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Abstract

A comparative study of generalized cooccurrence
texture analysis tools is presented. A generalized
cooccurrence matrix (GCM) reflects the shape, size and
spatial arrangement of texture features. The particular
texture features considered in this paper are:

1)} pixel-intensity, for which generalized cooccurrence
reduces to traditional cooccurrence; 2) edge-pixel;
and 3) extended-edges. The best classification
results, using pairs of descriptors computed from
GCM's, were obtained using edge-pixel. This is
consistent with the results reported in [4]. In
addition, results are reported based on first-order
statistics of edge-pixels and extended-edges.

1. Introduction

The ability to describe and discriminate between
textures is crucial for the solution of many problems
in image processing. A textured area in an image is
characterized by a non-uniform, or varying, spatial
distribution of intensity. The variation may be
regular, such as the grating texture displayed in
Figure la, or it may be more random, such as the swamp
texture displayed in Figure 1b.

The intensity variation in an image texture
ordinarily reflects some variation in the scene being
imaged. For example, an image of mountainous terrain
would appear textured. The specific appearance of that
texture depends on the surface topography and albedo,
the illumination of the surface, and the position and
frequency response of the viewer. Or, as a second
example, an X-ray of diseased tissuemay appear textured
due to the different absorption coefficients of healthy
and diseased cells within the tissue.

There are, in general, two approaches to developing
models for image texture. The first is to develop
precise models for the scene being imaged, the
illumination and the viewer. Image texture can, then,
be theoretically related to the underlying physical
scene variations (such as surface orientation). Such
models are ordinarily very difficult to construct.

Horn [1] has devoted a considerable amount of effort
towards developing such models. The work by Barrow and
Tenenbaum [2] on "intrinsic images" is also relevant.

The second approach treats the image texture
directly, without specific regard to the physical basis
of the image. Here, one hopes to develop computational
tools which are generally useful for describing image
texture. The tools may be designed with respect to
some mathematical image model. For example, in [3], a
variety of mosaic models were considered as mathematical
models for image texture, and it was shown that such
models could, in practice, be discriminated based on
their variograms, which is the expected square
difference 1in intensity between a pair of points as a
function of distance between the points. Alternatively,
the design of such tools may be motivated by less
formal and more intuitive notions of what is "crucial"
for describing texture. To a certain extent, one is
almost always forced to rely on intuition and
experience, since the mathematical image models almost
never characterize the real textures at hand
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sufficiently well to be directly applied to their
analysis.

This paper develops a tool for image texture
analysis called a Generalized Cooccurrence Matrix, or
GCM.  GCM's were first introduced by Davis et al [4]
as a general-purpose tool for image texture description.
They are based on a model of image texture as a two-
dimensional arrangement of texture elements, or
primitives. So, for example, the texture in Figure la
is a regular arrangement of diamonds. The texture
in Figure 1b is not naturally described in terms of
primitives and their arrangement. Therefore, the GCM
model might not be appropriate for describing it.

GCM's do not describe textures by directly
describing the shape and spatial arrangement of the
texture elements (Maleson [5] describes such an
approach). Rather, they describe the spatial
arrangement of local image features, such as edges and
lines. These local features are generally easier to
compute than the texture elements themselves.

Section 2 contains a more precise definition of GCM's.
Such features are usually physically significant, i.e.,
they correspond to important physical discontinuities
{reflectance, orientation, etc.) in the underlying
scene. There is also psychophysical evidence that
such local features play a prominent role in human
texture perception [6].

Earlier image based approaches to texture
description include those based on grey level
cooccurrence matrices (Haralick et al [71), grey level
difference histograms (Rosenfeld et al [8]) and the
power spectrum of the texture (Bajscy [9]).

Given an image, I(x,y), 1<x,y<n with 0<I(x,y) <Kk,
k being the maximum grey level, the grey level
cooccurrence matrix (GLCM) for that image at
displacement A= (Ax,Ay), C,» s defined by

Culigsip) =
HUOGY) s (xkax,y+ay) ) 0 Tx,y)=1p, Txtax,y+by)=i,}

#LLOGY) S (XHAX,y+Ay) ) 1 1< X, Y x+AX,y+Ay <n}

where #S is the number of elements in set S. CA(il,iz)

is an estimate of the probability that the grey level
pair (il,iz) will be found at a pair of image pixels

separated by displacement A. The entries in CA are

thus called grey level cooccurrence probabilities.
Various descriptors can be computed from CA to describe

the texture. For example, the "contrast" descriptor

k k 5

I (=-9)° ¢, (4.9)

i=1 j=1
can reflect the size of texture elements. For small A,
Tow contrast ordinarily corresponds to texture
elements which are wide in the direction of A.
Haralick et al [7] discuss many other features. GCM's
are a generalization of GLCM's which describe spatial
distributions of local features rather than spatial
distributions of intensity.

The grey level difference histograms, D,, for

A’
displacement A, are defined by
DA(1) =

#{ () (x+ax,y+08y) ) TG Y ) =T (x+8x,y+Ay) | = i}

#LO(XsY) s (XHAX,y+AY) ) 1 1 <X,y x+AX, y+Ay <n}



DA contains less information than CA because

k-1 k
) 3=0 3=
D,.(i) =
A k » 3 Ry
I C,(3:3), i=0 .
Jj=0

However, it is often true that descriptors computed
from DA describe textures as well as descriptors

computed from CA (see, e.g., the comparative study by
Weszka et al [101).

since its storage requirements are lower than C.
Finally, the power spectrum of the texture can be
used to compute texture descriptors. Llet PI(e,r) be a

polar representation of the power spectrum of I. Then
texture descriptors reflecting texture element size
can be computed from rings R(rl,rz) in PI where

In such a case DA is preferable,

r 21
_ 2
R(rl,rz) = J J P(8,r)dedr,
] 0

Descriptors reflecting texture directionality can be
computed from wedges, w(el,ez), in PI where

2n 0
~ 2
W(sy.6,) = | [ 2 pylo,r)dodr.
0 91

Weszka et al [10] used, as descriptors, the
intersection of rings and wedges, RW(rl,rz,el,ez)
defined as

r, 8
_ 2172
RH(ryary,01.8,) = J; Jé P, (5,r)dedr
1 71

but found such descriptors not as powerful as
descriptors computed from DA or CA for texture

classification. As Haralick [111 points out, this is
not surprising, since for a texture which is Markov,
the grey level cooccurrence probabilities can be used
to compute the autocorrelation of the texture.

CA’ DA and PI are the most frequently used sources

of texture descriptors, but many other sources have
been proposed. Haralick's survey [11] contains an
extensive review.

2. Generalized Cooccurrence Matrices

GCM's describe image textures by describing the
spatial organization of image features. A particular
GCM is defined by specifying

1) an image feature prototype, P,
2) a spatial predicate, S, and
3) a prototype attribute, A.

The prototype can be regarded as the structural
definition of the image features of interest, or, more
simply, as a 1ist of prototype attributes. For
example, the prototype edge-pixel can be defined as
follows with three attributes

edge-pixel
Jocation: {x,y), l<x,y<n
orientation: 6, 0<6<2n
contrast: C, 0<C<k

As a second example, consider the prototype

extended edge
extended-edge

endl:  (xp>yq)s 1<Xpypsn

end?2: (Xz,yz)s 1_<_XstZin

-1 Y1792
X17%2

orientation: 6 =tan , 0<6<2n

length: £=\/(x1-x2)2 + (y2—y1)2, 0<2<n/Z

Both of these prototypes will be used in the
experiments described in Section 3.

A spatial predicate is a mapping from image feature
pairs into {TRUE,FALSE}. For example, the spatial
predicate Sk, defined over pairs of edge-pixels

((x15¥1)581:C1) 5 ((x55¥5)56,5C)) 5 1s true if

max{ [x)-x, | lyy ¥, |} <

Now, suppose we are given a set of image features
F= {fl,fz,...,fm}, each of which is structured

according to some given prototype definition. Llet S be

a given spatial predicate defined over that prototype

and Tet A be the attribute of interest. We will let

Af’ refer to the value of the attribute for feature fi’
i

Then, the GCM, GS A is defined by

#(FLHF5): Af;vl,Af;vz,S(fi,fj) = TRUE}
#O(FG-F5)0 S(FL.F5) = TRUE)

Gg alvyavy) =

As an example, consider Figure 2. The prototype is
edge-pixel. Figure 2a shows the spatial distribution
of edge-pixels for some texture (a blank means that
no edge-pixel feature was detected at that image point).
An H stands for horizontal edge, V vertical, L left
diagonal and R right diagonal. The attribute is
orientation, 8, and the spatial predicate is Sl which

assigns true to all pairs of edge pixels within
distance 1 of one another. Figure 2b shows the GCM,
Gy -
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Note that a grey level cooccurrence matrix, CA, is
a special case of a GCM with prototype

pixel-intensity

Tocation: (x,y), 1<x,y<n

intensity: 1, 0<i<k,

prototype attribute intensity, and a spatial predicate
which assigns the value true to pairs of
pixel-intensity features, ((x;5y7)s11)5((X55¥5)515),
. . 1’71721 27272
with either
x1 = x2+Ax, y1 = y2+Ay or
Xy = x1+Ax, Yo 7 y1+Ay.

The experimental study described in Section 3 will
compare the three prototypes: pixel-intensity,
edge-pixel, and extended-edge. Before describing the
details of that study, we will discuss the computation
of the spatial predicates and descriptors which the
study will use.

A. Pixel-intensity spatial predicates

Ordinarily, when computing a grey level cooccurrence
matrix, rather than using a single displacement, A, one
uses a set of displacements, U=={A1,A2,...,Am}.
cooccurrence matrix, CD’ can then be defined by

m N N
by Sy

We define the two sets

Dl=
{(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,—1),(-1,0),(—1,1)}
and 0, = {(0,2),(2,0),(0,-2),(-2,0)}

oy L 1
CD(1,J) - m



and then define the spatial predicates SD , h=1,2
over pixel-intensity by h

S, (f.,f.) =
Dh i3

TRUE iff x1:=x2+Ax, Y1 =Ypthy, for (Ax,Ay)s:D,n

Figures 3a and 3b illustrate the spatial predicates
SD and SD .

1 2
B. Edge-pixel spatial predicates

Three spatial predicates will be used to compute

GCM's for edge pixels. The first is Sk (defined

previously) which is true if the distance between two
edge-pixels is Tess than or equal to k.

The second spatial predicate examines a cone-shaped
region of a fixed size along the orientation of an
edge-pixel. Figure 4a illustrates this predicate,
called Sa . The last spatial predicate examines a

k
cone-shaped neighborhood of a fixed size which is
orthogonal to the orientation of an edge-pixel. This
predicate, SO , is illustrated in Figure 4b. For a
k

feature pair fi and fj, both Sak
true if fj 1ies in one of the appropriately oriented

and SO evaluate to
k

cones centered at fi‘

Intuitively, S, and SO should be useful for

a
k
determining the elongatedness and width of the texture

elements. For elongated texture elements, GS 6
a s

k
would have high values along the main diagonal since
edges of elongated shapes tend to "line up".

Similarly, for narrow texture elements, GS 6 should

9

have high values along the main diagonal.

C. Extended-edge spatial predicates
The extended-edge spatial predicates are similar to
the edge-pixel spatial predicates. Two such spatial
predicates will be defined: one which lTooks along the
direction of the extended-edge, and one which Tooks
orthogonal to the direction of the extended-edge.
Figure 5a illustrates the spatial predicate, Sa

k

Sa (fi’fj) is true if one end of the extended-edge fj
k

lies in one of the kxk neighborhoods centered about

either end of fi' In this case fi and fj meet within

that neighborhood of size k.
The other spatial predicate, SN , is defined
k
similarly, except that the neighborhoods emanate from
the center of fi (see Figure 5b).

Note that although the spatial predicates
associated with extended-edges are more complex than
those associated with edge-pixels, the overall
computational effort of computing GCM's for extended-
edges is comparable to that for edge-pixels since,
in general, there are far fewer extended-edges than
edge-pixels.

D. Descriptors
GCM's can be directly used to represent a texture

class. However, it is ordinarily sufficient, for the
purposes of classification, to represent a texture
class by a small set of texture descriptors computed
from the GCM. These descriptors are similar to the
ones described by Haralick et al [7] for grey level
cooccurrence matrices. They include:

1) Contrast--For a grey level cooccurrence matrix,
CA, the contrast descriptor was defined ([71) as

DT (-)% ¢, (i.3).
LN}

For a GCM, GS X contrast is defined similarly as
%JZd(hj) Gg a(1,3).

Here, d(1,j) is a dissimilarity measure which depends
on A. For example, when A is orientation, we take

d(i,3) = |sin(i-j)|. When A is length or intensity,
then we use d(i,J) =(i-J)2-

2) Uniformity--The uniformity descriptor is defined

by 2
Ge A(1.3))°.
%% (65 A(153))

Uniformity is Towest when all elements of G have equal
value.

3) Entropy--The entropy descriptor is defined by

4) Correlation--The correlation descriptor is
defined by

(1565 4(1,3) -] u3)

1]
Z Z R >
13 1J
ro. .th Cc .
where u; is the mean of the i row, uj is the mean of
the jth column, o: is the standard deviation of the ith

h

row and cg is the standard deviation of the jt column.

In [4], Davis et al discuss, informally, the
relationship between these descriptors and various
aspects of texture, such as shape, size and placement
of the texture elements. Section 3 presents an
experimental study using these descriptors for GCM's
based on pixel-intensity, edge-pixel and extended-edge
prototype features. In addition, classification
results based on first-order statistics of edge-pixel
attributes and extended-edge attributes are included.

3. Experimental Study

An experiment was designed and performed to compare
the descriptive power of image features such as pixel-
intensity, edge-pixel and extended-edge. Eight classes
of natural textures were used. They are shown in
Figure 6 and include brick, striated concrete, grating,
metal scrap, orchard, pebbles, shrubs and tree bark.
These images were digitized using a flying spot scanner
system to a resolution of 256x256 pixels, with each
pixel intensity digitized to six bits. The first-order
grey level distributions of all of the textures were
then normalized to uniform distributions, so that
differences in brightness could not be used to
discriminate the textures. The grey scale normalization
procedure is described in Rosenfeld and Kak [12].
Sixteen 64x64 samples were then extracted from each
digitized image, and these formed the database for the
classification experiment. Figure 7 contains one
sample from each class.

The study used a Teave-one-out classifier. In this
method, all samples but one in the data set are used as
the training set. The remaining sample is then
classified using the statistics derived from the
training set. The sample is classified using the
following distance measure: Let f be the descriptor
vector for an unknown example, and let DC and BC be the

mean and standard deviation vectors for class c. Then

the distance from f to class ¢ is



The unknown is then assigned to the class for which
this distance measure is minimal.

Before presenting the experimental results, the
procedures for computing the image features edge-pixel
and extended-edge will be described.

Edge-pixels are detected using an edge detection
procedure based on an adaptation of the edge operator
suggested by Kirsch [13]. The operator breaks the 5x5
neighborhood of a picture point, x, into the 9 regions
shown in Figure 8. The contrast, C(x), of the edge
operator at point x is then

: % %
max | 5+ ro s~ 3% [
i=0 FEVERAC I == R

with subscript addition computed modulc 8. Here, r,

j
is the average grey level in the 1th block. An
orientation 6{x) is also associated with x, and is
determined by the value of i which maximizes the above
expression. For example, if i=0 maximizes the
expression, then the orientation associated with x is
horizontal. Let C(x) and 8{(x) denote the contrast and
orientation at point x. Then the following two step
process detects edges based on C(x) and 8{(x).

1) Threshold--Eliminate as edges all x with C(x) <t.

2) Peak selection--Consider the line segment of
Jength 2d and orientation 6(x) + /2 passing through x.
Eliminate x as an edge if there is an x' on this Tine
with C(x") > C(x).

Thresholding alone is not sufficient, since the
edge operator gives high contrast not only to points
at edges, but also to points near edges. Peak
selection alone will not remove spurious, low-value
peaks in the interjors of texture elements or in the
background. Note that thresholding and peak selection
commute, so that steps 1 and 2 could be reversed.
Figure 9 shows the edge-pixels detected for the
samples shown in Figure 7.

Extended-edges correspond to connected components of
constant orientation edge-pixels. Each such connected
component is represented by a line segment joining a
suitably defined pair of extremal points. For example,
for a component of horizontal edge-pixels, the line
segment joins the left-most edge-pixel to the right-
most edge-pixel. Figure 10 contains an example of
extended-edges superimposed on top of an original grey
scale texture.

The results of the experiment using descriptors from
GCM's are summarized in Tables 1-2. For each prototype
and spatial predicate, the best descriptor pair is
Tisted along with the percentage classification. The
results shown in Table 1 are consistent with those
reported in [4]; the edge-pixel cooccurrence statistics
give higher classification rates than the pixel-
intensity cooccurrence statistics (61% vs. 52%).
0f course, two features are not enough to provide
satisfactory classification rates in either case.
Adding more features leads to somewhat higher
classification rates.

The poor results for extended-edge cooccurrence are
at first surprising, since one would expect that the
long edges would more naturally reflect the shapes of
the texture elements. However, several factors
contribute to their poor performance:

1) the number of extended-edges in any one texture
sample is rather small, so that the GCM's are quite
sparse. In such situations, the descriptors cannot be
expected to be very reliable.

2) Extended-edges were computed using the simplest
possible algorithm. The reason for choosing that
algorithm was computational efficiency--the entire
process of detecting edges and computing connected

components of constant orientation can be accomplished
in a single pass through the texture. A more complex
procedure would have produced better extended-edges,
but at the expense of higher computing costs.

We are currently pursuing several potential
sclutions to the second problem. One, for which
preliminary results are not particularly encouraging,
involves applying a "relaxation” procedure [14] to the
output of the edge operator to enhance its results.
This tends to be quite expensive and not to improve the
orientation of the edges. A second, and more promising,
approach is to develop optimal edge detection operators
for cellular textures. This work is described in Davis
and Mitiche [15].

Since others (Marr [16], Weszka et al [10]1) have
suggested that first-order statistics of edges should
provide adequate texture descriptors, we performed the
same classification experiment using pairs of first-
order statistics of edge-pixels and extended-edges.

For edge-pixels, the statistics considered were average
orientation and standard deviation of orientation.

For extended-edges, we considered average length and
orientation, and standard deviation of length and
orientation. The results were quite surprising, and
are contained in Table 2. The sparsity of the
extended-edge GCM helps to explain why first-order
extended-edge statistics provide higher classification
rates than GCM extended-edge descriptors. The results
for pixel-edges are not as simple to explain. However,
an important factor is that the GCM descriptors are
invariant to rotations of the original textures. For
example, in the contrast descriptor, the dissimilarity
measure is based on the sine of the difference between
two angles; that difference is invariant to the
addition of a constant to each angle, which is the
result of rotation. The first-order statistics, on the
other hand, are not all rotation invariant. Average
orientation was one of the best first-order edge-pixel
statistics, and this statistic is obviously not
invariant to rotations of the textures. One can see
from the scatter plot in Figure 11 that if the
gratings, G, had been rotated by 45°, they would have
penetrated other clusters, and the classification
accuracy would have been lowered.

4. Summary

In [4], GCM's were introduced as a new tool for
image texture analysis, and the results of a small
experimental study were reported comparing descriptors
obtained from pixel-edge and pixel-intensity based
GCM's. In this paper, we have also considered the
prototype extended-edge, and the experimental study
covered a much larger database and included a
comparison of GCM descriptors with first-order
statistics of pixel-edges and extended-edges. The
results reported here are consistent with those
reported in [4]; the edge based GCM's provided higher
classification rates than the intensity based GCM's,
which correspond to the conventional cooccurrence
matrices. The higher classification rates obtained
using first-order statistics should be interpreted
cautiously, since, as discussed, the first-order
statistics chosen were not all rotation invariant.

For the database which we considered, where all samples
of a texture were drawn from a single, larger frame in
which the texture was "stationary", the rotational
variance of some of the first-order statistics enhanced
their classification power. In other situations this
might not be true.
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Figure 1. A regular and a random texture.
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Figure 2. A simple example of a GCM.
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Figure 3. Pixel intensity spatial predicates.
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Figure 5.
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Spatial predicates for edge-pixels.
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Spatial predicates for extended-edges.



c) metal (M) g) orchard (0)

d) grating (G) h) pebbles (P)
Figure 6. Texture classes-- single letter codes for scatter plots in parentheses.

6



9d

Fig. 7. One normalized Fig. 9. Edge-pixels for
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Prototype

pixel-intensity

edge-pixel

extended-edge

Prototype

edge-pixel

extended-edge

Table 2.

Attribute Spatial Predicate Best Pair
intensity SD contrast
1 correlation
SD contrast
2 correlation
orientation S2 correlation
uniformity
54 contrast
entropy
Sa contrast
3 uniformity
Sa contrast
7 uniformity
SO contrast
3 uniformity
SO contrast
7 entropy
length/orientation Sa contrast
3 correlation
Sa contrast
5 uniformity
Sa contrast
7 uniformity
SN contrast
5 uniformity
Table 1. Comparative results for various GCM's.

Best Pair Accuracy
average orientation 77%

standard deviation orientation

average orientation ] 64%
standard deviation orientation

First-order statistics results.

Accuracy

53%

52%

55%

55%

59%

49%

49%

61%

36%

49%

52%

32%



