Space and Comparison Optimal

1-2 Brother Trees

Shou~Hsuan Stephen Huang

Department of Computer Sciences
The University of Texas at Austin

TR-126 December 1979

ABSTRACT

We investigate the cost measures of 1-2 brother trees.
Node-visit, comparison-cost and space-cost optimalities
have been characterized. Tt is also known that NVO and SCO
are independent properties (i. e., it is not always possible
to achieve both optimalities). In this paper, we show: (1)
CCO and NVO are also independent, and (2) it is possible to
construct a 1-2 brother tree that achieves CCO and SCO for
any given number of keys. Linear time algorithm to con-

struct them are also given.

I. INTRODUCTION

The recently introduced 1-2 brother trees, like other
balanced trees, are useful to store a large number of keys
such that the MEMBER, INSERT, and DELETE operations can be
carried out efficiently. It is known that these three
operations can be performed in time O0(log n) where n is
the number of keys in the tree. Firstly, let's give the
definition of 1-2 brother trees here. It is taken from {

11,

DEFINITION 1, A 1-2 brother tree 1s a rooted tree such

that:

(1) all non-leaf nodes have either one or two sons,

(2) a node with i son(s) has 1 - 1 key in it (i = 1 or 2),
(3) all root-to-leaf paths have the same length,

(4) each unary node (i. e., node with one son and no key)
must have a binary brother (i. e., a node with two sons and

one key). This is called the brother condition.

The brother condition prevent the tree to be too
skinny. Other than that, 1-2 brother tree can be viewed as

a degenerated B-tree.,

From the definition, we can see that 1-2 brother tree
is not unique for a given number of keys. This nonunique-
ness raises the question: among all the representations,

which one is the best ?

Traditionally, there are three measures that we are

interested in, they are: node-visit cost, (key-) com-
parison cost and space (utilization) cost. They are defin-

ed as follow:

n . .
. . _ Number of nodes visited in
Node-visit Cost = io1 (order to access key Ki),
n .
. _ Number of key comparisons
Key-comparison Cost = .gﬁ (needed to access key Ki)
- b

Space Cost = Number of nodes needed in the tree (not

including the leave).

A tree is called optimal with respect to a certain measure
if it has the minimum cost among all trees with the same
number of keys. From now on, we will use NVO, CCO and SCO
to mean node-visit, comparison-cost and space-cost optimal.
Figure 1 gives examples of these three types of trees. We
use a B to denote a leaf node and a O to denote a non-
leaf node. A dot in the circle means binary node, other-
wise it is a unary node. Note that, except for trees in

Figure 1, leaf nodes will not be shown.

Ottmann, Rosenberg, Six and Wood fl] characterized the
above optimalities in terms of the detailed profiles. They
found a set of necessary and sufficient conditions for a
tree to be NVO, CCO and SCO separately. They have also
give an example to show that NVO and SCO are two indepen-
dent properties, i. e., it is not always possible to achi-
eve both optimalities. (see Figure 1{(a) and 1(c)). How-

ever, they didnot show whether the other two pairs of op-

FIGURE 1. 1-2 Brother Trees with n = 10

(a) NVO
NV = 30
CC = 29
SC = 14
(b) CCO .
NV = 31
CC = 29
sC = 13
(c) SCO
N = 32 @\
CC = 30
SC = 12

(1] J C

timalities are independent.

In Section 2, we will show that it i1s possible to con-
struct trees to achieve CCO and SCO for any given number of
keys. Figure 2 gives an example that shows NVO and CCO are
independent properties. According to (1], Figure 2(a) is
the only type of tree that satisfies the NVO condition for
n=28, It is not CCO becausc Figure 2(b) shows there are

trees with less key comparison cost.

It is worth noting that the research we done of the 1-
2 brother trees here is parallel to that of f2,3] where the
subject of study is 2,3-trees (a special case of B-trees).
In 2,3-trees, we can only construct comparison cost optimal
trees with best space utilization (not space cost optimal),
whereas we can construct trees that are both CCO and SCO in

1-2 brother trees.

FIGURE 2. 1-2 Brother Trees with n = 8.

(a) NVO but not CCO

NV = 24

CC

22

(b) CCO but not NVO

NV = 25

cC

21

2. SPACE AND COMPARISON COST OPTIMAL 1-2 BROTHER TREES

Throughout this paper, Tn+l will be a 1-2 brother tree

of n keys (or equivalently, n+l leave). The next two theo-

rems give us the necessary and sufficient condition for CCO

and SCO (see [1]).

THEOREM 1. A 1-2 brother tree T 1is CCO iff every root-to-

leaf path of T contains at most one unary node.

THEOREM 2. For all n % 1, To+1 constructed with
v, = n+ 1,

and ;= [Vi+1 / 21 0

is SCO where

IN

1< n

<
I

h = Ylog2 (n+1)1
and vi is the number of nodes at level i in the tree.

Levels and heights of a 1-2 brother tree are defined
as in the ordinary trees. An equivalent condition were

given as a corollary.

COROLLARY 1, A 1-2 brother tree 1s SCO iff it has at most

one unary node on each level,

Figure 3(a) shows a 1-2 brother tree that is SCO but
not CCO. Figure 4(a) shows a 1-2 brother tree that is CCO
but not SCO. Trees that are both SCO and CCO are given in

Figures 3(b) and 4(b).

It is obvious that a tree is both SC0O and CCO must

FIGURE 3. 1-2 Brother Trees with n = 8.

(a) SCO but not CCO (b) SCO and CCO

FIGURE 4. 1-2 Brother Trees with n = 5,

(a) CCO but not SCO (b) CCO and SCO

satisfies both conditions in Theorems 1 and 2 provided such

a tree exists.

COROLLARY 2. A 1-2 brother tree Tn+1 is SCCO (space and com-

parison cost optimal) iff
(1) every root-to-leaf path of Tn+1 contains at most one
unary node, and

(2) every level of ’I‘n+1 contains at most one unary node,

The theorem does not implies that such trees do exist
for any given n. We give an algorithm to construct such a
tree below, thus proves the existence of such a tree.

ATGORITHM SCCO

INPUT : An integer n 7 1.
QUTPUT : The gkeleton of a SCCO 1-2 brother tree T

with n binary nodes.

METHOD :
Begin
h := I‘log2 (n+1)1 ;
Buildtree (T, n, h);
end.

The procedure Buildtree is given in Figure 5.

rithm is, in fact, SCC0O. That is, we have to show that

T is a 1-2 brother tree, T is SCO and Tn is CCO.

n+1 n+l

We have to show that the resulting tree of the algo-

+1
|
|
|

FIGURE 5.

10

11

12

13
14
15
16
17

10

Buildtree Procedure of SCCO

Procedure Buildtree (p: ptr; N, H: integer);

Begin
(H

[

else if (N > 2

end:

= O)

n

o2
D
I._I.

then create a leaf node pointed by p;

H-1 SH=2y 4yen

create a binary node pointed by Dp;

Ruildtree (pt.lefrt, 2071 - 1, H - 1),
. . H-1

Buildtree (pt.right, N - 2 , H - 1);

> 211 _ 1) then

create a binary node pointed by p;

Buildtree (pl.left, 272, H-1);

Buildtree (pf.rignt, N - 2772, H-1);

= 21 _ 1) then

create an unary node pointed by p;

H-1

Buildtree (pT.left, 2 -1, H- 1),

11

THEOREM 3. The resulting tree T of algorithm SCCO is SCCO.

Proof

(1) T ig a 1-2 brother tree of height (log2 (n+1i1 .

n+l1
In the procedure Buildtree, H is decremented by 1 when-
ever a recursive call to Buildtree is executed and one more
level of the tree is created. These nodes reside on level

n - H. So, all leave nodes reside at level h (H = 0 in the
case). Hence the tree is balanced, i. e., all the leave re-
side at the same level.

The only case that an unary node is created in the pro-
cedure Buildtree is when N = -1 _ (lines 13-16). That
procedure call must have been invoked at line 10. That
means it will always have a right brother tree of N - 2H—2

keys with the same height (line 11). Since

Ny il _ g

H-2 > 2H—l H-2

S0, N - 2 -1 -2

_oHe2 g

That is, the right brother must be a binary node.
(2) Tn+1 is CCO.

It is easy to see that Buildtree (p, 2i—1, i) will
always construct a completely balanced binary tree for any
i. Thus we can conclude that the subtree with an unary node
as its root is completely binary except for the root node.
Together with the brother condition of the 1-2 brother tree,

we can conclude that there is at most one unary node in

12

every root-to-leaf path.
(3) T,,, is SCO.

Suppose there are two unary nodes nl and n2 on the same
level of Tn+1' Let T' be the smallest subtree containing
these two nodes, and let Tl and Tr be the left and right
subtrees of T' (see Figure 6). Note that T, and T can
only be constructed by calling procedures Buildtree at lines
5 and6é or at lines 10 and 11. However, line 5 will produce
a completely binary tree. This contradict to the assumption
of node nl. ILine 10, on the other hand, will produce a sub-
tree with an unary root which is the only unary node in the
subtree Tl. Since n2 is at the same level as nl, that

means nl and n2 are sons of nO., It obviously violate the

FIGURE 6.

13
brother condition. Thus there is only one unary node in

each level. By Theorem 2, Tn+1 is SCO. O

Thus we have shown an algorithm that will construct
a 1-2 brother tree that is both SCO and CCO for any given

number of keys.

REFERENCES

1. Ottmann, TH; A. L. Rosenberg; H. -W. Six; and D. Wood
"Minimal-Cost Brother Trees" TR No., 79-CS-1, Department of

Applied Mathematics, McMaster University, Ontario, Canada,

1979.

2. Bitner, J. R. and S. -H. Huang : "Key Comparison Opti-
mal 2,3-trees with Maximum Utilization". TR-94, Department
cf Computer Sciences, The University of Texas, Austin, Te-

xas, March 1979.

3. Huang, S. -H. : "Key Comparison Optimal 2,3-trees with
Maximum Utilization" M. A. Thesis, Department of Computer

Sciences, The University of Texas, Austin Texas, May 1979.

4, Ottmann, TH and D. Wood : "1-2 Brother Trees or AVL
Trees Revisited". TR No. 78-CS-4, Department of Applied

Mathematics, McMaster University, Ontario, Canada, 1978.

