INDUCTIVE REASONING ON RECURSIVE EQUATIONS

by
Frank Malloy Brown
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas USA

Sten ~ Ake Tarnlund
Department of Information
Processing & Computer Science
University of Stockholm,
Royal Institute of Technology
Stockholm, Sweden

TR-90 - MARCH 1979






Inductive Reasoning on Recursive Equations
abstract

We investigate several methods of inductive reasoning in the domain
of recursive equations, including the method of generalization with beliefs,
the method of successive refinement, and temporal methods based on comparisons

with previously solved problems.
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1. Introduction

We investigate several methods of inductive reasoning which may be of
use in obtaining closed form solutions to recursive equations. This research
is clearly related to the pioneering work of Polya (1,2,3) on inductive
reasoning in mathematics. It differs from Polya's work in that it focuses
in on a particular mathematical domain, and tries to analyze a few specific
methods of inductive reasoning in that domain to a level detailed enough
so as to be programmable. Also it differs in that we try to relate these

inductive methods to the capabilities of current deductive systems.
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We consider the proglem of trying to find by inductive reasoning a closed-
form solution, that is an algebraic solution, to a recursive function. That is,
from a set K of equations of the form :

\yk(n,fn,f(n-h),f(nveh),,M)=o or rather : fn = ‘?k(n,f(n-h),f(n-eh),m)
we wish to find an equation of the form 2

Yn fn = ¢n where f does not occur in ¢,

For example, given the recursive equation for the Fibonacci function

P(n+2) = F(n+l)+Fn

F1 =1

FO = O
We would like to find & theorém of the form :

¥n ¥n = ¢n

where ¢ n is & sentence constructed from algebraic symbols such as numeral;;
plus (+), times (*), power (), minus (-), division (/), logarithm (1ln),

sine {sin) and cosine {(cos).

Or as another example, given the recursive equations for the minimum
number of moves that must be made in the Tower of Hanoi pﬁzzle of n discs
( a description of this puzzle may be found in k4).

H(n+l) = 201t3)~%?

HO = O
we would like to find a clesed form solution

Vn Hn =é¢n.

A “’-‘—"/ B —————— e e e e e ey - 0
1.2 Relevance of the Problem Domain

ARY

Even though we have restricted our research in the domain of recursive
functions, it should be noted that this domain is important for mathematics and
Computer Science. In particular it includes one of the most important areas of

classical mathematics, namely the infinitesimal calculus, as can be seen from

the fact that when h is an infinitesimal number:



q/k(n,f n, f(n-h), f(n-2h)...) =0

is the general form of a differential equation.

Furthermore a system for reasoning in this domain would be useful in
computer science both for the synthesis (5) of efficient programs such as
logrithemic (6) Fibomgcc, Program which is based on the closed form

solution of its recursive definition, and for the analysis of algorithms.

2. Elementary Inductive Methods

We first describe two basic methods of inductive reasoning, and then compare

them.

2.1 The Method of Generalization with Beliefs

One popular theory of inductive reasoning (7,8,9,10,11,12) suggests that it
is basically generalization.¥  Consider for example the Tower of Hanoci problem.

Using the recursive equations we can deduce closed-form solutions for numerical

* We consider analogy to be an essential component of the method of generalization
as here Aescribed, and hence do not define a separate : method of analogy.



instances of Hn.,
HO = O

HI = ARD + | = 10 7

H2 = 2H1+1 = 2°1+1 = 3
H3 = 2H2+1 = 2°3+1 = 7
Hb = 2H3+1 = 2-7+1 = 15
HS = 2HU+1 = 2:15+1 = 31
H6 = 2HS5+1 = 2-31+1 =63

I suspect the reader has already induced a closed-form solution for Hn, but

let us investigate how this might be done. From

\\gg =0 Hl =1 H2=3 H3 =7 HY =15 H5 :%i,ﬂff,jféé//
we wish\€;m§§53“~"“““”'—M"wfawﬁ\\‘“~——w‘”“‘"ﬂﬂafl f

¥n Hn = ?

First let us note that a least general generalization method such as(7,8,9)
does not work because the least general generalization :
VYn V¥m Hn = m.

is false.

Furthermore, even if we include an algebraic matching facility similar to
that used in (11,12)* which allows us to try to relate the arguments of the Hn
function to its values by adding, multiplying, subtracting, and dividing, we
still would not obtain a solution. For example, adding one to the sequence of

values of Hn gives

~HO+L = 1 HI+l = 2 H2+l =b H3+1l = & Hu+tl = 16 HS+1 = 32 H6+l = 6k
N\Mnm._‘;_ﬁ_‘_ﬁh_w“~ AT e

¥n Hn = ?

But still the remaining least general generalization is false,

So how can the closed form solution be induced? . Let us suppose that the

* In our case, however, we work directly on the numbers themselves rather than
applying algebraic operations to the number of occurrences of symbols such as
the successor symbol.,

°
°




inductive system has available a belief that any function which produces the
sequence of values 1, 2, 4, 8, 16, 32, for the arguments G, 1, 2, 3, &, 5, is
probably equal to the exponential function of base 2 ;

(Belief 1, 2, 4, 8, 16, 32 is probably 2")
Then given this belief a system might try toc cumpare the sequence 1, 2, 4, 8, 16,
32 to the sequence of values given by the recursive runction by apdlying various
algebralc operations pairwise to the elements of each sequence. For example, in
the.case of Hn we might subtract from each element of the belief seqguence, the
corresponding element generated by Hn, obtaining

124816 32

=
i
[
’._.l
[
-

a sequence of ones. This would give us the knowledge that

HO = 20 - 1
H1 = 21 -1
H2 = 22 -1
H3 = 23 -1
HY = 2h -1
HS = 25 -1

and via our belief, we induce that
Ho = 2" - 1

which i1n fact 1s true.

What should be understoocd about this seemingly successful paradigmatic
example of generalization with beliefs, is that ¢ther than for possibly the
triggering of the belief that the closed form solut.cn might involve an
exponential function of base 2, we did not really need to produce those
instances of the Hn function. Nor did we need to go through any generalization

steps. There 1s a more direct method, which we cail the Method of Successive



Refinement

2.2 The Method of Successive Refinement

Let us suppose that we believe a solution to Hn might involve an exponential
function to a power of two.

(Belief Hn involves Zn)

In other words, let us first form the hypothesis that

Hn = 27
and see what a hypothetical deductive system will do to this expression.

We assume that the deductive system includes a subsystem for simplifying
algebraic expressions, and a subsystem for simplifying logical expressions
which in particular eliminates trivial quantifiers:

(Va a=t -+ ¢g)is replaced by ¢t

(3o k=t A ¢o)is replaced by ¢t
The rules of these two subsystems are to be applied as often as possible, the
order in which rules are applied being essentially irrelevant. We further
assume that the system includes an equality substitution step to eliminate
the induction hypothesis, and a principle of mathematical induction which are
applied only when the simplification rules are not applicable.

n

We now exemplify the method of successive refinement applied to Hn = 2 .

Inducting on n we get* :



HO = 2 An = 2"s'Hn+l = 2
HO = 1
0=1 ‘
=
=

Already we are in troube as the deductive system shows that our hypothesis
is false, on the base case. Can we modify cur hypothesis to induce a better
one? Analysing our broof we see that if ¢ = L were 0 = | - 1, then ® and not

1 would be broduced. This means that

HO = 1 would have to be HO = 1 - 1,
0 S0
HO = 27 would have to be HO = 2° . L
and  Hn = 2% would have to be Hy = U . |

Giving our new hypothesis to our deductive system we get

* ® is our symbcl for true; and B 1s cur symboi for false,



= ¢ - 1% Hp+l =

Ho=20 -, &« \Hn" n 2"t Ly

HO =1 ~ 1

HO = O

which we deduce to be true.

We see then that we can Qwiain o proot

n ( . PR}
z Ho vi ~»Hn+l = 2227 o 1

"

Hn+l = 2{ilp+l) - o
Huel = 2Hn + 2 = 1L
Huvi = 2Hy + 1

(@Hdprl = 2Hn + 1

f1

by meditying a previous unsuccessful

attempt at proving a thecrem. This leads naturaiiy s vhe question as to what

1s the space of all such modificatiocusy

Althougn, poteutialiy this space may

be quite large, we wiil caly consider lwo slmple meditications @

1) addition cf & constast Lo an ejuation in urder to make it true

2) multiplication cr a cinstant to an additive part Of an eguation in order

to make 1t true.

We have just seen an exampie of (i) 1n cbtalniug & solutlon Lo the Hanoi function

aAn example of (Z) appiiea te the false eguaticn
1 =Jr§ would b= ro multiply\/g'by i/JT;

and an example of (&) appiiea o an aaditive Lacl or the false egquation
0=1+/%5

would be to multiply the saditive part V5by =1/5

Note that modirications are Quiy made Lo the right hand side of an

equation. The reason icr this 18 that that zide —elilalng Lhe closed=form

solution whereas the other side mecely Lintaias Une  recursive runction,

The reader will see 1n the meunod oOf BUullesgslve refiremsnt an o ho of

Meltzer's (7) hypothes:: tnat inductive reasining 1ls inverss dedusticn

in our case, thls 18 6ot &0 much 8 semanticeal hypothessy . 5@ a~B then B )¢

deduced from A, and A




o
..

D

{ induced from B, as it is a notion of search strategy in the sense that if
B is deduced from A ‘in a proof then A is induced from B by analyzing in

reverse the proof step consisting of the deduction of B from A.

;

We have seen how the closed-form solution for Hn may be obtained from the
belief that the solution involves an exponential function of base two. But it
turns out that this belief is stronger than what is necessary, and that the

belief that some arbitrary exponential function is involved suffices

.

Fa¥n Hn = ag"
>
HO = ao Hn = an~> Hn+l = an+1
HO = 1
0=1 5
o ]
Again by successive refinement of our hypothesis we prove :
da¥n Hn = an -1
HO = a0 - 1 Hn = a® - 1— Hn+l = &% _ 1
n n
HO = 1 - 1 a = Hn + 1 - Hn+l = gra” -~ 1
HO = O Hn+l = a*(Hn+l) - 1
0 =20 Hn+l = alln+a - 1
e 2Hn+l = aHn+a - 1
»
2 = a l=a«1
&
2= a
a

where a has been found to be equal to 2, Thus :

in = 2" -1
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2.3 Comparison of the two Methods

So far, we have found that simple generalizetion methods are not sufficient
and that sophisticated beliefs seem to be used in inductive reasoning. We have
cast doubt on the suggestion that inductive reasoning is only generalization by
describing another technique, the method of successive refinement, which seems

to be more powerful (because it needs a weaker belief to produce the solution).

One advantage of the generalization method is the possibility of
triggering the 2" bpelier by an algebraic matching of the 1, 2, 4, 8, 16, 32,
sequence to the sequence generated by the Hanoi function : Hn. A second
adventage is that it is quite easy to explain how the belief, that a runction
whose initial instances are 1, 2, L4, 8, 16, 32, is the exponential of base 2 :

(Belief 1, 2, L, 8, 16, 32 is probably 2°)
was produced by simply instantiating n in 2" to successively 0, 1, 2, 3, b4, 5
whereas it does not seem quite as easy to explain the prcduction of the initial
hypothesis that Hn involved some exponential function

(Belief Hn involves a")

Are we for example to believe that the closed-form solution of every recursive

function involves an exponential function ¥

Although it is easier to explain the origins of a belief of the form .
(Beliefr 1, 2, 4, 8, 16, 32 is probably 2")
than of the form ¢
(Belief Hn involves a")
we note that if a recursive function is not actually equal to a simple algebraic
function such as 2" then it is quite improbable that the necessary belier of
this first form could be available to be used in obtaining the closed-torm
solution. We will now give an example of such a function and suggest that the

closed-form solutions of most recursive functions are of this character.

S
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This example 1s crucial because it points out the inadequacy of inductive
reascning based only on the method of generalization even with sophisticated

beliefs.

Our example is the Fibonacci function. Using the recursive eguations we

deduce :
FO = O
¥l = 1

F3=F2 + Fl=1+1=2
Fih = F3 + F2 = 2 + 1 = 3
FS =Fh + F3 =3+ 2 =5

F6 = F5 + Fh =5 + 3 =8

i
[02)
+

W

"

&

F7 = F6 + F5

F8 = F7 + F6 = 13+ 8 = 21

Thus from

FO=0 F1=1 F2=1 F3=2 Fi=3 FP5 =5 F6=8 ¥[ =13 F8 = 21

we wish to find : o

fut there is no simple algebraic function which produces an initial seguence
anything lik2 0, 1, 1, 2, 3, 5, 8, 13, 21. In other words there could not be
any belief of the form :

(Belier avcuoahjis probably &)

1
which would be helpful in solving this problem, For after ail we cannot expect
Lo have beliefs about every algebraic function in our system; only the simple
ones. We can see that the closed-form solution 1s not simple, by actually
vahinbiting it, Concurrently we will take the opportunity to show how this
closed-form solution could be obtained by the method of successive refinement
asing the belief that the solution involves two exponential functicns :

L . n .n
{Belief Fn involves a , b )
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From this belief we form an initial hypothesis that
. h
‘3adpyn  Fn =a+ b™
and see what our deductive system will do to this expression. Inducting on n

twice, because Fn does not recurse on Fn+l, we obtain :

ia bvn Fn = a" + p°

5(//7; ﬁ\\\\\\\\\\‘* n+1

FO = g8° + b Fn = a” + b" = Fnel = o071 4 0
FO =1+ 1 &n = Ffn - bn -~ Fn+l = aan+ bn+l
FO = 2 Fn+l = a(Fn-b®) + p2FL
0= 2 Fn+l = aFn + (b-a) D"
0
¥¥
Fl = aFQ + (b-a) bo ) Fn+l = aFn + (b-a)b"sFn+2 = aFn+l+(b~a)bn+l

n

(b-2)b" = Fn + 1 - aFn —»Fn+2 = aFn+l+(b-a)b™

Fi =0 +b-ag Fn+2 = aFn+1+(Fn+l-afn)b
Fl = b a M+2 = aPn+l+bFn+l-ab¥fn
1=b-a® Fn+2 = (a+b)Fn+l-abFn

' Fn+l+Fn = (a+b)Fn+l-a-bFn
;=1 ~J§'_ 1 +45
2 2 (a+b-1)Fn+l-(a b+1l)Fn = O
(i = §£§ atb-1 = 0 A a*b+l =0
2 R
A - -
(i a‘jg) a+b-1=20 a*b + 1 =0
(D> a =1 -b veta odm (l._b).b + 1 =0
1 +45 b b4l =0
8, 5 ,
P -b -1 =290
_1-J5
b=z
-]

Footnotes * and ** see on following page.
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In contemporary deductive systems(l%JWJ5) the equality or unification

items would end up replacing all occurrences of say "a" by b-l1. A system

used in successive refinement should not do this because if Fn = a® + b
is false a might not equal b - 1, and then we would not want to propagete

this falsity into the branch of the proof which is the induction step which

may after all be true as in this example. The reason we prefer to have 3
derlved on the branch of the proof which is the induction base rather
than the induction step is that it is a simpler branch and will be easier

to enalyse why it produced @ , in order to induce a hypothesis.

Unlike the equality item used in many contemporary deductive systems,

we use one which does not replace the recursive function such as Fn whose
solution one is trying to find by some term, but rather replaces some other
function such as b" of the induction variable n by some term. There are two
reasons for this! First, sometimes as in the case of the Fibonacci, the
function does not immediately recurse on the first induction hence there
will be no occurrence of Fn to be replaced, Note that on the first inducticn
we could and did replace a® by some term. Second, the replacement of a
recursive function, such as Fn, may make it difficult to decide when to
apply the items to equate coeficients. For whereas we might expect Fn + 1
to be linearly independent of Fn and hence

1) aFn+l +gFn=0 4> g =0 A~ B =0

1s true, it seems less obvious that

2) aFn +Bb =0 ¢» A =0 A g =0

would be true, Note that the item (1) was used in the proof given here
wvhereas if Fn had been replaced instead of b" then item (2) would have been

needed to obtaln the solution.
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The induction step seems to be true, but the two base cases are false.

Can we modify our hypothesis to induce a better one?

Analysing the Fl base case we see that if the 5 in (1 = {5) had been
divided byJ 5 then ® would have been produced. This means that the base case

would have had to have looked something like :

F1 = aF0 + (-133-'5)
J5
Fl = as0 + (3:5)1
J5
b-a
Fl = 0 + —=
5
b-a
F‘l B e
J5
1 = b~a

Working upwards we see that the five previous lines in the proof must have

been something like
n
n

Fn = a +I=g

J \.-‘ bn _ n+1 ,bn+l

®
|
rxi
a1
1
&
o)
o]
+
[as
I
o
o
+
\Lf’(

Fn+l =

1
o
2]
s
qo'
'S

Fn+l

it
jo o
y
ol
+

5o
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So far we have been able to induce a new hypothesis which will probabiy make
the Fl-base branch of the proof result in @ But, does this change the result

of @ we had previously obtained in the induction step branch of the prouof?

.- . . ‘ _ 8 n .
Since inducting on Fn+i = aFn+»j§r»- b gives :

b-a n+l

afn+l + Tgw b

L1}

fn+l = aFn + ;%E- bn—w'Fn+2

b-a . n ) . b-a .n
b’ = Fn+l-Fn -»Fn+2 aFn+1i+ b b
35 33

f

aFn+l+ (Fn+l = aFn)b

[}

Fn+2
and since the third line i1s identical to our previous third line we see that

the induction step branch of our proof will still result in ®.

Of course we don't actually have tc analyse our proofsteps downward, as
we could simply apply our deductive system to such a step and see what 1t does.
, ,, b-a . . .
Fcr example, to see that Fn+l = aFn +ng b" results in B all we need do 1s

t¢ apply our deductive system to it.

We have now produced a modification which results in ® on both the Fl
base, and induction step branches of our proof. Only the FO base step remains.
The FC base branch resulted in 3 , so we know that some sort of moditication
1s what was needed to make the FO base branch result 1in® : We first check
to see 1if the modification induced from the Fl1 base branch will suffice to

make this branch result in @

n

n b
Fn = a7 + ==
')

0

_ 0 b

FC = a™ +

e

it
[
+

0]

Su there is still a problem. If, however, O = 1 + %; vere O =‘§§ - %?’ then
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0O = 0,8 would have been deduced. For this to be the case

FO =1 + % would have to be FG = }5 - -}-

P y

0 0 O

FO = a.o +£,Dw§= would have to be FO = ]&? - %
V4

n I

1€}
Fn = a + would have to be Fp = 2.,2.0D
Ve T

=
and then our deductive system would easily be able 1¢ deduce that this new

hypothesis :

) an-b
b vo = &

Iy
e

¢

is true.

Replacing a and b by the algebraic terms that we have found them to be
in our proof we find that the closed rorm soliuction ror the Fibonace: function

1ls

2 z

E)

Thus we see that although it is plausible that we might be able to induce this

solution by the inductive method of successive refinement, 1t 1s not very

plausible that we couid have induced this scluticn by the generalization method.

®
The reason for this, as will be recalled, 1s because the generalization method

would require prior beliefs that .

. , 1 -'-JT)' n .)
(Belief - 1, 1 618, 2-618, 4.236, 6 854, (1 LYU 1s probably s

. ' 1 __{'5' n
(Belief : i, -.618, .382, -.236, 146, - Cu 1s probably =) )

And 1t simply does not seem plausible that su:h be.lers would be available,

2.4 The Supplementary Method of Existential Fun_ticns

We have one final point to make about the Fibonaccl example : If we had a

R



slightly more sophisticated belief as to what the closed-torm solution might
be, then our deductive system would be able to obtain the solution in a very
direct manner. Let us suppose that we have the belief that the closed-

form solution of the Fibonaceci inyolves a linear combination of two non-zero
AT
Al ‘ni\"

Lt
o

exponential functions

(Belief Fn involves ya® + gb™)

Then the hypothesis is : 3JnJgjaddb ¥n Fn = . ., gb "

A solution is obtained by inducting twice on n .

338 3aIb vn Fan =aa® + g1

T~

FO = aao + Bbo Fn = aan + an —» Fn+l = uan+l + an+l
FO = a*1 + B-1 aa’ = Fn - Bb” > Fn+l = galla 4 gpBtl
FO=a +R8 Fn+l = (Fn - an)a + 8bn+l
0=0 +8 Fn+l = afn + (b-a) gb"
a =-—R
8
(@ = 145) ,,/”"'/”/
v L v
Fl = aF0 + (b-a)BbO Fn+l = aFn+(b-a)Bb" ~» Fr+o = afn+l+(b-ga) Bb‘“l
FL = a:0 + (b-a)g-1 (b-8)Bb" = Fn+l-aFn —sFneo = aFn+1+(b-a)Bb™b
F1 = 0 + (b-a)g Fn+2 = aFn+l+(Fn+l-afn)b
F1 = (b-a)B Fn+2 = aFn+l+bPn+l-abfn
1 = (b-a)R Fn+2 = (a+b)Fn - abFn
8 = 1 Fn+l+Fn = a+bFn - abFn
b-a
{arb~1)Fn+l-{a“b+1)fn = O
J_ .
B’l-T5“_1+J"5“ atb=l = 0 . acb+l = 0
2 2
-—
(? 2 a+b-1=0 “wb+ 1 =0
N
a = L= b v (Loh) b+ 1 =0
-3 ~
3? (_l?ﬁ) b-b2+l=0
8 T e
2 2 2
" = b -1 =0

D =




This technique of using existential functiocns {in this case constants. a i, -, 1)
b rf‘(i'r‘:, Lgs oA ’ £ f:"&’»/.f'; A f e ] .
Becawse ot is so powerful that we shall raise 1t to the status of a third
inductive method which we shall call . The gupplementary method of existential
functions. = It should be noted that this technique 1s no substitute for the
more general method of successive refinement, for its pover depehds cruicialily
on knowledge possesssd by the deductive system  In the protocols using the
method of existential functicns we have assumed the ability to solve equations
of the form :

¢ £ =0
for an»arbifrary exlstential constant. This knowledge was not assumed when not

using this method. We shail see more of this method in section 3.

2.5 Summarz

In summary then we have described two basic inductive methods and one
supplementary method; and have shown that the effectiveness of each method
depends crucially on the avallability of particular beliefs. We have suggested
that the beliefs needed by the generalization method would only be available
if the recursive function is equal to some very simple algebraic function,
such as is the case with the Tower of Hanol Iunction-‘ For most other recursive
functions such as the Fibonacci functions we have suggested that the beliefs

needed by the generalizaticn method would not be avallable,

In section 3 we describe how the beliers necded by the method of successive

refinement might be autcomatically produced.

3. Temporal Inductive Methcds

We now describe methods of inductive reasoning based on information obtalned
from the solutions of previously sclved probiems. Sach methods are called
temporal inductive methods., There are two temporal inductive methods, disvinguished

by the type of information on which they are based, The first temporal method is

B s s e
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based solely on information obtained from the theorem which expresses a

previously solved problem, whereas the second temporal method is based on

information obtained from the proof of a previously solved problen.,

.()(‘*.n("

ecwfy l/t;’(é\‘ft’c/i {ﬂ{)rmv‘;\n = XY fvrw«,.r;'rm( lr‘(tﬁﬂﬂkn(_s‘ ’ () rl)[pet,« iL, [_“17].
Referring back to section 2.5 we shall see in section 3.2 how the second

temporal method may be applied to producing the kind of beliefs needed by the

method of successive refinement.

3.1 The Temporal Method based on Theorems

The basic idea of the temporal method based cn theorems is for
problem F to try to find a similar problem H which has already been
then to use something similar to the solution tor H as a hypothesis

of F.

For example let H be the Tower of Hanoi problem whose solution

in Section 2, and let F be the Fibonacci function whose solution we

any given
solved, and

for the solution

we discovered

are trying

to find. The theorem which expresses the solution to the Hanoi problem is

then :

(Vn Hitl = 2Hp + 1 4 HO = 0) = Hn = 2" - 1

and the (as yet incomplete) theorem which expresses the Fibonacci problem 1is

then :

(Vi Fnel =Fiutl T Fn A Fl=t A FO=0) —>Fn = ¥

We now try to compare these two theorems in order to produce a guess as to what

? should be

(¥n Hntl = 2Hn + 1 A HO=0) = EHn=2".1

it

y )
(M Fmi2 = Pm+1 + Fm A FIZIAFIFO) — gy = ¢

We see that there is no reasonable analogy that we can make which will help us

to solve F. For example if we form the analogy that m is n - 1 from (Hn+l, Fmei),

then we might conjecture that :
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which is false. In any case, so much syntax has been left unexplained
by this analogy (for example the 2°, +1, HO = O, +Fm, and F1 = 1) that we can have

no confidence in this conjecture anyway.

Furthermore even if our generalization system were scphisticated enough

to rewrite the H theorem as the equivalent theorem :

(Vn ngh;=2'rm+l +1 A HL=1AHO=0) — Hn=2% -1
/ | l |
(Yo fmi) = Fmtl + FmaA FL = 1 A FO = 0) —» Fm = 2

The closest analogy would still not explain the 2:, +1, and +Fm.,

The problem here is that H and F are so dissimilar that no immediate analogy
can be made. This fact, however, does not imply that the Temporal Method based
on Theorems cannot be used to solve this problem, for it may be the case that H
is related to F by a sequence of theorems each of which is similar to the next

F is similar to X, which is similar to X2 .... H

In particular F might be similar to a function G which is similar to H.

This leads to two strategies for trying to find such a function G

1) The bottom-up method which is to try to frame a problem G more simllar
to F than is H, and yet is similar enough to H so that the solution to
H wiil be helpful in guessing the solution to G.

2) The top-down method which is to try to frame a probiem G more similar to H
than is F, and yet is similar enough to F so that if we could solve G, the
solution to F may be forthcoming.

For example, using the bottom-up method we might try to modify H into a new

function G which is more similar to F. Noting from our previous attempts to

form an analogy that the 2° expression 1s unexplained, we might let G be obtalned

from H by replacing the numeral 2 by an existential constant a

GCarl = a°Gn + 1
-0 =9

What is the closed-form solution to Gn? We compare this to our previous
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Haoe =2Hn+lAHO=O->Hn ot _ g
o | (] / i1 :
(‘;‘y\.ﬂ -3 aGn +1 A GO 0-—>Gn = ¢ !

Since G is a géneralization of H, the solution of G should probably Be a

generalization of the solution of H. Since the recursive equation. for Gn
differs from the recursive eguetion of Hn only in having "a" where H.has
2 and since 2 appears in the closed-form solution of H we might suspect

that "&" should occur in the closed-form solution of G. Namely the
K

hypothesis

In any case, even without regard to the function G, the fact that a
symbol 2 which occurs in the recursive definition pops up again in the closed-form
solution should lead us to the question as to whether this is mere chance or if
there is some casual connection. And since the way to decide thié guestion is
to replace 2 by a different numeral, say 3, or even by an existential variable

"ot

& . Thus we are led to the function G and again to the hypothesis that
IaVin G =all-|

Let us see if this conjecture is true :

Ja¥n Gn = a -1

o ,
o0 =2a’ -1 Gn=a" - 1= entl = a7 -1
GO =1 -1 % = CGn + 1-» Gitl = aa® - 1
GO = 0 ; Cotl = a(on +1) —|
0 =0 GEitl = aGn + 8 - 1
. .
aGn + 1 = aln 4+ g - 1%
l =3a -1
- 2 = a

w

_* In retrospect, the fact that the item for equating the cgeff1c1ents of like terms was not used
here (the cancellation item was used) is, we feel, a qualitative indication that our hypothesis
is very close to being true, and that a slight modification by the method of successive refine-

ment will produce the correct solution. On the other hand if the item for equating coefficients

had been usegﬁgne induction step branch of some protocol, and if that branch resulted in @,

we believe tnat in this problem domain there would be little chance that the method of successive
refinement alone could induce the correct solution. This is related to the restricting ‘of ‘
the space of modification by successive refinement to the addition and multiptication by a 5

constant.

Soedbooadatroetin
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We discover that a must equal 2. This means that if "a" were any other

number but 2 then © would have been derived on the induction step branch of
this proof, Since it is the solution to G when "a" is not'2' that we are trying

to discover, we ask if this proof can be modified so as to give us a sclution in

these casges,

We consider an instance of this proof where a is replaced by some particular
numeral and apply the method of successive refinement. Replacing 'a' by '3'
we get the protocol ;

Vn Gn = 3% - 1

co =30 -1 Cen =3 o1 el =3
GO = 1«1 3" = Gn + 1> Cutl =330 .1
GO = 0 Entl = 3 (Gn +1)~|
0=0 ST ul=36n+3-1
1=3-1
1=2
=)

We see that if

1l =2 had been 1 n~§

then @ would have been produced on the induction step branch of the proof.

Progressing upwards, this implies that :

3 -1

l=4a~1 would be l = 5

&nd3Gn+133Gn~+3,_l would be 3Gn+1=6(}n+23_1

Continuing in this fashion we find that the entire protocol would now be
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n
¥n Gn = 3 5 1
. \ o 0+l
3" -1 » 3 -1 P |
GO = 5 Gn = 3 aan?L— 5
1-1 o ' 3038 _ 1
G0 = = 2Gn = 3 -1 —-,6;-7-4‘—1:———-3—-—-—-
0 n 3.3% - 1
6o = 3 3" = 2Gn + 1 ~» 30n+ 1 = 5
Go= 0 3Gn+l=3(2Ghz+ 1) -1
0=0 '
5 3Gn+1=6G“;3"l
o+ 1 =200t 3 -1
2 .
3Gn+l=3Gn+§-§—
. 3-1
1= 2
= £
l"‘ 2 ]
1= 1

We now know that if "a" is 3 :

oHn +1 A HO =0 ~»Hn = (2% - 1) / 1

l l \

6n+1 A GO=0 -»Gn = (3" -1) /2 . ¢

1

-1

]

Applying the method of generalization to these examples (and others if we wish

for we can let a be any other numeral and apply the same methods) we get :
Gntl = aGn +1 A GO=0-»Cn=(a -1)/ (a - 1)

Recalling that our original problem is to solve the Fibonacci function F : we

might rewrite G : |
Fo+2 = Fovrl + Fn A F1

I1AFO=0 —p Fn = 7

]

1AG0 =0 — 6n =(a"- 1)/(a - 1)

Gny2 = an#l t ) -~ G
We see that if we let a = 1 then we will have made G look more similar to F than

II because it will no longer have the "2!' difference,

S —
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This gives :

Git2 =Gn+i +1 . Gl=1 , GO=0-Gn = n
Note that Gn does not equal (in -~ 1) / {1 ~1) which is 0/0. So instead -
we replace a not by 1 itself, but by a number which is infinitesimally close

to 1 and ask for the standard part of the resulting expression which is "n"

We could continue in this fashion, modifying previous soiutions, so as to
meke the problem more and more similar to Fn. However, we believe that the
modifications needed in order to solve F are of a nature that only a more
sophisticated technique involving analogies on previous proofs and protocols

ere capable of solving this problem,

3.2 Temporal Method based on Proofs

The basic idea of the temporal methcd based cn proofs is as follows
1) First using the temporal method based on theorems find a problem H
which is similar to the problem F you are trying to solve and conjecture

& solution for F.

ne
e

Using the deductive system produce the proof of H and & protocol of
F with that hypothesis,
3)  Finally compare the proof with the protocol to rind out why no solution
was obtained, and form a new hypothesis.,
Suppose, now that we are trying to find & solution to the Fibonacci function F,
given that we already know the solution to the Tower of Hanoi function H. We
shall use the proof of the solution of H which is given on page 7 begiuning
with :
Ju Vo Hn = a” - 1 -
The hypothesis for the solution of F is
da Vo Fn 2’ .1 |

(We could throw in a few existential constants, for example : Fn %= g+a® o B,

but it won't make any difference at this stage,)
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e ————

Using our deductive system we obtain the following protocol :

3& ¥Yn Fn = an - 1

e

0 n n+l

FO = a ~ 1 Ffn =8 =~ 1 — Fn+l = g - 1
n ) n

FO=1 -1 a =Ffn + 1 - Fn+l = ara - 1
FO =0 Fn+l = a°(Fn + 1) = 1

0=0 Fn+l = aFn + a - 1

Fl = aFO + a - 1 Fn+l = aFn + a2 = 1-»fn+2 = aFn + 1 + a « 1

F1 = a0+ a8 ~1 a(Fn+l) = (Fn+l) + »Fn+2 = gfn + 1 + & - 1
Fl=0+a-~-1 (Fn +1) + 1

a = Fn + 1 —» Fn+2 = a(Ffn + 1 + 1) = 1
Fl=a -1 2
. _ ((Fn+1) +1)
l=a-1 o S |
i
2 = a * ;

i
We now compare this protocol with the proof of Hn. We see that in both cases %
]
the induction principle was first applied. We then see that the steps in the
base case of proof and protocol were the same, and that the first few steps on the
induction step branch of the proof and protocol were the same. In fact we find
that they differ exactly where ﬁn+l ig replaced by éﬁh~+ ]

Hitvl alln + a - 1 FS’!'fl = aFn + a -~ 1

;

2¢Hn + 1 ain + a - 1 F1 = aFO 4+ a -~ 1
Fnsl =afn+a-1-> FrntzsafFntl +a-1
This then is the problem. On F the theorem proven inducts because it can't

recurse, because F recurses on n+2 not n+l, whereas H immediately recurses to

obtain & solution.

So granted that F recurses on n+2 and that the theorem proven inducts twice
the question, is : why is not a solution obtained after the second induction?

Let us compare the steps beginning with the second induction in F to the steps
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in Hn :

b Vn Hn = &° - 1 Ja vn. Fpi+l =afn +a -1

We see that Hn involves some term "a" exponentiated by the induction variable b

n. Comparing Hn to Fn+l this leads us to suspect that Fn+l might also involve |

some term exponentiated by the induction term n+l, Thus we would hypothesize

that Fn+l involves some term bn+l or rather that Fn involves some term b".

The reader should bear in mind that the hypothesis is not an+l for this a
would clash with the bound varigble a already occuring in the above Fibonacci
expression. The point is that the "a" in the Hanoi expression and "a" in the
Fibonacci expression are two distinct bound variables, which do not necessarily

refer to the same number.

There are two other indications that Fn involves a term of the form bnn

Inducting on n in each case we get respectively the base cases :

HO = aO - 1 Fl = aFO + g -~ 1
HO =1 -1 F1 = a0+ a8 -1 .
HO = 0 FlL=0+a -1
0=0 Fl=a «1
|
l=a~1
2= g

Note that in the proof of H a skolem function disappears by having o replaced
by 1 whereas in the protocol of F no skolem function disappears in this manner.
Here then is a second indicatioﬁ that a term of the form bC or rather b" is
ﬂeeded in the Fibonacci protocol.

Finally by comparing the induction steps of H and F we note that in H the
equality item replaced a" by an expression, whereas in F it merely replaced "a"
by an expression. Here then is a third indication that Fn involves an expression

of the form b" (where b is not necessarily egual to a).
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Hn = a%-1-»Hn+l = a0+ 1 Fn+l = aFn+a-l —2Fn+2 = a(Fn+l)+a-1
& = Hn+l -»Hn+l = a.a®-1 aFn+l= Fn+l+l — Fn+2 = a(Fn+l)+a-l
Hotl = ar(Hn+1)-1  _((Fn+l)+l) o . _ a( (Fuel)+1)wl
Fn + 1 1
: ((Fn+l)+l)2
Fn+2 = ~ai¥a/tl)

1
Fn+l

.

Thus,for three reasons we are lead to the belief that Fn involved some term b"
where be is not necessarily a. We now go back and modify our original belief :
that Fn involves a-

(Belief Fn involves a")
to the new belief that Fn involves both a” and b"

(Belief Fn involves a” + b")
And this new belief, as we have already seen in section 2.3, suffices to find

the closed-form solution to the Fibonacci function.

3.3 Summary

In summary we have described two temporal inductive methods, one based
on comparing the statement of a problem with the statement of a similar
previously solved problem, and the other bazed on comparing the unsuccessful
attempts to solve a problem with the proof of an analogous problem, In either
case we have found that inductive reasoning depends curcially on the ability to

make use of previous solutions.

We have also seen how the type of belief needed to apply the method of

succession refinement to the Fibonacci problem might be generated,
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4.  Conclusion

We have investigated and described several feasible methods of inductive
reasoning which are useful in the domain of solving difference equations. We
stress that these methods use no mathematical knowledge in terms of lemmas,
strategies or rules other than that which would be available to a simple
algebra theorem prover which has only the following rules %

1)  Rules to simplify algebraic expressions,
2) The logical rules needed to put formulas in conjuctive and disjunctive
normal form, |

3)  The two equality rules

(¥x x

(& x

Y ¢ x)mgpy

YA b x)erdy

L}

4) A mathematical induction principle,
5) Rules to equate the coefficients of various types of expressions.’

(This ability is needed by the method of existential functiéna)
Of course, if we were to .allow the use of sophisticated mathematical techniques
we could easily ‘solve the problems we have considered in this paper. In
particular, we céuld implement & theorem prover based either on the rules of ‘the

_ ’
finite difference calculus (18)17), or on the method of generating functions’

Ce5 09, 20, a1).

But this is just what we do not want to do, for this would not expiain
how the mathematical knowledge embedded in these techniques was actually
Created. In our view of mathematics, we see that this knowledge is ‘basically,
created by trying to solve a number of problems using only ones general inductive

abilities and the current status of one's deductive abilities. Then one generalizes

* These rules are imbedded in an algebra theorem prover which one of the authors
(Brown) implemented about a year ago.
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and organizes the methods that one has found useful in solving these problems
into some sort of deductive calculus, such as for example the theory of finite
difference equations or the method of generating functions. One then adde this
calculus to one's deductive abilities, henceforth meking what were difficult
problems quite easy, thus allowing one to.try to solve problems in more

difficult domains by repeating this process.
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