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Abstract

A single server queue with feedback and
analyzed. Arrival processes are independent
service is exponentially distributed. After
customer may depart or rejoin the end of the

probability that is dependent upon his class

multiple customer classes is
Poisson processes. Each round of
receiving a round of service, a
queue for more service with a

membership and number of rounds of

service achieved. By properly defining customer classes, a wide range of non-

exponential service time requirements are admissible in this model. Our main

contribution is characterization of response time distributions for the customer

classes. Our results generalize in some respects previous analyses of processor-

sharing models. They also represent initial

efforts to understand response time

behavior along paths with loops in local balanced queueing networks.






1. Introduction

Many service facilities can be modeled as a feedback queue such as shown in
Figure 1. Of interest in this paper is a single-server queue with infinite waiting
. , th .
room and R classes of customers. The arrival process of the r = class is an
independent Poisson process (r = 1, 2, ... R). FEach new arrival joins the end
of the queue., The customer at the head of the queue receives from the server a

round of service which is an independent exponentially distributed random variable

with mean 1/p seconds. After recelving a round of service, a customer may depart
or rejoin the end of the queue for more service, depending upon his class membership

and number of rounds of service achieved.
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Figure 1. A feedback queue model.



The queue length distribution of the above model is readily available
since the multi-class feedback queue described is an open queueing network
satisfying local balance [1]. The contribution of this paper is to characterize
response time distributions of the different classes of customers.

Relationship to prior work

Our feedback queue model is like a time-sharing model with exponentially
distributed service "quantums.'" Time-sharing models were first studied by
Kleinrock [2] who solved for the mean response time of a customer conditioning
on his service requirement. He considered two cases: (a) constant quantum size
A, and (b) the limiting case of A > 0 called processor-sharing. Customers were
assumed to arrive according to a Poisson process. In case (a), the number of
service quantums required by a customer is geometrically distributed. In case
(b), the service requirements are characterized by an exponential distribution.
(This is called the processor-sharing M/M/1 queue.) Kleinrock's conditional
mean response time result was later shown to hold for a processor-sharing
M/G/1 queue (i.e. service requirements characterized by a general distribution)
as well by Sakata, Noguchi and Oizumi [3]. Higher order response time statistics
are much harder to get. The response time distribution for the processor—
sharing M/M/1 queue was obtained by Coffman, Muntz and Trotter [4].

Our feedback queue model is different from the time—-sharing models in
some respects. A round of service in our model, corresponding to a service
quantum in time-sharing models, is exponentially distributed. Our model can
be used, however, to approximate processor-sharing by making 1/u very small.

Distributions of service requirements that are admissible in our model are
those with moment generating functions of the form

x e i
Bi(s) = 3 a(F) (i (1)



(r)

where a;”" can be interpreted as the probability of a class r customer requiring
exactly i rounds of service. .{}ér), 1 <1ix E{Z can be an arbitrary set of prob-
abilities that sum to one and may be different for different customer classes.

Our model is also different from the feedback queue model of Takics [5]. 1In
his model, each round of service can have a general distribution. However, he
considered a single class of customers only and the number of rounds of service
required by a customer is geometrically distributed; in other words, after each
round of service, a customer always departs with probability (1-p) and rejoins
the end of the queue with probability p (memoryless behavior).

The original motivation of this work stems from our efforts to characterize
the response time in a network of queues. For a network of FCFS queues that
satisfies local balance, J. Wong [6] found the response time distribution of
customers traversing loop-free paths. Our results in this paper represent efforts
to understand the response time behavior along paths with loops in the simplest

form of queueing networks satisfying local balance.

Assumptions and definitions

We shall, without any loss of generality, consider the following model. There
are R classes of customers. The arrival process of the rth class is Poisson at
rate Y. customers per second. A class r customer réquires exactly r rounds of
service. It should be obvious that if we can derive response time distributions
for this model, response time distributions for any model with service time re—
quirements characterized by Eq. (1) can be easily obtained.

Let tr be the response time of attaining exactly r rounds of service;
r=1, 2, ... R and obviously ta = 0. We shall solve for its moment generating
function

Tr&(s) = E[e-Str]



where E[-] denotes the expectation of the function of random variable(s) inside
the brackets.
We shall only consider steady-state results. TFor a single-server

queue, stationarity is assured if the traffic intensity p < 1 where
R
p =73 yr(r/u); see Cohen [7].
r=1
Let us follow the progress of a "tagged" customer and introduce some more

notation. Upon his initial arrival, the tagged customer finds nk customers in
the queue (k = 1, 2, ..., R):; each such customer has exactly k more rounds of
service to go. The system state thus found at an arrival instant is denoted by
n = (nl, Dys eves nR) and is described by the moment generating function

P*{g) = E[zlnl 2,2 ...z "R)

2 R

where z is the shorthand notation for (z Zos enes ZR).

l’

h . ,
At the end of the tagged customer's rt round of service (given that he
requires at least r rounds), let the system state at that instant be denoted by

is the number of customers who

R
@ _r a®,
% k=l
In order to characterize Tr (s), we shall need to first characterize the

joint distribution of ¢ and g(r), which is described by

~-st (r) (r) (r)
U_"(s, 2) = Ele Ta M 2™ R

I_n_(r) - (mér) mér) i (

eens mR?) } where mir)

3

have exactly k more rounds of service to go. Define M

Z

Summary of results

We derived a recursive equation relating Ui+l(sxg) to U:(s,.g) [Lemma 27.
An explicit solution of Ur*(s,‘g) is found, from which Tj(s) is obtained
[Theorem 1]. We then proved that the stationary distribution of E(r)’ r=1, 2, ... R,
is the same as that of n [Theorem 2]. With this result, we solve for the mean
value of tr [Theorem 3]; this last result is similar to the mean response time

result of processor-sharing models. Finally, we provide an efficient recursive



algorithm to calculate the second order statistics of t, [Theorem 4].

2. The Analysis

Consider the system state n = (nl, Doy wees nR) at arrival instants.
Recall that nk is the number of customers with exactly k more rounds of service
to go. Let us redefine the meaning of customer classes to correspond to

. th .
n,, 1 eeensy T Hence the aggregate arrival rate of customers to the k  class is

R’

A =%
= 'Y.

kogox F 2)

since any new arrival who requires at least k rounds of service must enter and

2)

leave the kth class exactly once.

Lemma 1. The moment generating function of n is

(3)
P*(g) = 2

1

1 —
R
“kE1PK P

where o = Ak/u and p =k§l G

Proof. Given Poisson arrival processes and that each round of service is
exponentially distributed with the same mean (1/u), we have an open queueing
network that satisfies local balance [1]. Eq. (3) has been obtained by Reiser
and Kobayashi [8]. (Q. E. D.)

Since each round of service is exponentially distributed, it has the moment

generating function

() = (%)

%
A recursive solution of Ur (s, z) is next given.
Lemma 2

Ui(s, 2 = P (2) (5)

U;l(s’ 2z) =y,(s, 2) Ui(s, y(s, 2)) r>0 (6)



where
y (s, 2) = (yl(s, z), v,(s, 2), e, vg(s, 2)),
* R
yl(s,_g) =B (s +i£1 Y, (1 -z,
and
yk(s, z) = Zh1 yl(s, z) for 2 <k <R

(0)

%
Proof. For r = 0, tg = 0 and m = n. This and the definition of Ur(s,.g)

vield (5) at once.

To show (6), consider the time period between t, and ¢ during which

R
(r) + 1 customers, where M(r)zkél mér) and the extra one is

for the tagged customer's (r + l)St round. During the same time period,

+1

the server served M

each class k customer became a class (k - 1) customer where k = 2, 3, ... R.

Furthermore, let Ak(t) be the number of external new arrivals to class k during

time t(= tr+1—tr) according to a Poisson process of rate Yy customers per
. . . . (r+1)
second. We note that class R is an exception in that its me customers are all

. e T
new arrivals. Thus, conditioning on tr and E( ), we have

(r) (r)
N My “HA(8) mg T A, (b) A, (6)
Ut (85 2/t 2y = gt 2 Zy ez /e, a7
-Str R mlgr) -st Al(t) AZ (t) AR(t) ( )
= e (H~2 Z 1 ) Ele zy z, oo Zp )
(r)

+ .
The last quantity on the right hand side is (yl(s, E))M 1 because t is the sum

of M(r)+1 independent identically distributed random variables with the moment

%
generating function B (s). The above equation can be rewritten as



o (r) R
=y, (s, 2) {e5r y (s, 2™ " 1
1 1 k=2

U (s, 2/t m) (z_y v1(s» 2))

(r)

Unconditioning on t. and m , (6) follows. (Q.E.D.)

% ES
Explicit solutions for Ur (s, z) and Tr (s) can now be shown.

% -
Theorem 1. (i) U (s, z) = 1« P r >0 (7)
T r -8 o (s B
s) - % s)z
r k=1 k,r k

where Pr(s) and Qk r(s) are polynomials in s, and given by
r

? ) i -(1+§+ ) -1 0 0 o- rlq

r(s u Dl
Ql’r(s) Yqi/u 0 1 0 0 oy

@ B @ v ? °

. o R 1 0 .

0 0. 0 1 0

A1, (8 YR-1/1 R-1i
QR,I‘<S) YR/U 0 0. 0 O.J pR
- o = - -

l-0

(1) T (s) =
r R
Pr(S) -kile,r(s)

(1) =

Proof. Because of (3) and (5), (7) holds for r

0 with Po(s) = 1 and
Qk O(s) =0 for 1 < k < R. Assuming that (7) holds for r, we use (6) and (4)

to express U;+l(s,‘g) as follows.

(r)

(8)
(9

}



x -
U pq(ss 2) o e - —— — L2
' Q, _(s) Q (s) 2
1+2 43 —(1-2)) P _(s) - 1,2 e —lgly’r 5
1=1 g i
1 +L-+i_z__1 y (1 -z,

= 1 - P

R
s Yo R-1 Yk Y
{@+ . +i£l ;i)Pr(s) - Ql’r(s)} -z [;~Pr(s) + Qk+1’r(s)]zkgaRzR?r(s)

Thus, the form of (7) is maintained, and it is evident from the above that

F’ R r v ol s
S
P 108 (1 + ” +p) -1 0... 0 P _(s)
Ql,r+l(8) Yl/u 0 1 . Ql,r(s)
@ = ° ® (10)
-3 > 0 l .
QR,r-!-l(S) Yelu o+ e e - 0 0 QR,r(S)
- - . _ " _

The recursion in (10) started at r = 0 clearly yields (8).
% *
(i1) (9) follows from (7) and Tr(s) = U;(S, 1). (Q.E.D.)
%
For r = 1, 2 and 3, we show Ur(s, z) below.
1-p

R
L "kE1fr%

v, ¢
1 (85 2)

1-p

i

*
U, (s, 2)

s,2,s B S
+ %8, oy =
(l U) upl k:l(pk+ uzyk)zk



R-1 v,

% 8.3 8,2 s 2 i §y2 . s
U, (s,2) = (1 p)/{ D+ 2607 oy + 1 (opt20p40) ) -1y {57 1A+ + 2 0]

Y. Y
i+l s R s.2 s
+ 4 == - = = =
[ogyy + o Slfzy - oF [a+2)2 + 20 sz
ES ®
From the above, we obtain ’I‘r (¢) for r = 1, 2 and 3 by letting z = 1 in ﬁr (s, z).
* -
1+ -
( u) P
% -
TZ’(S) - 1-0
2
142y “-
( u) P
* _ 1 - o)
T,y (s)

3 Sy 2
1+3° + 5. -
( u) pl(u) P
% %
We note that the solutions for Ui (s, z) and Tr (s) become quite complex if

one tries to solve for Pr(s) and Qk r(s) explicitly using the matrix equation (8)
b

when r > 4. 1In what follows, we turn our attention to finding the moments of t_.

(r).

To do so, we need the following result concerning the distribution of m

(r)

Theorem 2. For any r > O, m and n have the same stationary distribution.

That is m(r) m(r) m(r)

1 2 R
z

U0, ) =Bz, Doz, t g B 1=P (@ (11)

Proof. By (5), (11) holds true for r = 0. Assume that (11) holds true for some r

* *
so that Ur (0, z) =P (z). By (6) and the induction hypothesis,

% _ )
Ur+l(0,_g) y1(0,~3). .
1-2 p, vy (0, 2
k=1 Kk Tk~
1-p

R-1
7,0, » = ®1 iy P A



which is P (z). The

10

1-p
R Y. R-1
142, =2 (- - -
=1 72 —eml ey %
1 ~-0p
,_ B
“kE1 Pk %

last equality is obtained using the following relationships:

MR
P17 Tigi Ty
and
Mk,
kTU T Prn for 1<k <R- 1. (Q.E.D.)
The moments of tr can be obtained from the moment generating function of t
T
and_g(r) as follows.
: n
n, _ n 9 *
E[tr 1=¢D Nl Ur(s’~§)’ s =0, z =1
s — phny
n’gn' %
= (-1) — Ur(s,z,z, ces z)‘ =0, 2z=1 12)

s
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Theorem 3. The conditional mean response time is

_r/u
Bt ] =37 o (13)

Proof. Using (6) and (12), we have

- _ 9 p* _ * i
Elt 4] = - 55 (B (s+X; (1-2)) U (s, y(z,2, ..., z) g 2 0, z =1
~-st (r)
1 o, Ptroox o M
= E[as{e (B (s)) }]s =0
1 (r), 1
==~ {-E[t_] - E[M =1
" {-E[ r] [ ] .
By (11),
(r), _ 3 _* __p
E[M 1 = e P (z,z, ..., z)]z 115
Substituting this into the above expression for E[tr+l], we have
_ _1/u
B[t 1 =32 5t Eft ]
which yields (13) by induction starting with E[to] = 0, (Q.E.D.)

Theorem 4. The second order statistics of the conditional response time can be

found recursively using

Var(tr+l) = Var(tr) + ~%—:¥2E% +2 E[trM(r)] (14)
v (1-p)
(r+1), _ (r+1)
Ele oM 71 =32y Ble om0 (15)
and_
204 Y. Y.
1 T
E{tr+1m§r+ 7 - — + 5 +'ﬁ£ E[trM<r)]+E[tr miii] 1<i<R (16)
n (1-p) @1 - p)

where Var(tr) is the variance of tr and E[tr mé:i] is zero, with the initial condition

Var(to) =0

Eft miO)] = 0 for 1< R

0
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Proof.
2 _ 32 * .
E[tr'*"l ] _;'2 [Yl(Ss E) Ur (b, E)]ls - O, z =l
. -st (r)
= %g{-g; {y, (s, 1) Ele r(yl(s, ;))M ]}} s =0
1
(where yl(s,_l) = if?f?iﬁﬁb°
-st (r) -st
= '-gg{“% (Yl(S,}_))z E [e r(yl(s)_}_))M ] + yl(S,l__)E["tre r(yl<s’_:!;))

-st

(x) r A NS g
+ M e y.(s,1) -3
1 H ] s=0

]

1 1 (r) 1 (r)
(- —ﬂ) {—E[tr] + (—;)(E[M ]+ 2)} - E[tr{-tr-i-(—u)(M +1)}}

() Iy o op 1o, (D) ]
+E[M (-p){ tr+( u)(M +2)}

(r)

Eft_] (r) E{t M*’] E[t ]
- — I 4 E[M* 7] +‘g~} + (B[t 2] + T + r oy
U 2 2 T U [
u u
Elt, m(); ey ap(®)
* i T3 S R
H u
2E[t ] (r) (r),2 .
= {%+ — + BE”; L+ E[(MZ L1y 42 B[t w7+ E[tr2}
u H U u "

(where the terms bracketted by {} can be evaluated using (11) and (13))

- 24rUoo)) 4 2 g (g 4 ppe 2

2
uz(l—p)
. . 2 N2, ,
Substituting E[tr ] = Var(tr) + (E[tr]) into the above yields (14).

(41 (),

The validity of (15) is obvious since M 181 My

To solve for (16)

(r)

below for 1 < i < R, we shall interpret mRil as zero.
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(r+l), _ ) %
Eltn == 889z, ly, (s,2) U_ (S,X(S,‘Z“))}IS‘—‘O, 21
m(r) ()
= -2 iy« 2)1.U_"(s,y(s,2)) + (s,2) el 2 2
3Zi os yl 5,2 r 2 I8, 2 yl sZ) 2 s oo ZR—:L

-y

s, TSty (™)
c s e (y(s2)) }] s=0, 2,=1 for j#i| z.=1

st

3 1 2 (r) m(®) m ()
= 3;1- o (yl(zi)) Elz, (yl(z )) ]+ yl(zi)E[z {t (yl(z ))

e

KA CR L <y1(zi>>2}1% 2,=1

(where yl(zi) = Yl(OzE)lz.=l = !

Y.
J < ds x -
for j#i 1+U (1 Zi)

Y

2y,
=_~.§.+ {E[m (r>] + E[M(r)] } {E[t ] += E[M(r)]}
u U u
Y. Y
it e, w01+ L e @iy ¢ e a4 L LAY
U
ZY ‘Y
(r) (r)
={2 +~—E[ i1]+ E[Mr]+ Elt ]
H U
Y.
+ 3 E[(M(r))z]} E{t (P + E[c_ mfﬂ}
'Ll‘
where the terms bracketted by {} can be evaluated using (11) and (13) to yield
(16). (Q.E.D.)

Acknowledgment

The authors thank Patsy McMains for her typing assistance.






14

REFERENCES

[1] Baskett, F., K. Chandy, R. Muntz and F. Palacios, "Open, Closed and Mixed
Networks of Queues with Different Classes of Customers," J. ACM, Vol. 22,
1975.

[2] Kleinrock, L., "Time-Shared Systems: A Theoretical Treatment,"
J. ACM, Vol. 14, April 1967.

[3] sakata, M., S. Noguchi and J. Oizumi, "An Analysis of the M/G/1 Queue
Under Round-Robin Discipline," Operations Research, Vol. 19, 1971.

[4] Coffman, E., R. Muntz and H. Trotter, "Waiting Time Distributions for
Processor-Sharing Systems," J. ACM, Vol. 17, January 1970.

[5] Takécs, L., "A Single-Server Queue with Feedback," The Bell System
Technical Journal, March 1963.

[6] Wong, J. W., "Distribution of End-to-Fnd Delay in Message~Switched
Networks,'" Computer Networks, Vol. 2, 1978.

[7] Cohen, J. W., The Single Server Queue, North-Holland Publishing Co.,
Amsterdam 1969.

[8] Reiser, M. and H. Kobayashi, "Queueing Networks with Multiple Closed Chains:
Theory and Computational Algorithms," TIBM Journal of Research and Development,
Vol. 19, May 1975,




E



