Logic Algorithms

for Natural Numbers

Frank M. Brown

TR - 108 July 1979

Abstract

Logic Algorithms for unary and binary}addition and multiplication
on natural numbers are described. These algorithms may be viewed as
recursive axioms of a first order logic. The correctness of the binary
algorithms is proven relative to the unary algorithms and the time

complexity of each algorithm is computed.

Contents

Introduction coveveenrteessocsnaenocnssas
Logic Algorithms for Natural Numbers ...
COTTECLNESS st rsevensossssnorsssannsssecs

COmPleXity seeevevonsarcosasanansasansns

.

1. Introduction

One of mankinds greatest intellectual achievements was the development
of positional numbering systems as opposed to unary numbers such as Roman
numerals. In this paper in section 2 we axiomatize the operations of
incrementation, addition and multiplication for both unary numbers and
the simplest positional numbering system namely binary numbers. These
axioms, as we point out may be viewed as algorithms which can be executed
by the abstract machine also described in section 2. In section 3 we
prove that the algorithmsfor binary numbers and the algorithms for unary
numbers give essentially the same result. Finally in section 4 we calculate
the time complexity of executing each of these algorithms on our abstract
machine.

The purpose of all this is to illustrate a certain viewpoint or
philosophy as to what computer science is all about, which put strongly
(for emphasis) might be expressed as: "Its all just logic." To illustrate
we note that the programming language is logic, the data on which the
programs operate are terms of logic, the programs are axioms expressed
in logic, the correctness (ie verification) conditions are also expressed
in that same logic, and finally that the complexity equations are just
other sentences of that logic.

Regardless of the truth or falsity of this viewpoint let us mention
just in passing that if the automation of programming is a desirable goal,
and if programming involves considerations about programs , their data,
whether they are correct or not, and their complexity, then surely the

ability to express all these things in a single language where everything

interfaces to everything else, is itself a useful starting point. (For
example notice how the complexity of addition calculation in section 4.5
depends on knowing that the number of bits in (Plus x y) is less than
or equal to the number of bits in the larger of x or y plus 1. Thus
rigorously a computer would have to define a length function in the
programming language, then call the verifier to prove that

(len(Plus x y)) < (max(len x)(len y))+ 1

and then use this fact back in the complexity proof.)

2. Logic Algorithms for Natural Numbers

Logic algorithms for unary and binary, increment, addition and
multiplication are given below successively in sections 2.1, 2.2, 2.3,
2.4, 2.5 and 2.6. These algorithms consist of recursive axioms of the
first order logic and may be executed as an algorithm by the following
abstract machine. This machine consists of function definition expantion
That is, given an axiom of the form

(v xl...xn) = (9 xl...xn)
and an expression to be evaluated of the form

(8 al...an)
if the structure of ?’ is identical to the structure of ¢ then the machine

binds the variables x oo X respectively to the terms a

1
(3 a

1708, and replaces

1"'an) by the new expressions to be evaluated: (?81°"an)"
It should be noted that this abstract machine is not so "abstract"
as it might first appear, as it is very similar to the manner in which

some practical contemporary computer languages work such as LISP and

various automatic theorem provers for the first order logic.

2.1 Unary Increment

2.

2.

2

3

2.4

2.

2.

5

6

Sucl: (Suc a) = Sa

Unary Plus
Pl: X + SY = S(X+Y)
P2: X4+ 0 =X

Unary Multiply

Ml: X% SY=X*Y+ X
M2: X * 0 =20

Increment

One: (1 = s0)

Incl: (Inc [X.0]) = [X.1]
Inc2: (Inc [X.11) = [(Inc
Inc3: (Inc nil) = [nil.1]

Plus

Plusl: (Plus [X.0] [Y.

Plus2: (Plus [X.0] [¥.

Plus3: (Plus [X.1] [Y.

Plus4: (Plus [X.11 [¥Y.

Plus5: (Plus X nil)

Plus6: (Plus nil Y)

It

Mult
Multl: (Mult X[Y.0])
Mult2: (Mult X[Y.1])

Mult3: (Mult X nil) =

]

01
1D
P
1D

X).01

[(Plus X Y).0]

[(Plus X Y).1]

il

it

[(Plus X Y).1]

]

[(Inc (Plus X Y)).0]

[(Mult X Y).0]

(Plus [(Mult X Y).0] X)

nil

3. Correctness

We wish to show that the binary logic algorithms for incrementation,
addition, and multiplication are correct. By ''correct" we mean that
each algorithm when viewed as axioms should have the same basic proper-
ties deducible from it as does some (hopefully simpler and easier to
understand) standard algorithm when it too is viewed as axioms. Thus,
in the case of natural numbers we accept the relatively simple axioms
for unary natural numbers as the standard as to what properties natural
numbers should have. We will therefore try to prove that the more
complicated algorithms for binary natural numbers posess the same properties.

One approach to proving these properties would be to try to determine
what properties held for unary natural numbers and then try to prove that
each of those properties held for binary natural numbers. This approach
has the disadvantages that each such property requires a separate proof and
further that it is difficult to determine just what are all the relavent
properties. For these reasons we feel that a different approach should
be taken which is as follows: First define a 1-1 function on the two
sets of axioms which will map elements of one domain into the other and
then prove that this function is a homomorphism which preserves all
the relevant properties. It will then follow in one fell swoop that all
the relevant properties of unary natural numbers will hold for binafy
natural numbers.

We define a 1-1 function U from binary numbers onto unary numbers
as follows:
Unary

Ul: (U[X.b]) =2 * (UX) +b

U2: (U nil) =0

We prove that U is a homomorphism with respect to Inc, Plus, and Mult
successively in sections 3.1, 3.2 and 3.3. These proofs are obtained

by induction on the structure of binary numbers. The simple induction

rule Il:

11: VxPx & (Fair Ak Px »Tx oaTx.110)

is used in sections 3.1 and 3.3. However, a course of values induction rule
I2 on 2 variables is used in section 3.2:

PP 5 N Ferd
sy Txy <Vx i?x nil A7y T nil v

AV Txr > Trxoorv.01 A Tixeo10v. 114 Fixe111v.014 Fixe110v.11

3.1 Correctness of binary increment

U(Inc X) (Suc (UX)]: Sucl

I

1

U(Inc X) 1+ UX ¢ Tnduction rule 1
1. U{Inc nil) =1 + Unil : 1Incl

U(nil.1l)

1+ Unil : Ul

2%Unil + 1 = 1 + Unil : U2

2%0+1 =1+0
1 =1
B
2. U(Inc X) = 1+ UX » U Inc [X.0] =1+ Ul[x.0]
A U Inc [X.1] = 1 + U[X.1]
¢ Incl,Inc?2
U(Inc X) = 1 + UX > U[X.1] = 1 + U[X.0]
A U[(Ine X).0] =1 + U[X.1]
: U1
U(Inc X) = 1 + UX » 2*%UX+1 = 1 + 2%UX

A 2%U(Inc X) + 0 =1+ 2*UX + 1
Hyp
2% (14+UX) = 2*%UX+1

24%UX+2 = 2%UX+ 2
@

3.2 Correctness of binary addition

U(Plus X Y) = UX + UY :Induction rule 2
1. U(Plus nil Y) = Unil + UY : PLUS6,U2
Uy = 0+ UY
2. U(Plus Xnil) = UX + Unil :PLUS5,02
UX =UX+0
#
3. U(Plus X Y) = UX + UY > U(Plus [X.0] [Y.0]) = U[X.0] + U[Y.0]
A U(Plus [X.0] [Y.1D= U[x.0] + Uly.1]
A U(Plus [X.1] [Y.0])= U[X.1] + U[Y.0]
AU(Plus [X.1] [Y.1])= U[X.1] + U[Y.1]
: PLUS1,PLUS2,PLUS3,PLUS4, Ul
U(Plus X Y) = UX + UY »U[(Plus X Y).0] = 2*%UX + O + 2%y + O

A U[(Plus X Y).1]

2%UX + 0 + 2% + 1

A U[(PlU.S X Y].l] 2%Ux + 1 + 2%y + 0
AU[(IEC(P]_US X Y)).O] = 2%DX 4+ 1 + 2% + 1

:UL

il

U(Plus X Y) = UX + UY >2*U(Plus X Y) + O 2*%UX + 2%UY

/A 2%U(Plus X Y) + 1 2%UX + 2%y + 1

A 2%U(Plus X Y) + 1 25X 4+ 2%0Y + 1
A 2%U(Inc(Plus X Y)) + 0 = 2%UX + 2%0Y + 2

:Hyp

]

U(Plus X Y) = UX + UY~»2%(UX + UY) 2%(UX + Uy)

A2%(UK + TY) + 1

i

2%(Ux + Uy) + 1

It

A2%UL+ W) + 1 =2%UX+0y) +1

A 2%0 Tne(Plus X YY) = 2%(UX + UY + 1)

i

U(Plus X Y) Ux + Uy > 2%7 Inc(Plus X Y) = 2%(Ux + Uy + 1)

U(Plus X Y)

Ux + Uy = U(Inc(Plus X Y))= Ux + Uy + 1

U(Inc(Plus X Y)) = U(Plus X Y) + 1

: generalize
U(Inc Z) ; PZ + 1 : Correctness of Inc

3.3 Correctness of binary multiplication

U(Mult X Y) = UX * UY ¢ Induction Rule 1
1. UMult X nil) = UX * Unil : Mult3

U nil = UX % Unil

0 = UX*0

2. UMult X Y) = UX * UY > U(Mult X[Y.0]) = X * U[Y.0]

A UMult X[Y.1]) = X * U[Y.1]
: Multl, Mult2

U(Mult X Y) = UX * UY - U[(Mult X Y).0] = X * ((2*UY) + O
A U(Plus[(Mult X Y).0]X) = UX * (2*UY+l)
:correctness of PLUS
U(Mult X Y) = UX * UY » U[(Mult X Y).0] = 2 % UX * UY
A U[(Mult X Y).0] + UX = (2*UX+UY) + WK
: U1
U(Mult X Y) = UX * UY » 25U(Mult X Y) + 0 = 2 * UX * UY

A 2%5U(Mult X Y) + 0 + UX = (2*UX*UY) + UX
Hyp
2 % UX * UY =2 % UX * UY

A (2 % UX* UY) + UX= (2 % UX * UY) + UX

"

4. Complexity

We are interested in determining the time it takes to execute these
logic algorithms on the abstract machine defined in section 2. Each
operation of that machine, consisting of a successful matching, binding and
replacment step is considered to be of time complexity onme. Unsuccessful
matchings are counted as time complexity zero.

It should be noted that if these logic algorithms are rewritten as
Horn clauses by unnesting the nested functions such as PLUS
MULT and INC by use of the law: ?(fxl...xn)'++ éVz(fxl...xn) =z %ﬁ?z) then
if they are executed by a method similar to the operation described
above modified so as to replace the matching step by a unification step
then if each successful unification is counted as time complexity 1 and
each unsucessful one is counted as 0 then the same time complexity will
hold for both the resulting Horn clause algorithms and the original
algorithms.

It may however be argued that basing complexity on the number of
such operations (using a matching algorithms in our case, or a unification
algorithm in the case of Horn clauses) is an unintuitive measure which
has little relation to the real world. In particular, two critisisms
come to mind: First, that our operation is not a fundamental operation
in contemporary computers and thus defining all operations in terms of this
one needlessly makes programs more complex than they need be. Our reply
to this critisism is that our operation which consists of matching
binding and replacement respectively implements the 3 basic machine

operations of condition testing, assignment to a variable and program

10

branching (which includes looping and recursion), and thus does consist
of fundamental operations of a computer. A second critisism is that
although our operation does consist of some fundamental computer operations,
it does not contain all the fundamental computer operations. For example
it does not contain arithmetic instructions for addition and multiplication.
Our reply to this critisism is that if one really wishes one can indeed
agree to let any call of the PLUS function or MULT function from themselves
or each other have complexity O thus making all external calls to them
have complexity 1. However, we also feel that addition and multiplication
are not really all that funcamental at least for micro computers. For
example the Motorola 6800 computer has no multiplication intruction and
only a measly 8 bit addition instruction.

We give below in the table a summary of the complexity of the
six functions described in section 2. This is followed successively in
sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 by derivations of the time complexity

for each of these functions.

Time Complexity Summary

Unary Binary
increment 1 log X = n
addition X (log X)2 = nz
multiplication X2 (log X)3 = n3

notes:

X is the magnitude of the number

n is the number of bits used to represent X as a binary number (re: 2%=x).

11

4,1 Complexity of binary successor

The complexity equation is:
cCl: CX=1
s s

Thus the successor operations has constant complexity.

4.2 Complexity of unary addition

The complexity equations are:
C+l: ((C+ SY) = (¢C+Y) + 1
C+2: (C+ 0) =1
Their closed form solution is
Y
CtY=Z K= ®l
k=0
Thus unary addition is linear with respect to the magnitude of the

2nd argument (ie hopefully the smallest argument).

4.3 Complexity of unary multiplication

The complexity equations are:
C*1l: (C* X XY) = (C* XY) + (C+ X)
c*2: (C* X 0) =1
Since C+ X equals X+1 we get:
C*'1 (C* XsY) = (C* XY) + (X+1)
C*'2 (C*¥XD) =1
Their closed fgrm solution is:
(C* xY) = 1 +2= (X+1) = 1 + (X+1)Y = XY +Y + 1 = 0KY)
K+1

Thus is X and Y are the same size unary multiplication is quadradic

00(2) with respect to the magnitude of the numbers.

4.4 Complexity of binary increment

The complexity equations are:

% *
CIl (CI[X.O]) = 1
* * *
CIZ (CI[X.l]) = CI + 1

* % 1 1
CI3 (CI nil) =

Rewritten in terms:of the number of bits in each number such as [X.0]

these equations become:

% %
That CIX becomes CI2n which is replaced by CIn

t =

CII (CI ntl) = 1
1 3

C;2" (Cpmtl) = (Cpn) +1
' —

c3' (€ 0 =1

Since CIl' and CIZ' are identical we can combine them:
on -
CIl 2 (CI n+l1) (CI n) +1

CI3" (c. 0 =1

I
The closed form solution for these equations is:

(CI n) = n+l

which is easily proven by many induction on n.

CI n =‘n+l
= 4
= * " —_— —-
CI 0=1 'CI3 CI n=n+tl - CI n+l (nt+1)+1
1 =1 _ o,
. CI n = n+l > CI nt+l = (n+l)+1
= (n+l)+1

(n+1)+1

. _on
'CIl 2

12

13

Thus the binary increment function is linear with respect to the number

of bits in the number, and logarithemic (to base 2) with respect to the

magnitude of the number:

C* = nt+l
o = o

*

and C_X = (logZX)+l

I

4.5 Compelxity of binary addition

The complexity equations are:

* %
c1: (C
P P
2. (¢ x.010Y.1
o (p[11 D
¢’3: (c[x.117Y.0])
"3 (CIx110Y.
¢ar (CTIX.110Y.1D)
RGeS
* %
¢’s: (¢ X nil) = 1
P P
% *
C 6: (C nil YY) =1
P P

Rewritten in terms

of the number of bits in each number such as [X.0]

It

these equations become:

Cpl' (Cp nt+l ntl)

c 2" (C_ o+l mtl)
p p

C 3' (C n+l mt+l)
P p

C 4" (C n+l m+l)
p P

C5 (C n 0)
p p

it
(=

i
et

c_6' (Cp 0 m)

]

I

(c
P

(Cp

(Cp

(Cp

[X.0][Y.0]) = (c: XY)+1

(C_ XY)+1

(C_ XY)+l

o I = B

% kS
(Cp XY)+1+CI(Plus XY)

nm)+1
nm)+l
nnm)+1

njn)+l+CI((maX nm)+1)

14

Note that if x has n bits and y has m bits then (Plus xy) has at most
(max n+l mtl) bits, which equals (max nm)+l bits.

Since Cpl—CpS are identical these equations reduce to:

c 1=3' C ntl m+l C nm)+1l
P (P) (D)

c 4 ¢ ntl m+l) = (C +1+C_ (m m)+1
. (P m+1) (an) I(axn)
c 5 C n0) =1

P (p)

c 6' (C Om) =1

P p

For a worst case complexity bound we can let n=m by extending the shorter
number by a sequence of 0's. For example if the number of length n is
[[[nil.1].11.1] and the number of length m is [nil.1] we can extend

the number to be [[[nil.0].0].1]. Then since n=m the Cp complexity

function mneeds only one arguement.

¢ 1-3" (C nt+l) C n)+1
p P P

C 4" C ntl C n)+l+(C. n+l
AT () mH) = € mHIH(C, mHD)

ot

c 5-6" (C_0) =
p b

By letting Cp calculate PLUS's complexity in terms of bits we lost the
actual numbers that it worked on so we have no way of deciding the relative
frequency as to when P1,P2,P3 is used and when P4 is used. Thus we do

not know what weight to give to Cpl—3" and CPA". However for a worst

case analysis we can simply use Cp4" since it costs more than Cpl—3":

15

C 1-4"" (C nt+l) £ (C n)+1+C. n+l
P P P I
c5-6"'" ¢ 0=1

p p

Since CI nt+l = nt+2 we obtain:

C 1-4"" ¢ ntl £ (C n)+nt3

P P p

cC 5-6"" ¢ 0=1

P p

Furthermore, the closed form solution for Cp is:

o n -— n(n+l)
Cn&l+S ®2)=1+3F K+> 2=1+—5 + 2
P k=1 k=1 K-1
n2 n nz 5n
=7+—2— +2n+l=~2~—+—§-—+1

Thus binary addition is quadradic O(nz) with respect to the number of bits,
and hence is the quadradic of a logarithm with respect to the magnitude

of the number:

2
. A
JFomL L L om Ly

P 2 2
* (log, X) 5 2
Cp X S + E-log2 X+1-= O((log2 X))

4.6 Complexity of binary multiplication

The complexity equations are:

*l _ * Lk
c,l= (Cm X[y.0]) = (Cm XY)+1

C*2 _ % ok *

= (Cm X[Y.1]) = (Cm X&T)+1+(Cp[(Mult XY).01x)
* *
C3= (C_Xnil) =1

m m

16

Rewritten in terms of the number of bit these equations become:

1 "
le (Cm n mtl) (Cm n m)+1

CmZ‘ (Cm n m+l) (Cm n m.)+1+(Cp (n+m)+1 n)

A o
Cm3 (Cm n0) =1

Note that if X has n bits and Y has m bits then (Mult X Y) has at most
n+tm bits:
(#bits in X-Y < log,(X-Y) = 1og2(2“-zm) = log, 2™ 4 log, 2™ = n+m)
As in our calculation of the complexity of PLUS we can bound the complexity
of the two argument (Cp n m) function by letting n=m. Thus in the above

equations we can replace (Cp nt+m+l n) by (Cp ntmt+l) getting

" n
le (Cm m+l) (Cm n m)+1

]

1"
CmZ (Cm n mtl) (Cm n m)+1+(Cp n+m+1)
cC3" (C n0) =1
m m

Combining le" and Cm2" for a worst case analysis we get:

C 1,2"" (C_ n mtl) < (C_ n m)+1l (C_ ntmtl)
m m - m p

"t
Cm3 (Cm n 0) 1

2

LS §E~+ 1 we get:

2 2
2
(n+mtl) 5 (ntmt+1)
(Cm n m+l) §~(Cm nm + 1+ 5 + 5

Since C n £
p s

+ 1

(Cm'n 0) =1

17

The closed form solution of (Cm n m is

m 2
Cm nm<1l+ ¢ (1+ (n+(K;l)+l) + 5(n+§k—l)+l) 1

K=1
TR’ 5 (n+K)

=1+ I - + ST 42
K=1
m 2. .2

=14+ z (n +K"+2n + 5n+5K +2)
=1 2 2
K=1 2
m 2 2

=1+ 3 (%+2112+5K+n+;n+4)
K=1

2

3 3 1
+ 5 m +-§‘mn + (3§)m + 1

Finally, assuming that m and n are initially the same size we find that
the complexity of binary multiplication is cubic with respect to the number

of bits.
3 10

3
C D T T 23 43243 t1l=00@D)
mn-— 6 3

o~

Therefore, the complexity of binary multiplication is the logarithm of the

cubic with respect to the magnitude of the numbers being multiplied.

%
¢ 2™ = o(n
m

)

c;x - 0((log X))

