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1.0 Introduction

This paper is concerned with computing the spatial structure
of textures composed of “‘exture elements arranged on a homogeneous
background. By computing %“he "spatial structure"® we mean
constructing a qualitative description of the distribution of
texture elements, such as might be made by a human viewing and

describing %2he tex‘ure.

Qur principle motive for pursuing this question 1is to
increase our understanding of how to compute what are called
strong texture measures. The notions of strong and weak texture
measures were introduced by Baralick[1]. By a weak texture
measure is meant cone which is based only on the description of the
properties of individual ‘texture elements which comprise the

texture. For example, “he average size of the texture elements is

a weak texture measure.

Since the same set of ‘texture elements can be spatially
arranged in aifferent ways to produce perceptually different
textures, it is clear %that weak ‘texture measures are not
sufficient to account for all texture discriminations. Therefore,
one must alsoc consider the class of strong %exture measures, which

additionally take into acount *he spatial relationships beiween

the texture elements.

Strong texture measures have been Investigated by Maleson et
al{?2} who compute spatial relations between segmented ltexture

elements (connected components of constant grey level); by Davis
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et al[3] who compute spatial relations between local image
features (edges, lines, etc.); and by Ehrich and Foith[4], who
forms a relational ‘tree between local maxima and minima of grey

level. Haralick[1] contains other examples.

In this paper, we will be concerned with “extures composed of
identical elements - i.e., we will ignore the added information
tha*t is potentially available from ‘“he properties of the
individual texture elements such as their size, shape, color, etec.
We do not mean to imply “hat such properties play a secondary role
in texture analysis. There is psychological evidence (see, e.g.,
Pickett[5]) that size, shape, e c. are more important for human
texture‘ discrimination %than variations in element density or
element arrangement. We choose “o ignore them in order %o focus

attention on elemen’ arrangement.

Therefore, a ‘texture for out purposes is simply a
distribution of points in the plane. If *his seems unreasonably
restrictive, then consider the different “"textures" in Figure 1,
which are composed of just points in “*ne plane. There are clear
differences between the patterns. It is these differences that we
would rlike to be able to <compute and describe. Note that a
variety of processes can be defined to place dots in a field to
synthesize a ‘texture (see, e.g., Rosenfeld and Lipkin[6]). We
will restrict our attention to jus* two- random and regular- which
we will define more formally in Section 2. (We specifically
exclude from considera‘ion situations where *he dots themselves

group to form tex*ure elements.)



We will also describe an application of “hese ideas L0 a real
image analysis problem involving the discrimination of healthy and
infested trees in aerial photographs of ci‘rus orchards. Figure 2
contains an ec¢xample of one such image. The technical aspects of
“his problem as a patilern recognition problem need not concern us
here; tney are detailed in Williams[T7/). Instead, we will discuss
the relevance of %‘exture analysis 10 4the computation of ‘tree
locations in such images. As can be seen in Figure 2, “he trees
roughly define a rectangular grid. There are, of course, minor
deviations . from perfec?t rectangularity ( i.e., “ne tree Ycenters"
do not actually lie a® the grid points of wha® we perceive 10 be
the underlying grid); furthermore, there are missing trees (trees
have been cut down and certain infesta®ions cause tree; tc appear
deformed in ‘these images). If we could somehow compute the grid
structure from an analysis of “he image %then we could:

1) predict the location of the "missing" “rees so that these

areas could be subsequently investigated in order %0 determine if
the trees are truly wmissing or if “he %‘rees are infested, and

ks

2} predict the locaticn of trees in sections of %he image
which we have not yet analyzad.

In the nex® section we will discuss methods for computing the
spatial structure of do?t textures, and then in Section 3 we will
discuss “ne application of these procedures *o the %tree 1location

problen.
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Figure 1. Dot patterns.

Figure 2. Original orchard image
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2. Computing descriptions of spatial structure

In this section we will be c¢concerned with computing ‘the
spatial structure of dot patterns. We are specifically concerned
with describing square or rectangular grid patterns, although the
procedures which we will present can be extended to other regular
patterns., Rectangular grid patterns can be described by a triple,
(b1,b2,dir), where b1 and b2 are the grid spacings, and dir is the
orientation of t“he grid with respect to an arbitrary coordinate

system.

&

In order to describe do! patierns we will first test the

& 4+

hypothesis *“hat the pattern is regular (i.e., that the pattern is
a sguare or rectangular grid) against the hypothesis that ‘the
pattern is randonm. The particular random process which we will
consider for forming random patterns is the Poisson point
processi{8]. The Poisson poin® process produces patterns by
randomly dropping points onto a bounded region of the plane. The
process is completely characterized by its density, pl, which is
the expected number of points dropped onto a region A of uni?

area. (See Kendall and Moran{9] for an accessible, introductory

discussion of distributions of points in ithe plane).

If it is decided that the pattern 1is regular, then
(b1,b2,dir) will be computed. In the discussion that follows we
will consider only square grids. ror square grids we need only
compute a pair (b,dir) instead of a triple. The exitension %o

rectangular grids is straightforward and is outlined in Section 3.
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What is there “hat distinguishes a so-called regular pattern
from & random pattern? Clearly, 1% has something to do with the
repetitive placement according to some spatial constraint of the
dots in the perceptual field. The heuristic procedures which we
describe’below attempt to measure “hat repetition. They are based
on the observation that for a square grid pattern the distance of
a point from its k<=l nearest neighbors will have a very peaked
distribution near b. The direction between a point and its k<=4
nearest neighbors will also have a peaked distribution, but ‘there
will be %two ©peaks separated by pi/2 radians (assuming that we

coalesce directions separated by pi).

The heuristic procedure involves histogramming the distance
between each point ana its k nearest neighbors. This histogram is
called the size his‘togram and is denoted by HSs. Hs 1is “hen
examined for dominant peaks. The search for peaks in the size

histogram represents an attempt to gauge the "granularity"‘of “he

pattern.

The dominant peak of smallest distances ( i.e., the lefl-most
peak in Hs) is then detected, and is used %o create a filtered
histogram of t“he directions between a point and a subset of its k
nearest neighbors. We will refer to this subset as the ks-nearest
neighbors of the point. Here, s indicates the mode of the peak.

The filtered histogram is called the direction histogram and is

denoted by Hd. (Histograms based on near neighbors have also been

used recently by Stevens{10] *to discover locally parallel

s

structure in dot patierns - another aspect of regularity in dot
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patterns.)

Note that computing Hs using only nearest neighbors and then
searching Hs for “he left-mos% peak represent Lwo applications of
“he Ges%alt law of proximity. The first application reflects our
belief %that %the information attended %o in perceiving such
patterns is the distance be‘ween proximal points, while the second
application says that this information is <then subsequently

interpreted based on proximity - i.e., %the spatial relations

between points in the peak of smallest distance determines our

perception of %“he pattern.

The motivation for this approcach can be jllustratedv using
Figure 3. Here, we have taken a square grid and "corrupted” it by
randomly adding points to i% near “he vertices of the grid. The
result is that the perception of “he grid is interfered with by
the addi*ion of *hese points. Figure 3a contains the square grid
pattern, and Figure 3b contains the same pattern with the addition
of one exira point near each of %“he points of Figure 3a. The
square grid pattern has been effectively masked by the addition of
these points. For patterns such as the one in Figure 3b, the size
histograms Dbeiween points and *heir 3 or 4 nearest neighbors
should have a strong and distinect peak produced by pairs of
original grid peints, in addition to *he peak produced by the
immediate neares® neighbors. Figure 3¢ displays such a histogranm
with “he marked peak corresponding to “he original grid peoint
pairs, and the peak of small distances corresponding to the

immediate neighbor pairs. 1f we considered the peak produced by
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point pairs in Figure 3a in describing %*he patitern of Figure 3b
t hen we would {using the remainder of the procedure which is
described below) decide that the pattern is regular, in contrast
to our perception of that pattern. It is for this reason that we

only consider the lefi-most peak in Hs.

After Hd is computed, we examine it for pairs of peaks whicnh
are separated by pi/2. All such pairs are then compared using
some evaluation function, and the bes* is chosen as the
description of *“he square grid. The deiails of the algorithm can

be understood by following its application to a simple example.

Figure 4 contains a regular point texture. The figure was
generated by placing a dot at all vertices of a 10x10 grid, with
grid size b, Then p0=504 of *he dots were randomly erased.
Similar to the Poisson process, we call pli=z1-p0 *he density of the
regular process. Finally, the positions of the remaining dots
were perturbed by moving ‘them, a%t random, “0 a position in the
cirele of radius .3b centered at tha% point. Figure 5 contains Hs

for k=2 and 4,

Figure &6, then, contains Hd for “he smallest distance peak in
the histograms of Figure 5, The next =step in “he process is to
detect all pairs of peaks in the direction histogram which are
separated by approximately pi/2 and %o assizgn some evaluation to
each of these peak pairs. Then, the bes® peak pair is chosen, and

its directions define the orientation of *he grid.
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Figure 5. HS for Figure 4.

a) k=2 b) K=4

Figure 6. Hd for left-most peaks of Figure 5.
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Once the best peak pair in *he direction histogram has been
determined, we can use the descriptions of tYthose peaks to compute
a measure which will reflect “he degree of regularity of the
original point pattern. If the degree of regularity is not high
enough, then we will not describe 4the point patitern as being
regular. This measure is defined as follows. Le%t (d1,d2) be %“he
bin names of the modes of the best direction peak pair, and let
N1, Ne be the respective relative frequencies of these two bins.

We can now define the regularity of “he pattern as

r = N1 + N2

For a perfect, regular texture we would obtain r=1. This 1is
because each point will have k<=4 nearest neighbors at neighboring
grid points along the principle directions of “he pattern. Now,
consider a random point pattern. If the direction histogram has
been quantized to ¢ bins, and if the positions of the points in
the random pattern have been sufficiently, finely quantized, %‘hen
since the distribution of directions to neares® neighbors for a
random pattern is uniform[8], each bin in “he direction histogran
will have relative frequency 1/%. Therefore, for a randonm
pattern, we have

r = N1 + N2 2/%

]

Finally, we take as our regularity measure for an arbitrary
point pattern

R = r/(2/%) tr/2

which represents “he ratio of %the regularity of “he given pattern

to the regularity of a random pa‘‘ern.
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In order %o gauge *he utility of this measure for
discriminating between random and regular pa%terns, we performed
the following s8imple experiment,. Hegular patterns were generated
using values for density, pi, of .2, 3, 4, .5, b, .7, and .8.
Table 1 shows the value of R as a function of pi1 for k=2 and 3.
1+ should be noted “hat for computing %“he histogram of directions
between a point and its k neares® neighbors we used a value of
t=8. Therefore, the maximum value which H can take is 4, Random
patterns were also produced using the same values for density
(number of points dropped per unit area) as %“he value for pl.
Table 2 contains the values of R as a function of that density, d,
again wusing values for k of 2 and 3. ldeally, for %“hese random

patterns R should be 2/%=.25.

1t can be seen from Tables 1 and 2 %that there 1is a clear
difference Dbetween the values of R for the regular and randocm
pattern., We could reliably wuse a threshold wvalue of 2.0 %o
discriminate between regular and random patterns, We will do this

&

in the next section to discover thnose orchard i1images whose tree
centers do not form a regular pattern. In “his way we will avoid
the problems that would ensue from computing a description of ‘the

regularity for such images and “hen using such a description to

predict? the location of undetected trees.



k=2 k=3
.2 2.8 2.4
.3 2.7 2.4
.4 2.7 2.0
.5 3.1 2.7
.6 3.7 3.2
7 3.5 2.9
.8 3.8 3.4

Table 1. R as a function of pl

d R

k=2 k=3
.2 1.6 1.3
.3 1.9 1.4
4 1.3 1.3
.5 1.4 1.2
.6 1.3 1.3
.7 1.2 1.2
.8 1.3 1.2

Table 2. R as a function of d
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3.0 Application %o the description of natural images.

in this section we will discuss an application of the
procedures described in the preceding section %Yo the description
of a set of real %textures, As described in the introduction, %he
problem is %o detect “rees in aerial photographs of citrus groves,
and “hen to «classify <the ‘trees as bDbeing ei%her healthy or
infes*ed. We are concerned here only with “he process of iree
detection. We will detec® trees by first detecting a se%t of
"obvious” trees, and ‘hen using ‘he loca‘ions of those trees as
input to ‘he processes described in %he preceding section, Those
procedures will predict the locations of other trees in %the image;
these locations can be used by subsequen® programs %o detect and
classify trees not found by “he first stagé. We describe in
Section 3.1 our procedure for de‘ecting "obvious" trees and then
Section 3.2 describes the regularity measures compuled based on

the locations of “hese trees.
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3.1 Detecting "obvious®"™ “rees.

The procedures for detecting trees consists of
differentiating “he image, and ‘then using a Hough transform (
Kimme et al[11], Shapiro[12]) to fing “ree centers in ‘the

differentiated image.

The imagec is differentiated by an edge de%ection procedure
which first assocjateé witn each point in *he image “he magnitude/
of “he maximal response from a set of directionally sensitive edge
operators, These operators are very similar %o “he Kirsch
operator[ 13] except that they operate on 5x5 neighborhoods. The
procedures also associate ‘“he direction of “he maximal response
with each point,. The next step is a local non-maxima suppression
step. For each point, a small cone shaped neighborhood whose axis
is orthogonal to ‘he direction associated with %that point is
examined. If there is a point in that cone shaped neighborhood
with similar direction and greater magnitude than the point at +the
apex, then ‘the point at “he apex is suppressed ( i.e., its
magnitude is marked as 0). The points which survive the
non-maxima suppression process are input to the Hough transform
programs. The encoding for the eight different types of edges

which these procedures compute are shown in Table 3.

The next step is %o compute the circular hough %transform for
this edge image. This is done as follows. First, a range of
circle radii is specified. The purpose of specifying a range of

radii rather than a single radii is:
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1) to allow for a certain amount of ‘“eccentricity"” in the
circles which we will detect - i.e., the procedures will actually
detect ellipses of fixed eccentricity as well as circles, and

2) to allow for a range of tree sizes,.

Given this range of radii, the Hough transform is computed as
follows. Each non-zerc point in the edge image is examined and
makes a contribution to certain cells in The Hough transform. The
affected cells are those that lie on the set of semicircles whose
radii lie in “he specified range and whose poin®s all lie in ‘the
posi®*ive half plane defined by the direction associated wiith %the
edge point ( see Figure 7). The reason for only considering the
positive half plane is that we have prior knowledge that the trees
are brighter than their surrocunds, so that there is no need to

detec®t dark circles.

Given the complete Hough transform we search for circles in

“he image using the following procedure:

1) Find the point in the Hough space with the highest
magnitude - this will correspond to the point in the image
surrounded by the greatest number of edges within the set of
sepcified radii.

2) Return “o the image and examine the set of edge points
which gave rise to the peak in the Hough transform. Create a
histogram of eight bins, where %the i'th bin contains the number of
edge points in the i'th octant (with origin at the center point)
which have the Ycorrect® direction associated with ‘them ( see
Figure 8). Call this histogram D.

3) Apply some evaluation function to D to determine 1if the
spatial distribution of edges should be labeled as a circle. In
the examples which follow, we adopied the critericn that a circle
must have at least five non-empty bins in the histogram, and the
total number of poinits in the histogram must be at least 10. 1f
the point passes “his test, then enter this point in the list of
circle centers.

4) Delete from the Hough ‘ransform the contributions of all
of the points which were used to form %“he circle detected in steps
1-3. This is a standard step in analysis using the Hough



Figure 7.
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transform, and its purpose is %to delete spurious peaks in the
Hough transform.

5) Find the nex%t highest point in the edited Hough space. 1f
its magnitude is less than some “hreshold, then the procedure
stops. Otherwise, we return to step 2.

The results of applying *his procedure to four cUx64
subimages of the large orchard image , are shown in Figures 9=-10.
Figure 9 contains the digitized orchard samples, and Figure 10
contains the edge images ( using the encoding contained in Table

3), where the special symbol 'C' denotes the center of a «circle

detected by %the Hough transform programs.



Figure 9. Four orchard images.



edge orientation symbol

0 -
45 A
90 +

135 ®
180 +
225 ¥
270 ¥
315 X

Table 3. Symbols for edge orientations.

Figure 10 (bl,bz,dir) r
a (15,11,.04) 3.2
b (17,11,.05) 2.9
c (16,11,.10) 3.2
d (16,11,.05) 2.7

Table 4. Grid descriptions and regularity measures
for orchard images.
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3.2 Hypothesizing circle centers

Once the set of circle center points has been detected, we
are in a position to apply *“he procedures developed in the
previous section for computing “he description of ‘the underlying
grid pattern. However, some changes need to be made to those
procedures since the grid patterns for the orchard images are
rectangular rather than square. This means that instead of having
to compute only a single distance,b, as we did for square grids,
we need to compute a pair of distances bt and b2. Note that these

two distances can be computed from only Hs since tne two left-mos*

peaks will correspond to b1 and b2.

Figure 11 contains the size histograms between a point and
its three nearest neighbors for “he images of Figure 9, For these
patterns, the two major peaks in Hs correspond to b1 and b2 in %he
underlying rectangular grid. We next compute two filtered
direction histograms, one for bl and one for b2. Each is searched
for dominant peaks. The direction of the grid is determined by
the pair of peaks, one from %the direction histogram for b1 and %he
other from b2, whose sum of sizes is greatest and whose angular
difference is tolerably close to pi/2. 1t should be noted the for
the images which we investigated, Hd, the filtered histograms for
b1 and b2 never contained more than a single major peak, 80 that
computing the orientation of the grid was straightforward. Table
4 1ists b1, b2, the grid orientations, and the regularity measure
for ‘the paﬁterns corresponding to the loci of circle centers for

the four orchard images. No‘ice that in all four 1images “he
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regularity measure 1Js significantly higher ¢han %the threshold of

2.0 which we determined in Section 2.

Once the grid pattern is specified, it remains Yo hypothesize
the 1locations of the undetected circles. The procedures to dQ
this are defined as follows: Let C = { ci=z ( xi,yi)} be the set
of detected <circle centers, and 1let {(bi1,b2,dir) define +the
rectangular grid pattern. In the discussion which follows we will
refer to the "grid for circle center ck." This is the grid having
sizes b1 and b2 and orientation dir which is gcentered at ¢k -
i.e., for each ¢k, we translate the grid so that ck is at %the
origin. Let Dk(p) be the distance of a point p from the nearest
grid point in the grid for circle center ck. If p lies exactly on

a grid point in %the grid for center ¢k, *hen Dk(p)=0.

Now, let F(p,c) be a predicate defined over pairs of point
positions, where p is an arbiirary image point and c is an element
of C. Two examples of such predicates are:

1)F1{p,c) is true if the distance between p and ¢ is 1less
than some threshold t.

2)F2(p,c) is true if ¢ is one of the k nearest neighbors of
circle centers to the poin® p.

Now, we define:

D(p) = Z:Dj(p)*F(p,cj)

ci

Here, we intrepret TRUE as 1 and FALSE as (Q for computihg this

sum. b can be regarded as an image. Tne value of D(p) is an
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indicator of how close “he point p fits %“he rectangular grid
pattern defined Dy the ci. We “hen compute as our hypothesized
centers the local minima of the D image. That is, the point p is
a hypothesized center if D(p) <= D(q), where dist(p,q) < d. Here,

d determines the radijus of the local minima operator.

&

We found, empirically, +tha* the 1location of the circle
centers was not substantially effected by the choice of spatial
predicate. Figure 12, for example, shows %the hypothesized <circle
centers, labeled as H's, for the orchard in Figure 9a, using the
spatial predicate F1 with t=zU40 and 80, and “he spatial predicate
F2 based on k=3 nearest neighbors. The results are quite similar.
Figure 13, t*hen, shows the hypothesized c¢ircle centers for the
remaining three orchard images using F2 with kz3. (No%te that the
H's near the boundaries of the image are due to border effects of

the non-maxima surpression and should probably be discounted.)

We should mention that She reason for introducing “he spatial
predicate 1in computing the D image ins*ead of simply basing the
computation of D on all circle centers is 2o make *“he computaiion
of the D image more sensitive to local changes in the structure of
“he underlying grid. This would be more significant if we were
directly processing larger image areas. In such a situation, we
migh® want to associate a grid description with each detected
circle center ra*her than with an entire image; the computation

of D using a spatial predicate would *“hen reflect any gradual

changes in the grid description as we moved around in %he image.
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4.0 Conclusions

In this paper we have concentrated on describing the spatial
structure of dot patterns. These correspond 0 an idealization of
tLextures, where all of the ‘texture elements have identical
properties. For such textures, %“he only available information for
distinguisning between one and another is the spatial placement of
the elements in the image. We based our method of discrimination
on the fact that for random point patterns the distribution of
directions between a point and i%s nearest neighbor is uniform,
while for a regular texture, sharp peaks should be detectable in
“he direction histogram. We *herefore proposed, as a me*hod for
computing the spatial structure of dot patterns, Lo construct the
histogram of directions between a point and its ks-nearest
neighbors, where s is determined by computing %the peaks of the
size histogram. Al%hough we were specifically concerned with
rectangular and square grids, the approach could be applied to
other regular pa%terns as well - e.g., for a hexagonal point
patitern we would expect three peaks in +the filtered direction

histogram ( here k>i4).

Finally, we described an application of t‘hese procedures %o
the analysis of images of orchards containing infestations. This
involved first findinz a set of Yobvious" tree centers using Hough
transform techniques, then describing “he setv of points
corresponding to the tree centers as a rectangular grid, and
finally wusing *he description of that grid %o predict the

locations of other trees,
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