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ABSTRACT

This paper introduces a new tool for image texture analysis
called a polarogram. A polarogram is a polar plot of an orientation
sensitive texture statistic. Polarograms give rise to a class of
texture descriptors which are sensitive to both texture coarseness and
directionality, but yet which are invariant to rotations of the image
textures. An experiment is described in which polarograms are applied
to the classification of texture samples.






1. INTRODUCTION

This paper introduces a new tool for image texture

analysis called a polarogram. A polarogram 1is a polar

representation of an orientation specific texture statistic.
It can be used to obtain information about both texture

coarseness and texture directionality.

Texture coarseness, or the size of the texture elements,
is ordinarily related to the autocorrellation of the texture.
For example, the contrast feature for grey level cooccurrence
matrices (Haralick[1l]) or grey 1level difference histograms
(Weszka et al[2]) is, essentially, a measurement of a single
value of the image autocorrelation. It is ordinarily compu:ed
for pairs of image points which are close to one another in
the image. High values of contrast usually indicate fine
textures (where there are relatively many edge points) and low
values of contrast indicate coarse textures. Of course, other
factors such as edge sharpness also effect the value of the

contrast statistic.

Texture directionality has not been handled as adequatelvy
as coarseness. It has been suggested that directionallvy
specific statistics be computed. For example, suppose that
P(6,r) 1is a polar representation of the power spectrum of =&

taxture. Then Weszka et al{2] suggested "wedges” defined a=s:
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such statistics 1s that they are not rotation invar:

1

i.e., rotating the original texture changes the statistics.
Since orientation cannot, in general, be controlled, and might
even vary across a single "homogeneous" field, it is important
that even statistics which measure directionality be rotation
invariant. Polarograms can be used to generate rotation

invariant statistics which are sensitive to texture

directionality.

In Section 2 we define the polarogram, and present some
examples. Section 3 contains an experimental study using the
rexture database emploved in [3]. Finally, Section 4 contains

conclusions and a discussion.



Page 3

2 . POLAROGRAMS

Polarograms are a new tool for describing image textures.
A polarogram 1is a polar plot of a texture statistic as a
function of orientation. For example, let D(a) be a
displacement vector of fixed magnitude, d, and variable
orientation, a, and CD(a) be the cooccurrence matrix for
displacement D(a). Let f be some statistic, such as contrast,
defined for a cooccurrence matrix. Then we can define the
polarogram, Pf, by

Pe(a) = f(CD(a))

As a simple example, consider the vertical bar texture in
Figure la. The bars are five pixels wide. Let D(a) have
magnitude 1, and let f be the contrést statistic. Then Figure
1b displays the polarogram P.. Note that Pg(nm /2) = @ since
all pairs of adjacent vertical points have identical grey
levels. Pf(ﬁ), on the other hand, has value .4, since 2 out
of every 5 one's are adjacent to a zero. In general, 1if we
regard the texture in Figure la as a continuous image, then
Pe(a) = 2cos(a)/5. 1In practice, Pg(a) is only computed for a
discrete set of values for a. An interpolation function is
used to compute P.(a) for intermediate wvalues of a. The
simplest interpolation scheme connects consecutive values of

Pf(a) with straight lines.

Texture statistics are derived from polarograms by
computing size and shape features of the polarogram. The

shape features will ordinarily not only depend on the shape of



a) vertical bar texture
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b) polarogram for the texture in (a)

Figure 1. Example of a polarogram.
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the boundary of the polarogram, but also on the position of
the origin of the polarogram within that shape. For example,
the polarograms in Figures 2a and 2b have the same boundary
shapes (circles), but the polarogram in Figure 2a is centered
at the circle center, while the polarogram in Figure Z2Zb is
centered away from the <circle center. This difference
indicates a crucial difference in the two underlying textures.
The texture corresponding to the polarogram in Figure 2a is
isotropic with respect to the statistic of the polarogram,
while the texture corresponding to Figure 2b 1is not. The
skewness feature defined below measures the extent of such

isotropy.

an important class of statistics which can be computed
from a polarogram are its moments from the origin (note that
these are not the same as the central moments of the

polarogram). The p'th moment of Pf is :

27 D
u, = 1/2n/; (Pg(a) - Pg) da

where
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a) radially symmetric polarogram

b) non-symmetric polarogram

Figure 2. The polarogram of an isotropic and non-isotropic texture.
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in the special case where the boundary of Pg is a
polygon, it can be shown that:
Y1 T a1
2
u2=a2—u1

usg = az - 3u1a2 + 201

where n
ap =Z: Yi/2ﬂap(i)
=
and +
. albi sinyi (Ci+ai - biCOSYi) (Ci+bi - aiCOSYi) %
N e . |
i i aibiSLn Y;
a.b. . 2
a., (1) =-lA( = Slnyi> (cot a. + cot B.)
2 Y C. 1 1
i 1
B At ’
_— . . .
a3(1) = ?ﬁ}'(“Tigﬂ SlnYi) cosec o cot ay + cosec Bi cot Bj

H
+ log l&cosec o + cot ui) {cosec Bi + cot Bi{}i}
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The first moment, u;, represents the deviation from the
mean of the perimeter distance to the origin, u, the variance,
and u5 the skewness of the perimeter distribution. Two simple
measures of size, which are used in the experiments in Section

3, are area of the polarogram and perimeter.



ffigure 3. Computing moments
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Notice that the statistics computed from the polarogram

are invariant to the orientation of the polarogram - i.e., if
P'f(a) = Pg(atda), then P and P' will have the same
statistics. Since rotating the original texture results in

rotating the polarograms, these statistics are invariant to
rotations of the image textures, vyet can still be used to

measure texture "directionality."

As an example, Figure 4 contains two texture samples, one
of grating and the other of metal scrap. Figure 5 contains
polarograms for the textures in Figure 4. These are based on
the <contrast statistic for cooccurrence matrices using D{a)
with fixed magnitude 5. The symmetry in the polarograms 1is
due to the symmetry in the cooccurence matrices - CD(a} =
CD(a+pi)' Cooccurrence matrices were computed for directions
which are multiples of 45 degrees. The larger size of the
grating polarogram reflects the higher contrast of the grating
(note that the first order grey level statistics of the two
textures are identical). ‘The relatively 1low value of the
grating polarogram in the horizontal direction reflects the
elongation of the grating texture elements, an aspect of
texture directionality. The scrap metal, on the other hand,

is more isotropic, so its polarogram is more circular.



s

Figure 4a. A 64x64 grating texture

Figure 5a - Polarogram of Figure 4a for distance 5 cooccurrence matrices

and the contrast descriptor.



Figure 4b. A 64x64 metal texture

Figure 5b. Polarogram for Figure 4b for distance 5 cooccurrence matrices

and the contrast descriptor.
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3. EXPERIMENTS

An experiment was performed to illustrate the wuse of
polarogram statistics for texture classification. A database
of five texture classes was chosen, and ten 64x64 samples were
included in each class. The textures in the database include
grating (G), tree bark (T), metal scrap (M), pebbles (P}, and
concrete (E). These samples form part of a larger database
described in experiments reported in [3]. Figure 6 contains
one 64x64 sample from each of the five classes. All of the
textures have been subjected to a grey scale normalization
procedures which "flattens" their histograms and guarantees
that all of the samples have identical first-order grey level

statistics.

Polarograms were computed for the contrast descriptor of
the grey 1level cooccurrence matrix. Cooccurrence matrices
were computed for each of the eight principle directions on
the digital grid, and for distances between pairs of points of
1, 3 and 5. Thus, three polarograms were computed for each
texture sample. For each of the polarograms, the £five
statistics discussed in Section 2 were computed. Three
classification experiments were performed; one based on the
distance 1 statistics, one based on the distance 3 statistics

and one based on the distance 5 statistics.

The textures were classified using a multivariate linear
discriminant function [4], computed based on the assumptions

that the probability density functions for the statistics of



Figure 6.

Texture samples.

a) grating (G)

b) concrete (E)

¢) pebbles (P)

d) tree bark (T)

e) metal (M)
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all classes were multivariate normal, with a common covariance
matrix, but different mean vectors, and that the prior
probability of each <c¢lass 1is known. Subroutine ODNORM of
IMSLIB was use to compute the discriminant function and to

perform the classification.

The results of the experiments are summarized on Tables
1-3. Both the distance 5 and the distance 3 polarograms gave

classification rates of 88% on this database of 58 textures.



1.

0

E P
0 0
1.0 0
0 .9
0 .2
0 .3

Percent error = 16%

Table 1. Confusion matrix, D=1



1.0 0 0
0 1.0 0
0 0 .9
.1 0 .1
0 0 .2

Percent error

Table 2. Confusion matrix for, D=3
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E P T
0 0 0
1.0 0 0
0 .8 .1
0 .1 .8
0 .2 0
Percent error = 12%
Table 3. Confusion matrix for,

D=5
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4. SUMMARY

We have presented a new computational tool for image
texture analysis called a polarogram, and illustrated its use
by applying it to a texture classification problem.
Polarograms were designed to yield texture descriptors which
are sensitive to both texture coarseness and directionality.
An important aspect of directionally sensitive polarogram
statistics is that they are invariant to rotations of the
image texture. We are currently applying the polarogram to
the unsupervised segmentation of scenes containing many

differently textured areas.
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