules will differ by a factor
less than 2 - 1/number of processors. Also, we would expect an arbitrary

schedule for a two processor system to be less than 507 worse than an



optimal schedule. Results in [1] indicate this percentage is more likely
to be less than 15% for an arbitrary algorithm and less than 2% for HLF.
Thus, even though HLF is demonstrably inferior in some cases, its

average behavior is very good.
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