An Asymptotically Optimal Algorithm for the
Dutch National Flag Problem*

by

James R. Bitner
Department of Computer Science
University of Texas
TR-118 Austin, Texas 78712

November , 1979

#This work was supported in part by NSF grant MCS 77-02705

Abstract: We develop an algorithm for the Dutch National Flag problem that has
an adjustable integer parameter smax > O that allows a time-space trade-off.
(Let n be the length of the input to be ordered.) The space required is
proportional to smax (but independent of n), and the average number of swaps

required is 6 smax + 10 n + o{n). We show 1/3n + o(n) is a lower bound.
18 smax + 27

Hence as smax - », the performance can be made arbitrarily close to the

lower bound. We also study the problem of more than three colors.

Acknowledgement: 1 am grateful to Jay Misra for his helpful discussions

onn this problem.

1. Introduction

In the Dutch National Flag problem, we are given a sequence of n marbles,
each of which is either red, white, or blue and we are to vrearrange them such
that all the red marbles occur first in the sequence, followed by all the
whites, followed by all the blues. We are restricted to using the following
two primitive functions in accessing the sequence: buck(i) which gives the
color of the ith marble in the sequence, and swap(i,j), which interchanges
the ith and jth marbles. Buck is deemed a very expensive operation and hence
may be applied only once to each position in the sequence. Our objective is
to find an algorithm to solve the problem which uses as few swaps as possible
in the average case, where each of the 3" initial sequences is equally likely.

Also, the algorithm must operate using a constant amount of space, independent

5

of the length of the sequence.

Notation: Through this paper n will denote the length of the sequence to be
ordered and ¢ will denote the number of possible colors (unless othewise noted,
c=3}.

This problem was initially posed and solved by Dijkstra [1], and later,
another solution was obtained by Mever [2]. McMaster [3] analvzed these solu-
tions and found that Dijkstra's solution requires asymptotically %'n swaps
on the average and Mever's requires %<n. The main result of this paper is
to develop a solution asymptotically* requiring %~n swaps, and further, prove
this to be optimal.

The paper is organized as follows:

In section 2, we develop a correspondence between sequences of marbles and

eulerian digraphs, which is then used to give a lower bound on the number

%
~ gee below for a precise definition

of swaps required to order any given sequence for arbitrary c. We study

the expected value of this lower bound to get a lower bound of %i% n on

the average number of swaps required to order a sequence. In section 3

we study algorithms to solve the problem for arbitrary c which use more

than & constant amount of space. One is the shortest cycle first algorithm,

which for c < 5, orders any given sequence using the minimum number of swaps.
For ¢ > 5, we prove the average number of swaps used by this algorithm is
asymptotically optimal as n—+«, We also study worst case bounds for ¢ > 5.
Tn section 4, we use some ideas from the proof of the lower bound to
develop an algorithm which solves the problem using constant space. The
algorithm has a parameter, smax, that allows a time-space tradeoff. Increasing
smax will reduce the number of swaps at the expense of requiring more space.
Tt should be stressed that smax does not depend on n; therefore no matter
what the value of smax, the algorithm still uses constant space (an amount
proportional to smax). What we actually have is an infinite sequence of
algorithms, each requiring constant space and each giving better and better

performance. Finally, section 5 analyzes the algorithm. Asymptotically,

6 smax + 10

for any smax > 0, [g oy

n swaps are required on the average. Even
10 . 3 :
for smax = 0, the average of 57 1 swaps is better than Meyer's algorithm,

and as smax + «, the average number of swaps can be made arbitrarily close

to the lower bound and, hence, is asymptotically optimal in some semnse.

2. Lower Bounds

In this section we develop a correspondence between sequences of marbles
and eulerian digraphs (see below for definition). We first use this corre-
spondence to derive a lower bound on the number of swaps required to order any
given sequence. We also use this correspondence to sﬁudy the number of swaps
required in the average case.

Definition: An eulerian digraph is a directed graph in which every vertex

has its indegree equal to its outdegree. We allow a digraph to have multiple
edges and self-loops. (Unless otherwise noted all our digraphs will be
eulerian.} For an eulerian digraph G, let

e(G) be the number of edges in G, and

index(G) be e(G)-M(G) where M(G) is the number of cycles in a maximal decom-
position of G into edge disjoint cycles. A cycle is a path in the digraph
whose initial and final vertices are identical. It may pass through a vertex
more than once. If a cycle passes through each vertex only once, it is a

simple cycle. It is simplest to consider decompositions of digraphs into cycles

and not require that the cycles be simple. (A maximal decomposition will,
however, consist solely of simple cycles.)

To develop a correspondénce between sequences of marbles and eulerian
digraphs, we first divide a sequence into '"regions." If there are a total of

Xi marbles of color i in the sequence, let the first x, positions be region 1,

1
the next X, in region 2, and so on. The digraph corresponding to this sequence
has ¢ vertices and is created by adding one edge from vertex 1 to vertex j for

every marble of color i in region j. Note that a sequence is completely ordered

iff for all i, all marbles of color i are in region i. Hence, the digraph

corresponding to the completely ordered sequence consists solely of self-loops.

Theorem 2.1: A digraph constructed from a sequence as described above is

an eulerian digraph.

Proof: For any i, the indegree of vertex i is the number of marbles of color

i, and the outdegree is the number of marbles in region i. These quantities

are equal by the definition of the regions. [:]
To order a sequence, given any decomposition of the corresponding digraph

(call it G) into edge-disjeint cycles*, we ignore the self loops and sequence

FY e % sy

through the remaining cycles in any order. If the current cycle is Vs V

i
2
v, , there must be a marble of color i, in region i, for 3=1, ..., k-~ 1 and a
i, 3 i+1
marble of color vy in region v, . Clearly k - 1 swaps can be used to put

k 1

each of these k marbles in the correct region. Also note that after processing
all the cveles, the sequence will be ordered. If the decomposition has k
cycles with the ith having length Li’ the total number of swaps done is

§[L; - 1] = e(G)-k. Clearly, this quantity is minimized by using a maximal
i=1

decomposition.

We now show that using the above procedure with the maximal decomposition
uses the minimum number of swaps over all possible algorithms, not just those
using this strategy. We use an "entropy argument", where index(G) is the en-
tropy function. (G is the digraph corresponding to the current sequence in the
execution of some algorithm.) Index(G) must be decreased using swaps from its
initial value down to zero. (A sequence is ordered iff every marble is in the
correct region, i.e. its corresponding digraph has index equal to zero.) The
following lemma shows that a swap cannot decrease index{G) by very much.

)
Lemma 2.1: Let S be any sequence and 5 be any sequence obtained from §

*It is easy to show that every eulerian digraph has such a decomposition,
see for example [4].

by doing one swap. Let G and G¢' be the digraphs corresponding to, respectively,
S and S‘. Then index(G')2 index(G)-1.

Proof: The effect on G of swapping a color i marble in region j with a

color k marble in region % is shown in Figure 2.1.(i, j, k, and & are not

necessarily distinct.) Edges ey and e, in G are replaced by ei and eé to

form G'. Since e{G)=e(G'), proving M(G')sM(G)+1 will prove the theorem.

Suppose M(G') > M(G) + 1 and let a maximal decomposition of G' be Cl’ eees Cm

(Where m = M{(G")).

We consider two cases:

5 ? ~ Y.
Case 1 (el and e, are on the same bh).

Let ?Qk be the portion of Ch from £ to k and Pji the portion from j to i.

Form two cycles in G: C], which consists of e

h and Pji’ and Cé', which

1

. ? LR 4
consists of e, and ng. Hence Cl’ veos Ch-l’ Ch’ Ch . Ch+1’ - -

decomposition of G into mtl cycles, a contradiction.

? ' Py {
Case 2 (el and e, are on different Ch s, say, C1

from ¢ to i and ij be the portion of C2 from

and Cz):

Let P 5 be the portion of C

2 1

j to k. Form a cycle Ci in G consisting of els ij, ey Pﬁi' Then C!,

., ..., C_ forms a decomposition of G into m-1 cycles, again, a contradiction.
3 m

Hence M{(G') < M(G) + 1 and the lemma is proved. [:]

Theorem 2.2: Given a sequence SO, let GO be the corresponding digraph.

Then at least index(Go) swaps must be used in ordering So'

Proof: Suppose k swaps are used. Let Si be the sequence after i swaps and

Gi be the corresponding digraph. Since S, is ordered, G

k consists solely

k

it

of self-loops, and index (Gk) G.
By Lemma 2.1, index (Gi) > index (Gi_i) - 1 and clearly k > index (GO). [:]

Corcllary 2.1: TUsing a maximal decomposition in the manner previously

described orders any given sequence in the minimal number of swaps.

Theorem 2.2 provides a lower bound and Corellary 2.1 shows it is
achievable (though not necessarily by an algorithm using constant space.)
We will discuss the problem of actually finding a maximal decomposition
in the next section.

Before considering the average value of index(G) in order to obtain a
lower bound on the average number of swaps, we introduce some notation and

prove two lemmas.

Definition: For any nand 1 £ 1, j < ¢ let the random variable I{g} be the

number of edges from i to j in the digraph corresponding to a random arrangement

(n)

P
1

of n marbles with ¢ possible colors. (Note that I also depends on ¢, but

we omit this to simplify the notation.)

Definition: By the phrase "number of 2-cycles in a digraph," we mean the

maximum number of 2-cycles possible in any decomposition. It is easy to
see that this quantity can be found by successively choosing any 2-cycle
until more remain, (we can never make a "bad" choice)and hence is given by
Y min (I.(I}), Ig?))
L ij ji

i<j

Lemma 2.2: Let Ai’ Az, ... and Bl’ BZ’ ... be sequences of random variables
such that for any € > 0,
A B
Prob (l~%~ - L | <e)+ 1 and Prob (| ’%f' M|<e) > 1

then
o B
Prob (] — - L f< £ and l~9'~ M l< g) » 1
n n
Proof: Given any € > 0, we need to show that for all § > O there exists an

NG ¢ » such that for all n > N
3

3

&

S,

A B
Prob (|- - L |< g and |2 -M[<) > 1~ 8.

We can choose N large enough so that
§,E B
8

Prob (l —% - L] <g)>1 =~ §> and Prob ([—%'~ M{ <g) > 1 - E

for all n > N6 . Then
sE
An Bn
Prob (Y“; ~L|< € and f~; -M|<e) =
A B A
Prob([—%—Ll<a)+Prob<If—Ml<a)- Prob (|2 -1L|<¢ or

!“; - M I<) >1 -~ 6§

since the last probability is at most one.

Lemma 2.3: Given any eulerian digraph, there exists a maximal decomposition
containing all the self-loops and 2-cycles.

Proof: Clearly, each self-loop must occur in any maximal decomposition. Suppose,
however, that some 2~cycle does not. Choose any maximal decomposition and let

C1 and C2 be the two cycles which contain the edges of the 2-cycle (see Figure 2.2).

Then a new decomposition can be formed by replacing Cl and C2 by the 2-cycle and
the cycle consisting fo the remaining edges in Cl and CZ' Since this decomposition

has at least as many cycles as the original, it too is maximal, a contradiction.

The average case analysis relies heavily on the law of large numbers. For
three colors, we expect, with high probability, a nearly equal number of red,
white and blue marbles. Hence, we expect the three regions to be of nearly equal
length and to contain approximately the same number of red, white and blue
marbles. This results in a digraph consisting nearly exclusively of self-loops
and 2-cycles. Lemma 2.3 can then be used to give a nearly complete decomposition
of the digraph. This intuitive explanation is formalized in the proof of the

following theorem.

Theorem 2.3: Asymptotically, the average number of swaps required to order a
sequence of three colors is at least 1/3 0 + o(n).
Proof: By Theorem 2.2, the minimum number of swaps required by an algorithm
to order a given sequence is e(G) - M(G) where G is the corresponding digraph.
By Lemma 2.3 M(G) = § + T + U
where S is the number of self-loops. T is the number of 2-cycles in G, and, as
noted previocusly,

T = min (,IS), “<“)) + min (Ig), (“)) + min (I(“> + I(n))
U is the number of cycles remaining after the self-loops and 2-cycles have been

removed. Clearly,

U = max (I§§>, §§)> - min (Iig), I(n)).
Since e(G) = S + 2T + 3U, we have e(G) - M(G) = T + 2U, and E(e(G) - M(G))
= E{min (Iig), (q)) + min (Iig), gi)) + min (Igg), (n)) + 2 (max (Iig), (n))
. {n} (Ln)
min (112 > I,)3)]
_ . T(n) (n) i (n) (n)
= FE {(min (le R Y)Y + 2 ¢ E(max §112 R Y) (1)
Claim 1: TFor any £ > 0, Prob ([*Em -~é1 <g) » 1

Proof: Define the following random variables:

hY
Ji?j as the number of marbles of color 1 in positions %'through g%'
Bén) as the total number of marbles of color 1,
(n)

as the total number of marbles of color 1 or 2,

(n} - !B(n) “4§| and, U(n) ‘B(n) 231.

(n} 4 3 s (n)
le is our estimate of 112 .

of region 2 (B(n) and B(n)) are to their means, giving a measure of how accurately

2
J{ n) measures 1(§>.
1 Jﬁﬁ} 1

Prob (|]==% - ~4 g) » 1 (2)

Uiﬁ) and U§n) measure how near the boundaries

Choose any € > 0. By the Law of Large Numbers,

(ﬂ) o
1 . 1
Prob (l~—- ~-§1 <€) > 1soProb (— <e) >1 (3)
B(D} un)
Prob {Iw--~ —1 <g) »1so Prob (— <¢g) >1 (4)
n
He ShoY () e o) (0
Prob (; 12 ! < g) > Prob (I ~-%] <‘§ and-% < %- and-—%~ <~E) (5)

by demonstrating that every sequence satisfying the condition of the second prob-

ability also satisfies that of the first. We have the bound

7@y (™ s @,)
1 2

< <

12 Uy 2 - 12 - 12
or. equivalently,
(n) (n) (n) (@ 7 (m) (n)
TR S N, SRR PYRNS SS U N R (6)
e = - - = R T SV .
n 9 n n - n 9 - =n 9 n n
Then if a sequence satisfies the condition of the second probability, (6) becomes
1{n)
- Miz. _.% < e (7)

and hence the sequence also satisfies the condition of the first probability.
But from (2}, (3), and (4) and Lemma 2.2, the right-hand side of (5) approaches

one as n -+ «, Hence the left-hand side must also, proving the claim.

153} 1

Claim 2: For any € > 0, Prob (i B{ < g)> 1

Proof: Similar to Claim 1

— Y 1

Claim 3: For any € > 0, Prob (}~—% —'%‘ < £ and ;_Z% -5l <e)>1

Proof: By Claims 1 and 2 and Lemma 2.2
I{g)
£§ 51})%__9_

Claim 4: E (min (~—* (n)
I
Proof: Choose some € > 0, F or n > 0 let A(n) be the event "i~%g-~-%i < ¢ and
(n)

I3

;,__.m =

th

R CS R €'y ERNEH
E (min Q—gﬁ , il)) = Prob (A™) ¢ E (min c—%g , M%1~)} A™y 4 prop (™).

*(n>)
E (min Cmig ,)l K(n)).
n n

10

By Claim 3, Prob (A(n)) + 1. Hence

I(g) 1{o 1™ 1(n)
E (min (£B 53 }) » E (min (~lg~ £)! A(n)
n
But given event A(n) occurs.
L@ @)
% - g < -lg, 21 < 1 + €
° (n)
by the definition of A . Hence
() I(n}
-% - e < E (min (— 12 21)IA(n) -% + ¢
(n) 1)
for any & » 0, proving E(min (~%§ —21'}) i.
1
Claim 5: E(max (—= 12 —gl) > l

Proof: The proof of Claim 4 also holds if "min" is replaced by "max".

Finally, substituting Claims 4 and 5 into (1)} proves the theorem. [:]

Finally, we extend the result fo an arbitrary number of colors.
Lemma 2.4: For any ¢ > 1, let S, T and U be, respectively, the number of

self~loops, 2-cycles and other cycles in a maximal decomposition of a digraph

found by first removing all self-loop and 2-cycles. Then

_n _ (e=Dn -
E(S) = - + o(n), E(T) = i + o(n), E(QU) = o(n).
Proof: The number of self-loops at vertex i is I§?) and the number of 2-cycles
between vertices i and j is mln(I(?) §?)), In a manner similar to Theorem 2.3

we can show

T (n)

EED > L and Bmin(r(Y, 1)) > -

(n)) -

Thus, there will be E(I -—-+ o(n) self loops at vertex i (for a total of

C

11

(n)

ij ?

n

= + o(n)), and E(min (I I;?))) = “Ei + o(n) 2-cycles from i to j
c

c

(for a total of _ﬁgi%%mﬁ + ol(n)).

By Lemma 2.3, we can choose these cycles first and still get a maximal decomposition.
These cycles account for n + o(n) edges, leaving at most o(n) edges for the
remaining cycles. [:]
Theorem 2.4: The average number of swaps required to order an arrangement with

. e~1
c colors is
2c

n + o(n)
Proof: Let S, T, and U be as in Lemma 2.4, and let M be the number of swaps

resulting from this maximal decomposition. Then O - S+ 1 - T < M< O * S +

1. T+ - y. By Lemwa 2.4, B = <78 4 oy,

2c

12

3. Algorithms for Finding a Maximal Decomposition

In this section, we discuss algorithms to solve the Dutch National Flag
Problem where an arbitrary number of colors are allowed. We will drop the
constant space assumption and study algorithms that first count the number
of marbles of each color, then construct the digraph associated with the given
sequence and decompose it in some manner into cycles, then sequence through the
cycles and perform the appropriate sequence of swaps to 'remove' each cycle.
Hence, the problem reduces to one of finding a maximal or near-maximal
decomposition. Though finding a maximal decomposition for arbitrary c appears
to be a hard problem, we present a simple, ""greedy"” algorithm, the shortest

cycle first algorithm, which, at each step, arbitrarily removes any of the shortest

cycles remaining in the digraph. (The algorithm can either be thought of as
non~deterministic, or as specifying a class of algorithms.) We prove that if the
digraph has at most five vertices (i.e. ¢ < 5), the shortest cycle first

algorithm finds a maximal decomposition. 1If 6< c< &, the shortest cycle first
algorithm might find a maximal decomposition (i.e. some 'shortest cycle first"
decomposition exists for every digraph.) We prove a very general class of algorithms
gives an asymptotically optimal decomposition in the average case and conclude

with a worst case bound on the performance of this class.

Theorem 3.1: For an eulerian digraph with at most five vertices (i.e. ¢c<5) the
shortest cycle first algorithm finds a maximal decomposition.

Proof: Comsider any digraph G. If M(G) = 0, the shortest cycle first
algorithm will trivially be successful. We proceed by induction on M(G).
Suppose C is the first cycle chosen by the shortest cycle first algorithm and

let x be the length of C.

13

We first show that M(G-C) = M(G) - 1. (i.e. C was not a bad first choice.)
This is trivially true if C is contained in some maximal decomposition, so
suppose no maximal decomposition contains C. Choose any one. Though it does
not contain C, every edge in C must be included in one of its cycles. Suppose
¥y cycles in this decomposition have edges in common with C. Consider a new
decomposition (see Figure 3.1) where we choose C, then the long cycle
consisting of the remainder of the y cycles (call this C') and then choose
the remainder of the original decomposition. Since each of the v original
cycles has length at least x (the length of the shortest cycle), C' must
have length at least xy - x (% must be subtracted because C has been re-
moved.) Hence there must be a vertex occurring at 1east{§zwg¥§? times on
C', and C' can be split into at 1east[§xmg~§? simple cycles. The new
decomposition has at least 1 +I§ZM§~§1 cycles in place of the v of the

original decomposition. Since it is easy to verify that

1 +ngw; 27 > yfor 2< y < x < n< 5, the new decomposition has at
least as many cycles as the original, providing a maximal decomposition containing
C, a contradiction. Hence M(G ~ C) = M{(G) - 1.

By induction, applying the shortest cycle first algorithm to G - C

will correctly give a decomposition into M(G - C) = M(G) - 1 cycles. This,

added to C gives a decomposition into M(G) cycles for G, proving the theorem.

If n = 6, more care is required. If we arbitrarily choose from among the
shortest cycles, an optimal decomposition might not result. (See Figure 3.2).

However, we can prove the following, weaker, result.

14

Theorem 3.2: Given any eulerian digraph with 6, 7, or 8 vertices, there
exists a maximal decomposition whose cycles can be ordered, such that, if the
cycles are removed in that order from the digraph, a shortest cycle is removed
at each step. {(i.e. there is some "shortest cycle first" decomposition.)
Proof: (Similar to Theorem 3.1). Consider one of the shortest cycles in a
given digraph. Call it C and suppose it has x nodes. If C does not occur

in any maximal decomposition, comsider the y cycles that intersect C. If any
has length x, it can be chosen, and the theorem can be proven by induction as
Theorem 3.1. If none do, then we proceed as in Theorem 3.1, forming C', which
now has yv{x+1l)-x vertices and must foranEiEgil:E' yeles. Verifying that

1 +,F§ﬁ§%?222§§5 y for 2 <y <x <ec <7

proves the theorem for ¢ = 6 and 7.

The above proof "almost works" for ¢ = 8; the inequality is violated only
when x = y = 4. We analyze this situation as a special case. Suppose the
theorem is false. Then there exists a digraph (G) whose shortest cyele, ¢ (vl’
Vos Vi V4)ﬁ has length 4, and C is not in any maximal decomposition. Further,
since y = 4, each edge of C is in a different cycle in the optimal decomposition.
The length of each of these four cycles is at least 5.

Consider the graph (G') consisting of these four cycles with the edges in C
removed. Note that G' is a cycle. We repeatedly use the fact that G' can be
partitioned into at most 2 cycles. (Otherwise its decomposition plus C would
give at least 4 cycles and choosing C would provide an maximal decomposition.)
We number the vertices in G xl, Kps =ees xk.by tracing the path from‘vl to vy
to V4 to Vo to Ve (Since ¢ = 8 the x's are not all distinct.) Since each of
the original cycles intersecting C had length at least 5, k > 16. However, we

cannot have k > 16 because then a vertex would occur at least three times in

15

A L) . Also
Xis soos Xy providing a decomposition of G' into at least three cycles 1so,

there cannot be a cycle in G' of length less than 8. Otherwise, removing

this cycle would result in a cycle with at least 9 vertices. Hence one must

occur twice, giving two cycles for a total of three.

Therefore, G' consists of two cycles of length 8; its form must be as shown
in Figure 3.3. Assume without loss of generality that vy is the vertex marked x.
Then v, must be the vertex marked y since it is at distance 4 from vy along the

cycle, and v, must be the vertex marked x since it is at distance from vy

3
However, this implies vy T vy @ contradiction. Hence, the conjectured digraph
cannot exist, and the theorem is proved. [:]

For ¢ > 9, no such theorem can be proved. Figure 3.4 provides a digraph for
which no shortest cycle first decomposition exists.
If we consider the average case, the analysis is especially simple since

the associated digraph is nearly all 2-cycles. We consider the all 2-cycles

first algorithm, which first removes all self-loops and 2-cycles then arbitrarily

decomposes the digraph.

Theorem 3.3: The all 2-cycles first algorithm is asymptotically optimal in the
average case.
Proof: Immediate from Lemma 2.3 and 2.4

Corcllary 3.1: The shortest cycle first algorithm is asymptotically optimal

in the average case.

16

We now consider worst case performance. Rather than study the size of the
decomposition, we study the number of swaps required in ordering a sequence based
on this decomposition (i.e. e(G) - k where k is the number of cycles in the

decomposition.)

Theorem 3.4: Given any sequence, let COST be the number of swaps required using the

all 2-cycles first algorithm and let COSTOPT be the optional number of swaps,
COST 3 3 . .

then === < % . PFurther, 5 is the smallest possible constant bound.
COSTOPT - 2 2

Proof: Let S and T be the number of self-loops and Z-cycles in the digraph.

The all 2-~¢ycles first algorithm resulte in a decomposition of at least S + T
cycles. Hence COST € n-=5-T. Using Lemma 2.3, there is a maximal decomposition

with 8 + T + U cycles, where U is the number of cycles of length greater than

i

n-35-T n-S~-T

two. Clearly,aU < 3 and COSTOPT =n-85-T-U<n-8-T-~- g =
2 COST 3
3 [n -8~ T]. Hence COST 25

OPT

To prove this bound is tight, consider the eulerian digraph in Figure 3.5,
an n-cycle where each edge of the n-cycle is the base of a triangle. The digraph
has 3n edges, and the optimal decomposition is clearly the n triangles. However,

the all 2-cycles first algorithm might decompose the digraph into two cycles,

the n-cycle and the cycle consisting of the remaining 2n edges. Hence ngg =
3n-2 which approaches-g as n > ® OPT
3o-n 2 : {:]

This bound does not appear to be tight for the shortest-cycle first
algorithm. The next theorem gives the worst example found so far, which would

require a bound of‘%.

17

Theorem 3.5: Let COSTSCF be the number of swaps using the shortest cycle first

algorithm. Then for any n > 1 there is an eulerian digraph (and hence a

sequence) where cOST-SCF = 5n-3 .

COSTOPT 4n-2

Proof: Consider the eulerian digraph in Figure 3.6, which has 6n-3 edges.

Its maximal decompositicn is into the 2n~1 triangles pointing down. However,
a possible shortest cycle first decomposition is into the n~1 triangles

pointing up, and the long cycle along the perimeter. In this case,

CGSTSCF _ Bn~3-n _ 5n=3 [:]

COST © 6n-3-(2n=1) 4n-2°

18

4. A Constant Space Algorithm

In this section we describe a constant space algorithm to solve the Dutch
National Flag problem. The algorithm has an adjustible integer parameter smax,
which may be any non-negative integer. For any value of smax, the algorithm
uses space proportional to smax (and independent of n). We show in the next
section that a time/space tradeoff results; as smax + «, the average number of
swaps required - 1/3n, the optimum. Since we can get arbitrarily close to the
lower bound by choosing smax sufficiently large, the algorithm is "asymptotically
optimal” in some sense.

The algorithm has two phases. 1In the first, three pointers, r, w, and
b are used to delimit regions consisting solely of, respectively, red, white,
and blue marbles according to the invariant:

"1 <1 < r ~> buck(i) = red) and

(n/3 < i < w -> buck(i) = white) and

(2n/3 < i < b -> buck(i) = blue) and

buck{r) # red and buck(w) # white and buck(b) # blue."

Initially, r=0, w=n/3~1, and b=2n/3-1. Then r is successively incremented

until buck(r) # red. (We refer to this operation as "advancing r".)

w and b are advanced in a similar manner. The algorithm then iterates,

advancing the pointers and performing swaps when necessary to preserve the in-
variant. The first phase ends when r=n/3+1 or w=2n/3+1 or b=n+l. The second
phase merges the unexamined regions (from r to n/3~1, w tc 2n/3~1 and b to n)
into the red, white, and blue regions, and possibly shifts the white region left
or right. By the analysis in Theorem 2.3, the average size of the unexamined
regions and the average distance the white region must be shifted is o(n). Thus,
any algorithm (such as a straightforward extention of Dijkstra's [1] algorithm or
Meyer's algorithm [2]) can be used in the second phase without affecting the

asymptotic performance of the algorithm. Hence, for simplicity, we examine only

19

the first phase., Another simplification is to ignore the termination condition,
some tests to keep r < n/3 and w < 2n/3 (needed so that buck is not called
twice), and a test to keep b < n (so that b remains a valid subscript). These
would add simple, but obscuring details to the discussion.

Two important ideas are used to reduce the number of swaps. First, w is
initially n/3, not n as in the algorithms of Dijkstra and Meyer. Hence the white
region will be from n/3 to w instead of from w to b-1. By Theorem 2.3, the final
positions of the white marbles will, with probability approaching one, be
approximately from n/3 to 2n/3. Hence white marbles moved into the white regions
have, most likely, come to their final resting place.

Before discussing the second idea, we describe the only two situations in
which the algorithm swaps marbles. If buck(r) = white and buck(w) = red, then
swap(r,w) is called a "single swap" (and similarly for the other two pairs of
pointers}. On the other hand, if buck{(r) = white, buck(w) = blue, and buck(b) =
red, then the sequence swap(r,w); swap(w,b) is called a "double swap"

(and similarly if buck(r) = blue). The second idea then is to avoid double swaps
as much as possible, preferring a single swap, which puts two marbles in place at
the cost of one swap, to a double swap, which puts three marbles in place at the
cost of two swaps. Clearly, this is motivated by the idea of finding a maximal
decomposition.

To accomplish this, a single swap is done on each iteration, if one is possible.
Otherwise, a "scout" is advanced from r in an attempt to find a marble that will
permit a single swap. (This scout is referred to as the "lead scout".) If such a
-marble is found, a single swap with the lead scout will be performed on the next
iteration. Otherwise, each successive iteration will advance a scout from the lead

scout (with this new scout becoming the lead scout), until either a single swap

20

becomes possible, or the maximum number of scouts has been reached and there is
no alternative to doing a double swap. Now, instead of preserving the relation
"(1 < i < 1) > buck(i) = red" we preserve "((1 < i < gg) and i is not a scout) >
buck(i) = red)" where #s is the lead scout. Using the scouts in this manner
avoids multiple calls to buck.

The preceeding gives the general strategy of the algorithm (which can be found
in the Appendix). To aid in understanding the program a brief, informal description
of each procedure follows., This is not to imply the program cannot be formally
verified; the reader can verify the program from the pre- and post-conditions given
for each procedure.

The following terminology is used: ''smax" is the maximum number of scouts,

B0
g

and is the number of currently active scouts. The scouts are kept in an array

"scout', and "scout[s]" is the lead scout. It is convenient to store the value of
"r'" in scout[0]. Finally, rcolor, scolor, wcolor, and bcolor record the color
of the marble pointed to by, respectively, v, the lead scout, w and b.

Function swap possible returns true iff a single swap is possible. All four
of r, the lead scout, w, and b are considered in this determination. Procedure
advance advances a pointer over marbles of a given color and returns the color
of the first marble encountered which is not of that color.

Procedure single swap performs a single swap, given that one is possible.
Since it could involve either r or the lead scout, a test is made at the beginning
of the procedure to determine which, if either, is involved. The lead scout is
used unless it has already been swapped and hence scolor = red., (Note that if
s # U and scolor = rcolor, either r or the lead scout could be swapped. However,

the algorithm is simpler if we choose to use the lead scout in this case. If

s = 0 they are identical, so it makes no difference.) The procedure then determines

21

which pair of marbles is to be swapped, swaps them, and advances the appropriate
pointers. Procedure double swap is similar.

Advance r advances the r pointer and the scouts immediately after a red
marble has been swapped. There are two cases: if scolor # red, the lead scout
was swapped and all that is needed is to record this fact by setting scolor := red.
Otherwise, r was swapped. Since buck(r) = red, r provides no useful information.
If s # 0, each scout (including r, which is scout[0]) can be "advanced" by setting
scout[i] := scout[i+l] for i = 1, ..., s~1. Scout|s] is no longer needed and is
discarded by setting s := s-1. If s is now zero, r must be advanced to the next
non~red marble by calling advance.

Procedure advance scouts advances a scout from the lead scout. If scolor = red,
the lead scout itself can be advanced, since buck(scout[s]) = red, and hence

scout]s] contains no useful information. Otherwise a new scout is advanced.

22

5. Analysis of the Algorithm

The algorithm is analyzed in the following theorem.

Theorem 5.1: The average number of swaps required by the algorithm of Section 4
s 6 smax + 10

18 smax + 27
Proof: We consider only smax > 0. TFor smax = 0 the Markov chain we will construct

i n + o(n) for any smax > 0.
degenerates to two states. With the techniques used below, it is easily shown the
algorithm will require-%% n + o(d) swaps, and hence the theorem is true in this

case.

Definition: The predicate hascolors(x, y, z) is defined to be true iff

(rcolor = x) and (wcolor = y) and (bcolor = z).

To model the algorithm by a Markov chain, we examine the program variables
each time control reaches the top of the while loop in the main program. The values
of the variables determine the current state (see Figure 5.1). We briefly discuss
the motivation for these definitions. To predict the behavior of the algorithm, we
must know the values of rcolor, wcolor and bcolor. (Note that for each triple of
values with rcolor = white, there is a corresponding "equivalent" triple with
rcolor = blue. Thus the eight possible triples result in only four types of
states.) In addition, if hascolors{white, blue, red) or hascolors{blue, red,
white), we must know whether the lead scout can be swapped (i.e. scolor # red
and scolor # rcolor) since this determines whether a swap is possible. Finally,

we need f defined by
o - [8 if scolor # red

s-1 if scolor = red
(Wote that for analysis purposes s scouts when the lead scout has been swapped

(i.e. scolor = red) is equivalent to s-1 scouts when the lead scout has not been

23

swapped. In both cases, there will be s scouts after a call to advance r.)
As a simplification, we note that all states satisfying ¢ = 0 and swap_
possible are equivalent and these are merged to form only one state.

The state transition probabilities (shown in Figure 5.2) can be calculated
from several simple observations. In states Dig Ei’ and Fi’ swap possible is
true, and a single swap is done. If w is swapped, wcolor becomes arbitrary (by
this we mean wcolor = red with probability 1/2 and wcolor = blue with probability
1/2). Similarly, if b is swapped, bcolor becomes arbitrary (i.e., equal to red or
white, either with probability 1/2). If r or the lead scout is swapped (it makes
no difference which for purposes of analysis), rcolor is unchanged and % is
decremented. A single swap is also performed in state A, but here the colors
of both the pointers swapped (including r) become arbitrary.

In state Bi’ 0<i < smax - 1, swap possible is false, and advance scout is
called, With probability 1/2, it is successful (i.e. afterwards scolor # rcolor
and scolor # red). A single swap is now possible, and a transition to state Ci+

1

results. Otherwise, a transition to B, results. In state B , double swap is
i+l smax —

calied, resulting in wcolor and beolor becoming arbitrary (though rcolor remains
the same), and 2 being decremented by one. Finally, in state Ci’ 1 <1 < smax,
we have scolor # rcolor and scolor # red. This results in the lead scout being
swapped. Scolor becomes red, and hence % is decremented, and the color of the
pointer with which the lead scout was swapped becomes arbitrary.

A system of equations can be constructed to determine the steady state

probabilities (see Figure 5.3). We use lower case letters to denote the probability

cf the state named by the same upper case letter. Solving it, we get:
5

a= 5 smax+i
2
bO = ,,, = bsmax~l =

5 smax + 4

24

o _ o1

Cl S e TC T dl T T 9% nax - 1 smax 5 smax + 4
_ 3 1

€ = e Teax -1 - 1= ... = fsmax - 1

) 2(5 smax + 4)

From these probabilities, we determine the expected number of swaps. Define
the following random variables: TLet S be the total number of swaps performed by
the algorithm, and let S1 and Sz be, respectively, the number of single and double
swaps performed by Phase 1, and 83 be the number of swaps required in Phase 2.

Let R be the sum of the lengths of the réd, white and blue regions at the end of
Phase 1, that is, R = r + (w ~-§) + (b —<§E) - 8. Finally, let I be the number of
marbles that Phase 1 examined hut did not swap. We clearly have:

S S, + 28, + 8§

1 2 3

i

i

25+ 35, + 1

R 1t 38,

184

Using the notation x ¥ y to mean x = y + o(n) and the relations E(S3) 0, E(R) = n,

and E(I) - §> (derivable in a manner used in the proof of Theorem 2.3) gives

E(S) < E(S{) + 2E(S,) (1)
Z 0% 2E(8,) + 3E(S.) (2)
3 1 2
As n > =, the fraction of time spent in each state approaches the steady state probability.
smax
The probability the chain is in a state which does a single swap is a + I Ci +
smax-1 i=1

3 smax + 3

T (d, + e, +£,) = . A double swap is done with probability b max =
i=1 * + + 5 smax + 4 smax
1
Somax 77 ¢ Hence
E(S)) * (3 smax + 3) E(S,) (3)

Substituting (3) into (2) gives

2n
18 smax + 27

E(SZ) ~

and

25

6 smax + 6

18 smax + 27

E(81) ~

Therefore

& smax + 10

B(S) = E(8) + 2E(S,)) * g o7

Tis

Figure 2.1

The effect of a swap on the correspounding digraphs

Figure 2.2

The 2-cycle is not in this maximal decomposition. Cl

and C2 are the two cycles in the decomposition which contain

the Z-cycle's edges.

27

,f\.‘
. N
PR e S
'
:é; and {
A
Id
:m: ’r
. s,
W o -
C c'
Figure 3.1

A cycle not in the decomposition and the cycles in the decomposition
which contain its edges. The situation is not necessarily this
simple; the dotted cycles may contain more than one edge of the other

cycle and these edges need not be adjacent. However, C'

is a cycle
in any case.

Figure 3.2

A digraph for which the shortest cycle first algorithm might not
find a maximal decomposition.

The algorithm might choose cycle 2-5-3 first and obtain a decomposition

into two cycles. However, a decomposition into three cycles (2-5-4,
1-3-2, 3-6-5) is possible.

28

Figure 3.3

Figure 3.4

A diagraph for which the shortest cycle first algorithm
does not find a maximal decomposition.

29

Figure 3.5

A worst case digraph for all 2-cycles first algorithm.

Figure 3.6

The worst case digraph for the shortest cycle first algorithm
found so far.

f

state

30

conditions

2=0 and swap possible

< smax (hascolors(white,blue,red) or hascolors(blue,red,white))

- and %=1
and (scolor=rcolor or scolor=red)

< smax (hascolors(white,blue,red) or hascolors(blue,red,white))

- and %=1
and (scelor#rcolor and scolor#red)

< smax-1 (hascolors(white,blue,white) or hascolors(blue,blue,white))
and ¢=1i

< smax-1 (hascolors(white,red,red) or hascolors(blue,red,red))
and =1

< smax-1 (hascolors(white,red,white) or hascolors(biue,blue,red))
and 2=1

Figure 5.1
The states of the Markov chain

3L

Figure 5.2

The Markov chain used to model the algorithm for smax = 3. The
general form should be clear. Except where otherwise indicated,
211l transitions from the same state are equally likely.

bsmax—l

smax

(S [S O] PR Y [t
L

cgyl tgrs Qg?‘ sarx bér‘ mﬁw
" H. o

32

Figure 5.3

The Steady State Equations

[A
I A

I A

I A

i A
N

I A

I A

I A
| A

smax - 2
smax

smax - 2
smax - 2
smax - 2

[1]

[2]

[3]

[4]

References

Dijkstra, E. W., A Discipline of Programming, Prentice-Hall,
Englewood Cliffs, N. J., 1976.

Meyer, S. J. A Failure of Structured Programming, Zilog Corp.,
Software Dept. Technical Report No. 5, Cupertino, Ca., February, 1978.

McMaster, C. L., An Analysis of Algorithms for the Dutch National Flag Problem,
CACM 21, 842-846 (Oct. 1978).

Liuw C. L., Introduction to Combinatorial Mathematics, McGraw-Hill,
New York, 1968, p. 176.

program dnf;
const smax = <number of scouts; smax >= 0.>;

34
APPENDIX

n = <gsize of the array to be sorted>;
type colortype = (red,white,blue);
indextype = 0..n;
var W,b indextype;
scout : array[0..smax] of indextype:
scolor,rcolor,wcolor,bcolor : colortype:
s 0..smax;
begin
initialize:

while <pointers are valid> do begin

if swap_possible then single swap
else if {s < smax) or (scolor = red) then advance_ scout
else double swap;

end
end.

{ We use the following predicates
1" is defined to be

{((0 <= 1

({n div 3
({2%n div
reolor <>
({0 < i <
0 <= 5 <=

< scoutls] and (0 <= j <= 8 ~> i <> scout[jl))

buck{(i) = red) and
<= § < w) => buck(i) = white) and
3 <= 1 < b)) -> buck(i) = blue) and
red and wecolor <> white and bcecolor
s) => buck{scout[i]) = rcolor) and
Smax.

"3" is defined to be

<> blue and

rcolor = buck(scout[0]) and wcolor = buck(w) and
becolor = buck(b) and scolor = buck(scoutfs])
"I and J" is the locop invariant of the main program. 3

procedure initialize;

begin

g := 0:

scout{0] ::= 03 advance(scout{0],red, rcolor):
w := n div 3 - 1; advance(w,white,wcolor);

b = 2%n div 3 - 1: advance(b,blue,bcolor);

end;

function swap_possible : boolean;

begin

swap_possible :=

has_pair{rcolor,wcolor,bcolor) or
has_pair(scolor,wcolor,becolor);

end:
function has_pair{(r,w,b : colortype) : boolean;
begiun
has _pair ({r = white) and (w = red)) or
({r = blue) and (b = red)) or
({w = blue) and (b = white))

end;

-2

35

{ I and J and swap_possible }
procedure single swap;
var t : 0..smax;

tcolor : colortype;

begin
if scolor = red then begin
t := 0;
tcolor := rcolor;
end
else begin
t 1= §3
tcolor := scolor;
end;
if (tcolor = white) and {(wcolor = red) then begin
swap(scout[t],w);
advance_r;
advance{w,white,wcolor):
end

else 1f {tcolor = blue) and (bcolor
swap{(scout{t]l,b);
advance_r;
advance(b,blue,bcolor);

i

red) then begin

end

else { (wcolor = white) and (bcolor = blue) } begin
swap(w,b);
advance(w,white,wcolor);
advance({b,blue,bcolor);

end:

end:

{ I and J }

{ I and buck(scouts]) = red and
{ scolor <> red => buck{scout([0])

[

rcolor) and

{ scolor = red =-> buck{scout[0]) = red) 3
procedure advance_r;
var 1 : 0O..smax;
begin
if scolor <> red then scolor := red
else begin
if s <> 0 then begin
for i := 0 to s-1 do scout[i] := scouti+l];
s 1= g-1;

end ;
if s = 0 then begin
advance(scout{0],red, rcolor);
scolor := rcolory
end
end;
end:
{ I and rcolor = buck(scout[0]) and scolor = buck(scoutis]) }

36

{ ptr = pO0 }

procedure advance(var ptr : indextype; skipcolor : colortype;
var finalcolor : colortype);
var x : colortype;
begin
repeat
ptr := ptr + 1;
x := buck(ptr);
until x <> skipcolor;
finalcolor := x;
end;

{ ({p0+1 <= 1 <= ptr-1) ~> buck(i) = skipcolor) and
{(buck(ptr) = finalcolor <> skipcolor) }

{ not swap_possible and I and J and (s < smax or scolor = red) }
procedure advance_scout;
begin
if scolor = red then advance(scout[s],red,scolor)
else begin
8 1= 8 + 13
scout{s] := scoutis-11;
advance(scout{s],red,scolor):
end;
end;

{ I and J }

{ I and J and not swap_possible and s = smax and scolor <> red }
procedure double_swap;

begin

if scolor = white then swap(scout[smax],b)

else swap(scout[smax],w);
swap(w,b):
advance_r;
advance(w,white,wcolor);
advance(b,blue,bcolor);
end;
end;
{ I and J }

