A Generalization of Termination Detection
for Diffusing Compu’cationsJr

K. M. Chandy

J. M1'sra+Jr

TR-106 July 1979

+Wm*k partially supported by NSF Grant MCS77-09812.

T This work was completed while the author was visiting Hahn
Meitner Institute in Berlin.

Reproduction of this paper was supported by Hitachi Corporation.



1. Introduction

In [1] Dijkstra and Scholten introduce the notion of diffusing
computation in a distributed system of processes and suggest an elegant
algorithm for detecting the termination of an arbitrary diffusing compu-
tation in an arbitrary network. The generality of the solution makes
it suitable for application in a number of problems arising in distributed
processing; subsequently Dijkstra [2] has applied these ideas in formulating
a distributed algorithm to answer the following question - for an arbitrary
node D in a network, does D belong to a knot?*

We consider the following generalization of the termination detection
problem. Suppose that every node of the network computes some data
value v during a diffusing computation gtarting with some initial
value of v. It is desired on termination to compute the value of some
function of the v's of the various nodes of the network. We solve
this problem when the value of every v is from a finite bounded set at
all points in the computation.

Our solution works in conjunction with the algorithm for termination
detection. The typical application of this algorithm is when v denotes
the "state" of a node; then our algorithm allows us to compute any
function on the final states of the nodes. We use this algorithm to
formulate a solution in Section 4, for the problem of knot (described
above) in a conceptually simple manner.

2. The Algorithm of Dijkstra and Scholten for Termination Detection

in Diffusing Computations.

We provide only a sketch of the problem and its solution here. The

reader is referred to [1] for a precise description of the problem and a

*

See Section 4 for a precise definition of this problem.



systematic development of the solution.
Given,
(i) a finite directed graph each node of which denotes a process
and each directed edge denotes the direction of message flow;
(ii) a special node, called gate, which has an input edge from some
external process called the environment;

%
(iii) that every node in the graph is reachable from the gate

Tnitially, every node is in a neutral state. The diffusing compu-
tation starts when the gate receives a message from the environment.

A node is free to send messages along its outgoing arcs (to its successors)
only after receiving the first message. A diffusing computation termi-
nates when no node recieves or sends any more messages. It is required

to devise a signalling scheme, to be superimposed on the diffusing
computation, such that the gate will send a signal to the environment

when the diffusing computation terminates. We assume that a node can

send a signal to any of its predecessors.

In a terminating diffusing computation, every node will send a
signal for every message it receives from every predecessor. The order
in which the signals are sent is crucial for the correct operation of
the algorithm. During diffusing computation for any node let,

¢ = number of messages received (from predecessors) -

number of signals sent (to predecessors)
Clearly, ¢ > 0. Define the state of a node to be neutral, if ¢ =10

and engaged if ¢ > 0.

*
) A node v is reachable from a node x if and only if there exists a

directed path from x to y; if x = y, such a path of length O always
exists.



Initially, after receipt of the message from the environment by
the gate node, ¢ = 1 for the gate node and ¢ = 0 for every other node.
Diffusing computation terminates when ¢ = 0 for every node. Typically
a node will alternate between neutral and engaged state. A node goes
from neutral to engaged state when it recieves a message from a pre-
decessor (and just prior to the message receipt, ¢ = 0 for the node).
Define father of an engaged node to be that predecessor from which the
message received transformed this node to its current engaged state
from neutral state. Note that a node will typically have many different
fathers during a diffusing computation as it alternates between neutral
and engaged state; however it has one unique father at any point in
the computation if it is engaged. Tnitially, the father of the gate
node is the environment.

The solution to the termination detection problem is based upon
the following invariant.

pl:: Father of every engaged node (except the gate node) is engaged.

It follows from the invariant that every node must remain engaged
as long as any son of it is engaged. It is however impossible for a
node to decide if some one of its sons is engaged solely from the data
about the number of messages sent and the signals received. We therefore
add the following protocol constraint.

p2:: A node may go from engaged to neutral state only by sending

a signal to its father.
For any node let, D = the total number of messages sent to its

successors - the number of signals received from successors.



It follows from the constraint that for any node,

1. D > 0 means one or more of its sons is engaged. Hence D > 0 *c > O.
2. D = 0 means all of its sons are in neutral state.

If this node has no more messages to send then within a finite
time this node should go to neutral state (set its c to 0) by sending
signals to all the predecessors from which it had received messages and
has not yet sent back signals; the last signal must go the father.

It can be shown from the invariant (by induction on the number
of state chauges) that the set of engaged nodes form a directed tree
by the relationship defined by "father'; the root of the tree is the
gate node. The gate node can become neutral (by sending a signal to
the environment) only if all other nodes are in neutral state.
Conversely, if all the nodes are in neutral state the gate must send
a signal to the environment in a finite time.

There are several important aspects of this algorithm.

1. Termination is a global property: A process can not decide

if it has terminated since it may receive some message in the

future. However the algorithm detects termination without

using a global (central) process.

2. The nature of the diffusing computation as well as the
structure of the network are general.

3. Very little extra storage is required for the implementation of

the algorithm.



3. A Generalization

The algorithm of the previous section can be extended to solve
the following problem. Suppose that every node computes a data value
v during a diffusing computation starting with somé initial wvalue.
Assume that for some finite, bounded, positive integer m, v ¢ {1,2,...,m}
at all points during the diffusing computation. For ease of exposition,
we call v the state of the node.
We are interested in computing a certain network function from
the various vi's upon termination of the diffusing computation. Since
we consider arbitrary networks, we restrict the function to be of the
form vy C) v, CD,""CDVﬁ where C) is a binary, commutative, associative
operator. It is therefore sufficient for us to count qgs the number
of nodes that are in state s at termination, for 1 < s < m, in order
to compute any such function. We show how this counting may be done
in conjunction with the algorithm for termination detection.
We will assume that,
(i) an engaged node may send data values (instead of simply a signal)
to its father and,

(ii) n, the number of nodes in the network, is known to the gate node.
(This assumption is unnecessary in many instances; see Section 4
for example.)

We maintain with every engaged node an m-tuple of values RZysZoseeesZ >
satisfying the following invariant.
p3::’23 z, = number of neutral nodes that are in state s, 1 < s < m.

over all
engaged nodes



Assume that initially every node is in a particular state, state 1,
for instance. Upon receiving the message from the environment, the
gate node sets - in order to establish p3 -

z.:=n-1; z.=0, 2 < i <m,
1 i - -

Observe that,
(i) A node can not change its state as long as it is neutral. Hence
the right hand side of p3 does not change in value if the set
of neutral nodes remain invariant.

(ii) Any change in state of an engaged node does not affect the invariant.

Thus the invariant can only be affected when some node goes from
neutral to engéged or vice versa. We next consider these cases.

When a node goes from neutral to engaged and it is in state s,
the right hand of the equation corresponding to zg in p3 reduces by 1.
This is compensaged by the node in setting,

zS:=—l; zi:=0, 1<i<m, i#s.

When a node goes from engaged to neutral in state s, it transmits
the m—tuple <zl,22,...,zs+l,...,zm> to its father. The father must
add this m-tuple component wise to its own m-tuple to satisfy p3.

When the gate node changes from engaged to neutral, it transmits
an m-tuple <ql,q2,...,qm> to the environment. It follows from p3 and
the fact that every node is then neutral that,

qg = number of nodes in the network which are in state s at

termination, 1 < s < m.



4., The Problem of Knots [2]

A knot in a directed graph is a strongly connected component
of more than one node such that all succcessors of all nodes in the
knot are in the knot. It is required to design a diffusing computation,
to be fired by an arbitrary node D, that will enable node D to detect
whether or not it belongs to a knot. Since the answer is "no" when D
has no successor, we assume without loss in generality that D has
at least one successor. It follows then that D is in a knot if and
only if every node reachable from D can reach D.

We therefore decompose the problem into the following three parts.

(i) Mark every node reachable from D, i.e. set the wariable

reachable = true if and only if this node is reachable from D.

(ii) Mark every node that can reach D; i.e. set the variable canreach =
true if and only if this node can reach D.
(iii) Find if there is any node for which reachable = true and canreach =
false, at the termination of parts (i) and (ii).

We next discuss how each of these parts is implemented. Our
description is informal; however it presents the major ideas from which
the formal description of the algorithm may be readily constructed.
Dijkstra [2] has given algorithms for parts (i) and (ii), which we
sketch below. We use algorithm of section 3 to implement part (iii)
which results in considerable simplification.

Part (i) is implemented by starting a diffusing computation from D.

Initially reachable is false for every node except D. D sends a message




of "type 1" to all its successors. Any node receiving a message of type 1
for the first time sends a type 1 message to all its successors and

sets its own reachable to true. It then ignores every other type 1

message received. This computation terminates since no more than one
message is sent along any edge.
Part (ii) is implemented in a similar fashion. Substitute

predecessor for successor, canreach for reachable and type 2 for type 1

in the above description of the implementation of part (i).

Note that the two computations are distinguished by the types of
the messages transmitted. Hence there is no interference in execution
of Parts (i) and (ii); therefore the two parts may run simultaneously.
We next superimpose the execution of Part (iii) on the execution of parts
(i) and (1i). Part (iii) uses the algorithm of section 3. Note that
both types of messages are treated alike as "messages' and hence there
is a single tree of engaged nodes for this part.

We associate two states with each node.

state 1:: reachable = true and canreach = false

statel:: otherwise

Initially every node is in state 2. Using the algorithm of section 3,
upon termination of computation D sends ql,q2 to the environment where,

9 = number of nodes in state i, 1 < i < 2.

D is in a knot if and only if qq = 0. The computation of D will
need to be slightly modified so that D does not actually send 91> 4, to

the "environment," but simply tests q .



Note::

1.

Since 9, is the only value needed, it is sufficient for every node
to maintain a single value zq-

Since initially every node is in state 2, z4 for D may be set to O.
The entire algorithm of three parts runs concurrently.

A node may go at most once from state 2 to state 1 to state 2 during
the computation. The total number of state changes in the network

is thus bounded by 2n, where n is the number of nodes in the network.



References

1. E. W. Dijkstra, C. S. Scholten, "Terminal Detection for Diffusing
Computations, EWD 687a, Plataanstraat 5, 5671 Al Neunen,
The Netherlands.

2. E. W. Dijkstra, "In Reaction to Earnest Chang's Deadlock Detection,”
Plataanstraat 5, 5671 Al Neunen, The Netherlands.



