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ABSTRACT

We define "power' of an induction rule and show that a slight
modification to subgoal induction rule increases its power. We
give an infinite sequence of induction rules of strictly increasing

power.
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1. TIntroduction

Subgoal induction, introduced by Morris and Wegbreit [2], is
an alternative to the inductive assertion method for proving loop
programs. Let x denote a vector of variable values. Given a loop
of the form while B(x) do x <« s(x), it is required to show that a
certain relation W(xo;xf) holds between every initial value X,
and the corresponding final value Koo Subgoal induction requires
us to prove the following.

SI::
1. B(x) = ¥(x;x)

2. B) AV¥(s(x),z) = ¥(x:z)

We define ¥ and while B(x) do x « s(x), to be consistent with respect

to ST if (1) and (2) hold. Clearly consistency implies correctness in
the conventional sense though the converse is not true.

In this paper, we consider induction rules of the type SI,
which for every VY and while B(x) do x <+ s(x), provide verification
conditions of the form (1) and (2). Given two induction rules @
and R, we can compare their "'power"” in the following manner. Q
is at least as powerful as R if V¥ , while B(x) do x <« s(x) are
consistent with respect to R implies Y while B(x) do x «-s(x) are
consistent with respect'to Q. Q is more powerful than R if Q is
at least as powerful as R and R is not at least as powerful as Q.

One of the attractions of SI is that verification conditions
(1), (2) are directly derivable from the given relation ¥ . It

is however possible to have SI' with the following verification conditions.



1. 3y, v (x,2) = ¥(x,2)
2. TB(x) = Y¥'(x,x)

3, B(x) A ¥'(s(x),2z) = ¥'(x,2)

Condition (1) essentially strengthens the relation V¥ to ¥
conditions (2) and (3) are the usual SI conditions applied to ¥'.
For every while B(x) do x <« s(x) and ¥, such a Y¥' can be found if
the program is correct with respect to ¥, We disallow such induction
rules since (a) the question of power is not interesting and (b)
the use of SI' requires the invention of y'. Hence we restrict
attention to those induction rules in which the verification
conditions can be generated directly from the given program and VY.
We first show a slight modification of SI which leads to a
rule R that is more powerful than SI. We next define an infinite sequence

o

of rules Ri’ i > 1, such that Ri is more powerful than Riml’ i> 1.

2. A Modification of SI

ST uses universal quantification for z; however it is sufficient
to restrict attention to those values of z for which "1B(z) hold.
This leads to rule RO.
R ::
o
1. "1B(x) = V¥ (x;x)
2. B(x)ATB(z) Ay (s(x),z) =y (x;2)
We leave it to the reader to show that if (1) and (2) hold then

\y(xo,xf) hold for every initial value Xq and the corresponding final

value Xg of the loop. It is more interesting that we can establish



that RO is more powerful than STI. For construction of this and future
proofs we will use the following program P.
P::

while (t nodiv x) do x:=x-1

t is some arbitrary fixed positive integer > 1

x is initially > O

t nodiv x stands for "t does not divide x"

We will use (t div x) to stand for —{t nodiv x).

Lemma 1

RO is more powerful than SI.

Proof

It is obvious that if for some B,S, ¥, the verification conditions
corresponding to SI hold, then the verification conditions corres-
pondiﬁg to RO hold. Hence RO is at least as powerful as SI.

We next show a loop program and a relation ¥ for which verification
conditions (1), (2) for SI do not hold, but verification conditions (1)
(2) for RO hold. Let P be the program given above. Let ¥({x;y) = x-y<t.
W(x;x) holds trivially for all x.

Verification condition (2) for SI is: (t nodiv x) A (x~1l-z=t) & (x-z<t)
This ;s seen to be false by choosing x,t such that t>1 and (t nodiv x) and
setting z = x-t.

Verification condition (2) for RO is

(t modiv x) A (t div z) A (x~1-zxt) = (x-zt)

This holds. Proof is by contradiction. If x-z>t then since x-l-z< t,

x~z=t. (t div z) A (x-z=t) = (t div x) contradicting the premise .

This proves the lemma.



3. An Infinite Sequence of Induction Rules

RO was obtained from SI by restricting the values that z can
take. We can further restrict z by considering 3 cases: the loop

body is executed 0 times, 1 time, more than one time. We thus

postulate Rl.

Rlzz
1. "B(x) = V¥(x;x)
2.1 BXIATIB(s(x)) = V¥(x;s(x))

2.2 B(x) A B(s(x))A MB(z) A ¥(s(x):z) = V¥(x:;z)

In general, we can define Rk’ k > 1, which has one condition
corresponding to each of the following k + 2 cases: the loop body is
executed 0 times, 1 time .... k times and more than k times. In
the following; we use xi to denote si(x),
szf

1. mB(x) = Y(x;x)

2.1 xp = s(xy) A B(xp) ATIB(x) = ¥(xg5%))

§
]

2.1 X = s(XO) A Xy = s(xl).../\xi = s(xi_l)A

B A BODA- ABGx ) ATIBGR) = ¥ Gxgsxy)

2.k x., = s(xo) A x, = s(xl) RV S(Xk~1}A

1

B(xo) A B(xl)A ...AB(Xk_l)/\‘1B(xk) > W(xo;xk)

2. (k+1) X, = s(xO) A X, = s(xl) e oAy T s(xk_l)A

1

B(xp) A B(xIA-.- AB(x, ;) A B A

“¥B(z) A W(xl;z) A W(xz;z) co o R¥ (% 52) a‘W(XO;Z)



Again we leave it to the reader to show that if for any B, s, ¥
and k > 0, the verification conditions corresponding to Rk hold then
W(xo;xf) hold for the initial and final values of the loop while

B(x) do x =« s{x).

i >
Theorem Rk+l is more powerful than Rk for all k > O.

Proof

is at least as powerful as R, . To prove

It is clear that R X

k+1
that Rk+l is (strictly) more powerful, we use the program P; choose
t > k+ 1 and let

y(x3y) = (x-y) < t +k
We show that P, ¥ cannot be proven using Rk’ but they can be proven

using R Note that sl(x) = x-i,

k+1”
¥ is reflexive and hence verification condition (1) holds trivially

for every R Consider the verification condition (2.1i) in Ry.

K
2.i:  (t nodiv x) A (t nodiv x - 1)... A(t nodiv x-i+l) A (£ div x-1i)
(x - (x-1) <t + k)
This condition holds. However the proposition corresponding to '2-(k+l)
given belo&, does not hold.
2.(k+1) : (t nodiv x) A (t nodiv x-1) ...a(t nodiv x~-k) A
(t div z) A (x-1l-z € t+k) A ...Alx~k-z € t+k) = x-z < t+k
This proposition is seen to be false by setting x = t + k + 1 and
z = 0.
Next consider Rk+l° By similar arguments the conditions

1, 2.1, ... 2.i...2+(k+l) hold. The induction condition 2+ (k+2) results

in the following propostion.



2+ (k+2): (t nodiv x) A (t nodiv x-1)a...A(t nodiv x~k=-1)A

(t div z) A (x=1-z < t+k) ... A(x-k-z < t+k) = x-z < t+k

2+(k+2) can be proven by contradiction. If x-z > t+k and since
x-1-z < t+k, then x-z = tt+k+l, or z = x~-t~k-1. t div z » t div z+t.
Hence (t div x-k-1). This contradicts (t nodiv x-k=-1) in the premise.
4, Discussion
It is.clear that stronger the relation V¥, easier it is to prove
in the sense that a smaller Ri can be used for proving it. 1In the
example P, x-z<t can be proven using RO whereas proof of x-z < t+k

requires the use of R . Obviously the latter relation is derivable

kt+l
from the former. However inventing a stronger relation is similar to
the problem of inventing a loop invariant. The strongest possible
relation between Xgs xf can be given by stating Xg as a certain function

of Xgs i.e. x_ = F(XO)' Then R. is sufficient for the proof and

£ 0

any other relation W(xo;xf) can be proven to hold by deducing it from
Xy = F(xo). One of the attractions of subgoal induction is to derive
the verification conditions without explicitly constructing F; we

believe therefore that the notion of power is important and the rules

for small i will be found useful in practice.
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