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Abstract: A new computation model for space representation, called

the isovist, is defined. Given a point x in a space P, the isovist

at x, Vx’ is the subset of P visible from x. Procedures for computing
Vx for polygonal spaces are presented. Next, isovist fields are
defined by associating a scalor measure of VX at each point x in P.

The architectural and computational significance of these fields is
discussed. Finally, an analysis of computing small, sufficient sets

of points is given. A set of points is sufficient iIf the uﬁion of

the isovists of the points in the set is the entire space P. Sufficient
sets are related to the end points of branches of the skeleton of

polygonal spaces.






1. Introduction

A central problem in image pattern recognition is the representation
and ana]ysiS of form or shape. A significant amount of research has
been devoted to developing shape representations for the purpose of
recognition -- e.g., Fourier models [1,2], moment models [3], piecewise
approximation [4,5,6]; see [7] for a more comprehensive review. Less
effort has been devoted to developing models for describing the
distribution of space within a (not necessarily simple) shape. We shall

call the latter representations space representations to distinguish them

from other shape representations. Some examples of space representations
include work on the decomposition of shapes into primary convex subsets
[8] and into symmetric pieces [9].

In this paper we describe a new computational model for space

representation called the Isovist Field. The notion of the isovist was

first introduced by Benedikt [10] as a tool for modeling human space
perception in the context of architectural design. We will discuss why
the isovist is also a useful tool for computer space perception.

We will restrict our attention to two-dimensional polygonal spaces.
The ideas presented can be generalized to non-polygonal spaces, as well as
to three dimensions. In fact, isovists and isovist fields were motivated
in part by Gibson's theory of ecological optics [11], which has itself
recently received renewed interest as a computational model for vision
(see, e.g., Clocksin [12]). In this paper, then, we will be exploring
the application of a theory originally designed to account for global
aspects of human depth perception mainly to the analysis of two-dimensional

shapes. A short discussion of isovists and space perception in relation



to architecture is given in section 3.4.

Let P be a connected subset of the plane. For computational reasons,
we will later restrict P to be a polygonal region, possibly with
polygonal holes. Let x be a point in P. Then the isovist at point x bf
P, denoted, Vx,P’ or Vx if P is understood, is defined as

Vop = WlyeP and xynp = Xy}
That is, the isovist of point x consists of all points y in P that are
visible from x.

The notion of an isovist is clearly related to the symmetric axis,
or skeleton [13,14]. The formal distinction is that while the symmetric
axis is based on largest circular regions centered at each point
and wholly contained in P, the isovist is based on largest star-shaped
regions visible from each point that are wholly contained in P. Clearly,
the largest circular region of a point is contained in the isovist for
that point. The motivational distinction is that the symmetric axis was
proposed as a model to help account for biological form and growth, while
the isovist was proposed as an explanatory (and a potential computational)
model of space perception.

As a simple example of an jsovist, consider the polygon P and point x
in Figure 1. Vx is denoted by the hatched area. Notice that Vx is a
polygon, and that the boundary of VX can be partitioned into two parts:

1) the boundary common with the boundary of P
(or boundaries of holes in P)
2) the boundary common with the interior of P.

This is called the occluded boundary of Vx'

Figure 2 is an example of a non-simple P and VX for a point x in P. Given



P

i

Figure 1. Polygon P and Vx.

W&

Figure 2, VX for non-simple P.




a shape, P, and the isovists at all points x in P we can compute an

isovist field by assigning to each x in P the value of some feature (such

as area) of Vx. Figure 3b contains the area field for the shape P in
Figure 3a.

Isovist fields can be used to construct models for human behavior --
€.g., one can test the hypothesis that if a person were asked to hide in
a room he would always seek the minimum of the area field. Isovists and
isovist fields can also be used as computational tools for robot plan
formation -- e.g., compute the shortest traversable path from point a to
point b which enables a robot guard to see all points in the room (the
shortest path may not be traversable if it involves moving through a
narrow gap between two holes). We will examine isovist feature measures
and fields later in this paper.

An important notion associated with the isovist is that of a

minimal path or minimal set. We say that the set of points

X = {XI’XZ""’XF} in P is sufficient if P = ng Vy- A set X is minimal
if X is sufficient, and for all sets Y of points, Y sufficient implies
[X] < [Y]. If we regard X as a sequence, then we can say that X is
an e-path if d(xi,x1+1) <€, 1<i<r-1 where d is some distance measure.
If isovists are only computed at a discrete set of grid points in P, and
if d is the Manhattan distance, then a 1-path is simply an 8-connected
path (Rosenfeld and Kak [15]). An ordered set X is a minimal e-path if .
a) X is an e-path, and
b) X is minimal.
Minimal e-paths and minimal sets are of specific interest in both

robot planning and psychological modeling. We might like a robot guard
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to follow a minimal e-path (e would correspond to the distance the robot
would travel before using its vision capabilities to scan the room).
Or, if we had to position cameras for the surveillance of a room, we
would prefer to put them at points in a minimal set. As a psychological
model we might ask if human guards follow minimal e-paths.

An important computational question is how one computes minimal sets
and minimal e-paths (or approximations to such sets and paths). We will
consider that computation of small sufficient sets in Section 4. We will

first discuss the computational considerations in forming isovist fields

in Sections 2 and 3.



2. Computing the Isovist

In this section we will describe algorithms for computing V We

Xsp°
will assume that P is a polygon, although the algorithm can be extended
to shapes described by higher order curves.

We will first assume that P is simple; once we can compute Vx,p for
simple P we wi]]xdescribe the extension for P not simple.

Let P be represented by the sequences of vertices {(xi,yi)}?=0. The
ith Side of the polygon is the Tine from (xi,yi) to (Xi+1’yi+1)’ subscript
addition modulo n.

We say that v =(x1,yi) is visible from x if the line from x to Vi
i?i, lies entirely within P. Given a suitable representation for P (see
Shamos [16]) the question of whether i%i intersects a side of P (other
than one emanating from Vi) can be answered in 0(log (n)} time where n is

the number of sides of P.

We first compute the subsequences of vertices of P which are visible

from x. We denote this subsequence as Sx T VL sV oaeelaVl For example,

1 T2 m
in Figure 4, S_ = 0,1,2,5. If for any j=1,....m, v, #v., ., {(mod n),
X i i+l
J+1 J
then the pair ViV is called a gap. Vx is completed by filling in
NEENES
the gaps. A gap is filled by constructing the half-lines §71 and Xxv.,

i i+l
For each line, we find the closest intersection (to x) of the line with
j '+
exists). Call these intersections 9: 5 95 (see Figure 5).
J J+l
We can merge Sx and the gap fillers to finally compute VX. Any side

any of the sides v. eeeaVig 1) (it may be that no such intersection

in VX connecting a vertex from P and a gap filler is called an occluded
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side. Occluded sides are sides of V which are not coincident with sides
of P.
In what follows, we will consider the effects of introducing barriers
and holes into P.
A barrier in P is a straight 1ine segment wholly contained in P.
Let x be a point in P and let Vx be the isovist at x. Let b be a barrier
in P. Then there are four relations that b might bear to VX:
1} both end points of b may be in VX (see Figure 6a)
2) one end point of b may be in VX (see Figure 6b)
3) b may pass through v, (see Figure 6c¢)
4) b may be disjoint from Vx (see Figure 6d).
Let V; be the new isovist at x resulting from the introduction of b.
Note that if the left end of b (when viewed from x) is outside Vx, then
odd numbered intersections of b with VX signal entrances of b in VX and
even numbered intersections signal exits. Vertices of VX between
entrances and exits are excluded from V;. Vertices of VX between exits
and entrances are included 1in V;. If the left end of b is inside Vx’
then odd numbered intersections of b with VX signal exits and even

numbered ones signal entrances.

A hole (or a solid obstruction) is a polygon P' wholly contained in
P. To compute V; given the introduction of a hole in P we:
1) check to see if xeP'. If so, we define V;==®, since
x is no longer in P.
2) Otherwise treat each side of the hole as a barrier.
Figure 7 shows the results of successively treating each side of a

hole, P', as a barrier to compute the isovist at point x in P after the
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Introducing a hole in P.




introduction of P'. Notice that we considered the sides of P' in
increasing order of their distance from x. In this way, the last
three sides of P' resulted in no changes to Vx'

An important extension of the notion of a hole is the notion of
horizon. The computation of Vx assumes that the visibility from any
point is potentially infinite; the presence of border (of P) and barrier
is what makes the VX finite. There is no prior bound on the radius of
V-

The notion of a horizon is intended to model the Timited view of
a human perceiver (the Timitation derives more from psychological
constraints than from physical constraints). The horizon is, ideally,
a circle of radius r centered at x. For case of computation, we might

model the horizon as a diamond or an octogon of Manhattan radius r

centered at x. We call this the horizon shape, H. (Note: diamonds and

octogons are the most compact digital shapes -- see Rosenfeld [17].)

The horizon-1imited isovist at x, V;, is the intersection of Vx with the

horizon shape centered at x. V; can be computed by a procedure identical
to that for dealing with a hole except for the exclusion of the test for
membership of x in P'. We will not specifically discuss the computation

of isovist fields for horizon-limited isovists in this paper.



3. Isovist Fields

In this section we will discuss the computation of isovist fields
and display some of these fields. We will discuss both the computational
aspects of computing the isovist fields, and the applications of the
fields to robot planning, psychological modeling and architectural design

(Section 3.4).

3.1 The area isovist field -- 4
v n
Suppose that the vertices of Vx are {Vi =(xi,yi)}i=0. Then the area

of Vx’ AX, is:

x=
"
313

X (¥ipq = Yiq)
i=g | i+l Ji-1
Figure 8 contains two simple shapes. Figure 9 contains the isovist area

field, 4, for the shapes in Fig. 8.

3.2 The perimeter-field -- B

The Tength of the boundary of VX, the perimeter of Vx’ is Bx,

BX = d(v_isv_i_!_l)

0

o~ 23

i
Figure 10 shows the perimeter fields for the forms in Figure 8.

1t is obvious that if P is convex, then B is constant. However,
B constant does not imply P convex. Consider two tangent, closed
circular sets, for example. For such a set, B is constant.

An interesting field which can be derived easily from 4 and B is

the compactness field, ¢ defined at point x as CX = Bi/AX. This, of

course, is also constant for a convex P (but again, constant C does not
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Figure 8. Two simple shapes.
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Figure 9. Area fields
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Figure 10. Perimeter fields

(a) (b)

Figure 11. Compactness fields



imply P convex). Figure 11 contains the compactness fields for the forms
in Figure 8.

Another useful field related to the perimeter field is the occlusivity
field. Recall that in the computation of V, the occlusivity of Ves Oy
(with field 0) is the total length of the occluded sides of V(x) (see
Section 2). We can then also define the visible perimeter field, VP, as
P-0. Figures 12-13 contain 0 and vP for the shapes in Figure 8.

The area and visible perimeter fields could serve an important
function in robot plan formation. A reasonable constraint to place on
a path which a robot might traverse in surveying some environment is
that if the robot moves along the digital path {xl,xz,...,xn}, that
the isovists at consecutive points, in and in+1, share a sufficiently
high percentage of area. In this way, the robot could use his perception
of in to guide his perception of Vx1+1' If in nvxi+l were small, then
no such expectations would be available for facilitating the processing
of Vx1+1‘ A similar argument could be made concerning visible perimeter
since most of what the robot must perceive is contained in the visible
surfaces surrounding him.

A reasonable heuristic to bring to bear on choosing a path, then, is

that the maximal rate of change of area (or visible perimeter) along that

path is bounded, i.e.,

A -A
X3 %41

(Note that |A, -A | < b does not imply that V. and V share much
REEESTS! X *i+1
common area, since they might, e.g., be on opposite sides of a symmetric

"pinched" space, such as the one shown in Figure 14). The safer strategy,
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Figure 12. Occlusivity fields

(a) (b)

Figure 13. Visible perimeter fields



then, is to compute A(V. NV ).
X: Xy
i i+l

Another possible point of view is that since computer vision is
expensive even when given a powerful set of expectations, we should
compute a small, sufficient set (cf. Section 4). Thus, we would minimize
the number of times that the robot would have to invoke his visual
capabilities. Section 4 discusses the computation of small, sufficient
sets.

Notice, also, that the 0 field (and the VP field) decompose the
cross into simple pieces corresponding to the "lobes" of the cross and
the center of the cross. This suggests that fields such as 0 should be
useful tools for shape decomposition. In fact, necks in shapes are places
where fields such as 0 and B are changing rapidly. The problem of shape
decomposition based on isovist fields will be treated in a subsequent
paper. Notice‘that the shape decomposition scheme proposed by Haralick
and Shapiro [18], which starts by computing all pairs of perimeter points

p and p' such that pezvp, was implicitly using ideas related to isovists.

3.3 Radial moment fields

Since VX is star shaped from x, an equivalent way of representing
VX is in polar form d=r(8) where r(6) is the length of the line from x
to the boundary of VX in direction 6.

The pth moment of VX is then

where
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Figure 15. Computing moments.



2m
r(o) = -2% _() r(e) do

In the special case where VX is a polygon, it can be shown that

Ul = al;
_ 2
UZ - az“ul
= 8, =~ 3u,a, + 2u3
Hg 7 a3 7 dUpdp el
where
noy,
= 5= a
ap 121 2m p(1)
and
2 (1) = asb. sinvy, 1og (c1.+a1.—bcosY1.)(c1.+b1.-a1. cosyi)
1 Ci Y a.b, sin’ Y,

o1 (4h )2
a2(1) = —;- ( ¢ siny, (cotaj-FcotBi)

,a.b. 3
1 ii
= . .+ . )
2Y1- ( c sin Yi) [cosec a; cota, +cosec B; cot B,

[«3}
w
o~
s
—
i

+ log l[(coseCai-Fcotai)(cosecei-Fcotei)][]

(see Figure 15 for the definitions of ai’Bi’Yi’ai’bi’Ci)'*

Figures 16-18 contain the moment fields (Ml’ 2,M'3) for the shapes in
Figure 8. 1In the context of isovists, M, represents the derivation from
the mean of the perimeter's distance to X, Mé the variance and Mé the

skewness of the perimeter distribution relative to x.

*We are grateful to Professor Frederic Ancel of the Mathematics Department
of the University of Texas at Austin for providing the geometrical
constructions and derivations which led to these formulaes.
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M1 field for Fig. 8b.

Figure 16b.
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M2 field for Fig. 8b.

Figure 17b.
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M3 field for Fig. 8b.

Figure 18b.



3.4 Psychological relevance of Isovist fields & some possible applications

In the previous subsections we have introduced a variety of isovist
fields and discussed their relevance to computer space perception. In
this subsection, we would like to elucidate some of the psychological and
architectural significance of these fields.

As a first example, a number of authors have recently come to view
the problem of privacy as one of regulation of personal information, that
is, as the achieving of "...an optimum balance...between the 'information’
which comes to a person and that which he puts out" (Canter and Kenny [19];
cf. also Altman [20]). When we consider sources of (visual) information
to be distributed in some definite way in space, then each isovist “"covers"
a definite subset of those sources. The isovist size measures, such as
area and perimeter, approximate the (potential) amount of information
available at x as well as the (potential) "audience size" or exposure of a
person at x. Therefore one would expect that privacy-related path and
Tocation choice, (and the definition of "public" and “private spaces" 1in
general) will pay, at least unconsciously, much attention to the maxima,
minima and gradients of fields such as the area and perimeter fields.

There are situations and environments in which one typically wishes
to see much without being overly exposed on all sides. Here area alone
will not suffice and it is better to consider too the skewness (Mé) of the
distribution r(8). It measures the extent to which radials are
concentrated in a certain angular region and tends to be large close to
surfaces and in corners (although high M3 does not invariably entail this
condition: further conditions are also relevant). In a given environment,

points in space characterized by high area and My thus tend to fulfill our



conditions for good view and low angular exposure. It is a matter for
further research whether such commonly observed behaviors as preferring

a table with a view in a corner, against a wall or pillar in a restaurant
(or institutional dayroom; Sommer [21]), or waiting in railway stations
close to pillars in areas of good visibility (Canter [19], p. 133), are
amenable to analysis and prediction based on isovist field analysis.

Consider another related example. Newman ([22], p. 30-34), reporting

on the incidence of crime in and around urban residential

buildings,
pointed out the significant relationship of visibility to crime
incidence. The intending criminal is interested in three things with
respect to spatial characteristics of the environment: 1) being
inconspicuous, 2) being safe from sudden detection, and 3) having an
avenue for escape. The first two factors are describab]e in good part
as attributes of the isovist, area and occlusivity, respectively. The
hypothesis that crime such as vandalism, burglary, or assault will tend
to occur in regions of coincident local minima in area and occlusivity
seems to be borne out in Newman's data. He reports a high incidence

of crime in elevators, certain lobbies and corridor types. But for less
intuitively obvious cases, only more detailed data about the spatial
Tocation of incidents of crime will serve to confirm or reject this

hypothesis. If confirmed, computer generation of the area and occlusivity

fields of a proposed building or group of buildings might well help to
predict 1ikely trouble spots and be a guide in redesign. (We do not mean
to imply, of course, that visibility criteria are the sole or most salient
determinants of crime in a "defensible space” theory (cf. Mawby, [23]).)

Optimal surveillance paths, of course, may correspond to minimal sufficient



paths as already defined.

Many writers have remarked qualitatively about the need or desirability
for spatial diversity in the environment (e.g., Rapaport and Hawkes, [24]).
From open to closed areas, field to forest, peak to valley, plaza to
vestibule, courtyard to street and so on, the opportunity exists to typify
and quantify "types of space" and the transitions between them in a new way
since each has characteristic isovists and isovist fields (see also Thiel
[251). In urban and regional studies, straightforward use of the isovist
(or "viewshed") can already be found (cf. Lynch, [26], pp. 98-100, 138-142).

It is also conceivable that terms such as "hall", "street", “court",
"colonnade”... might in good part be definable in terms of the kinds of
isovists and isovist fields they generate. If this were possible partially
or within limits, as should often be true, a direction seems clear: to
design environments not by initial specification of walls, surfaces, and
openings, but by specification of the desired (potential) experience-in-
space, that is, by designing fields directly; compare Thiel's [25]
"envirotecture" (see also Sommer, [27], p. 132). Be that as it may, it
seems clear that feature measures describing the shape and size of isovists
can create a group of scalar fields unigue to a given environment. These
fields in turn characterize the environment and appear to be correlated
with certain human spatial perceptions and behaviors. An experimental
program now underway is an application and test of some of the hypotheses.
The problem chosen is that of the perception of "spaciousness"; of how
large or small an environment appears because of its shape and/or the
observer's position and path of movement. Two series of experiments are

entailed, preceded by an analysis of the statistical behavior of isovist



measures relative to each other, with and without "architectural
constraint”. The first series employs models, the second full-size
experimental environments. In both, the perception of spaciousness is
tested against systematic variation of isovist measures in architectural
environments of objectively equal size (area/volume).

In the realm of computer vision, parallels to the above observations
apply. Work, to be reported in a subsequent paper, indicates that medial
axis transforms and shape decomposition can be effected from isovist
fields. Isovist fields, like fingerprints, may also be useful in typifying
dissimilar or identifying and distinguishing otherwise similar shapes.
Analysis of depth information output from rangefinding devices may also
be fruitful: we have already remarked about the problems facing a (robot)
guard. Indeed, research in strategic search and surveillance (e.g., .
Gallagher's d}scussion of "intervisibility" [28]) could well benefit from
the computation of sufficient sets and paths from local information, and

an investigation of various "hide and seek" algorithms.



4. Sufficient Sets of Isovistis

In this section we will investigate the relationship between
sufficient sets (i.e., sets of points whose isovists cover the original
shape) and the skeleton of the shape. As before, we are restricting
our attention to shapes with polygonal borders.

It is interesting that we can distinguish between notions of area

sufficiency and perimeter sufficiency. We have, up to now, only

considered area sufficiency -- i.e., a subset B of P is area sufficient,

a-sufficient, if U Vb==P. If we let P denote the perimeter of P, then
beB
we can say that a set B is perimeter sufficient, p-sufficient, if

U Vb==§. Clearly, B area sufficient implies B perimeter sufficient.
giiever, the converse does not hold. Consider Figure 19. The set
B=={b1,b2,b3} is p-sufficient, but not a-sufficient.

In what follows, we will restrict our attention to a-sufficiency,
so that "sufficiency" will mean a-sufficiency. It is, of course, obvious
that the skeleton itse1f is a sufficient set, since the largest disc, Dx’
centered at a point x in P which is wholly contained in P is clearly

contained in the isovist at x, V ; i.e., DXS;VX. However, the skeleton

X
has "too many" points to be of interest. We will show that the set of

skeleton branch points, i.e., the end points of skeleton branches,

constitutes a sufficient set.
Montanari [29] proves that there are only three types of branches
in the skeleton of a polygon:
1) a straight line segment generated by wavefronts propagating

from two sides of the polygon. We will call such a branch a type 1 branch.

2) a straight line segment formed by the circular wavefronts



Figure 19.
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Notice, all of the border of P is contained
in some isovist, but the cross hatched area

in the center of P is not.



propagating from two concave angles of the polygon. We will call such
a branch a type 2 branch.

3) a parabolic arc formed by a circular wavefront and a
straight wavefront. The concave angle causing the circular wavefront is
the focus of the parabola, while the straight side causing the straight

wavefront is the directrix. We will call such a branch a type 3 branch.

Lemma: Let Xq%2 be a branch of the skeleton of a polygon P. Let

D = U D.. Then if p is a point in D s then either
%2 xexx X X1%2
172
-3 -> . . s o
X1p g;DX1X2 or X,p gszlxz. Equivalently if x is a point on X1 %o then
p_e(V_uv, ).
L Y

Proof: By cases

1) Suppose x;X, is a type 1 branch. Then D is shaped
172 X1%5
as shown in Figure 20, since the propagation velocity along the branch is

constant. Here, S4 and s, are the sides of P giving rise to the branch

X.%,. Since, in this case, D is convex, it is star shaped from both
172 X1%5
Xq and Xo -
2) Suppose X1 %5 is a type two branch. Then, we can show

D =D UD . To see this, consider Figure 21. Consider D, and a
X, X X X X
172 1 2 3

clockwise traversal of its border, éx . The borders of all the discs on

3

Xy %5 intersect at the same two points, Py and Py The intersection of

D with D at p, marks the departure of D from D_ , since point
X3 X5 2 X3 Xo

y sDx and the intersection of 5x with 5x at Py marks the entrance of

2 3 2

D into D. . Therefore, the only part of D. not contained in D_ is
X2 X2 X3 X2



Figure 20. For a type 1 branch, D is convex,
*1%2

Figure 21. For a type 2 branch, DX - DX uDX s X

€ XX
3 1 A



the arc between p, and p,. But, by similar reasoning, the intersection
2 1

of D with D_ at p, is the departure of D_ from D_ (since y¢D_ ) and
X X 1 X X X
3 1 3 1 1
the intersection of P js the entrance. But then D_ CD_uUD_, , and
37 %1 %
since D_ is convex, D, C D, ub,6 . So
X3 X3 SR
U D. =D, UD U[ U D}=D ub, .
X X X X X X
XEX Xy 1 2 xgaxixz 1 2

s.t.x3#x1,x3¢x2

3) Suppose XqXo is a type 3 branch. Then we can show (see

Figure 22) that Dx1X2 = Dle}szt}X, and that all points in DX1X2 are

visible from either Xq OF X, First, it is clear that the Tine segment

from (a,0) to (c,0) forms part of D Now, for any X3 0N X %os DX

X1%2 3
intersects both ﬁx and 5x at the focus. Furthermore, 5x intersects
1 2 3

Dx at a point to the right of (a,0) and intersects 5x at a point to the
1 2

left of (c,0). The only points in D_ that are not in D, UD_ are those
*3 X1 %

in Dx M X. We will show all points in Dx M X are visible from X5 {they
3 3

are also visible from xz). Suppose not. Then there is a pe:Dx M X such
3

that x;p € P. Let p' be the first point on the vector E;p such that

p' ¢ P (one must exist since otherwise ?;b C P). Since Dx C P, it must
1

be that p' € X. Let p' have coordinates (g,h). Then clearly a<g<c,
Let x, = (j,h) be the intersection of the line y=h with the parabola.

Then p’s:Dx C P. But then p'eP, contradicting the assumption that
4

p' £P. Therefore, every point p in X is visible from Xq- Since DX g;vx

1 1
and D. CV_ and we have shown XCV_ , D Cv, uv, ./
X5 X5 X7 XXy Xp 7 X%



7 ¥ .
a f e C directrix
X

Figure 22. D for a type 3 branch.
*1%2



Using this lemma, we can prove the following thecrem.

Theorem. Let B = {bl”"’bn} be the branch points of the skeleton of P.

Then P = U Vb'
beB

Proof: Clearly U vb C P. Let peP. Then for some x on the skeleton of
beB

P, ps:DX. Let X1%o be the branch containing x. Then, since by the lemma,

ng Vo UV, it must be that xeV UV, C U V,. But then PC U V.

1 2 1 2  beB beB

Now, the set B is obviously not minimal; for a rectangle, e.g., B
contains two points, whereas only one point is required for the minimal
set of any canve;?shapee In fact, although the skeleton branch points
constitute a convenient (to compute) central set of points from which to
construct a small sufficient set (see below), it is unfortunately not
the case that the smallest subset of the set of branch points that is
sufficient is also minimal.

Fact: The skeleton of a star-shaped polygon does not necessarily pass
through the kernel.

Consider Figure 23. The kernel is the hatch marked region X. The
skeleton of this figure will not pass through area X. Therefore, the
smallest sufficient subset of the skeleton branch points will have size
at least 2. Of course, discovering that a figure is star shaped is
computationally simple (see Shamos [16]); however, one can imagine a
regular duplication of such figures. Here, the size of a minimal

sufficient set is a number unobtainable using the skeleton based approach.



Figure 23. Skeleton does not pass through kernel.

Figure 24. |[P'| = 2 but |F] = 3.



We can, however, establish an easily obtained lower bound. Let F be

a minimal sufficient set for P and let |F| denote the size of F.

Proposition 1: Let P be a polygon with vertices P= {pﬁ,...,pn} and isovists

at those vertices Vp ,,..,vp . Let P' be the largest subset of P with
1 n
the property that if pés@jz:P', i#Jj, then Vp r\Vp = ¢. Then
i J
[Fl > [P']

Proof: Suppose |[F| < |P']. Llet X = {xl""’xiP'!— 1} be a sufficient
set. Then since |[X| < |P'|, there must be an x; € X such that for some
pair pj,pks:P’, X, must see both pj and Py But then Vp.r\Vp # ¢ since

;
J k
X is in the intersection. Thus |[F| > |P']. /!

We could, of course, have chosen any set of points, but the vertices
represent a convenient set. Unfortunately, it is not the case that
| F| = [P'|. For Figure 24 below, |P'| = 2, but | F| = 3. However, |[P]

is an upper bound on |F|.

Proposition 2: Let P be a (possibly non-simple) polygon with vertices

P=Apys...op b Then P = U V. Therefore |[F| < |P].
pieP Py

Proof: Any polygon P can be decomposed into its primary convex subsets

.,Pm (see Pavlidis [8]), each of which contains at least one

Pl’PZ"'
vertex of the polygon. Let xeP. Then, for some Pf, xe:Pi. Let pj be
a vertex of P in P,. ThenxeV_ . Thus PC U V . Since, obviously,
! P " p.eP Py
i
PS> U V_, the proposition is true. /7

pieP i



This proposition shows that the vertices of a polygon form a
sufficient set.

In fact, the number of primary convex subsets is equal to the
number of concave angles (for P simple), so that |F| < C, where C is
the number of concave angles (see Pavlidis [30]).

Given the set of skeleton branch points, B = {bl,...,bn} and their

isovists VB = {Vb ""’Vb }. We might attempt to construct a smallest
1 n

subset, VB" of VB such that U Vb. = P. However, this is an instance
bieB' i

of the set-cover problem, which is known to be in the class of NP-complete
problems (see, e.g., [31]).

Instead, we will describe a suboptimal algorithm to find a subset
of B which is sufficient. The algorithm is based on representing the
isovists by kxk long bit vectors. Here, k is chosen to allow for an
acceptable scaling of the shape, while keeping the storage costs of the
algorithm at a reasonable level. The bit vector is computed by "painting"
the interior of an isovist on the array, and then storing the painted

array in the bit vector in row major order.

So, let b, ,...,b, be the bit vector representations of V_ ,...,V. ,
Vi n b1 bn

and let bP be the bit vector representation of the original shape. The

algorithm will construct a set B' = {bi sbs 5...5b. } such that
1 2 m
U Vb = P,
bijeB iJ

0) B'=4¢, J=0;

1) Let bﬂ be the element of B with Targest area (resolve

ties arbitrarily). Set j=1 and bi = bg;
1



p - bij' This set difference can be efficiently

computed using a computer's basic logical operations. bP contains the

points of P unaccounted for by B'.
3) if bp = 0, exit with B'.
4) Otherwise, for each bj eB-B', compute bP eri. Let

bk be the bit vector such that bprﬁbk has the maximal number of isovists.
5) Set j=j+1, and bij = bk'

6) go to 2.

The algorithm can execute step 4 a maximum of n times, since if

B' = B, then bP would have been set to 0. Each application of step 4

will require on the order of n bit vector "ands”. Thus, the algorithm
requires on the order of nz "and" operations and nk2 storage.

The advantages of using a bit vector fepresentation for the vy
i

rather than a list-structure of vertices are:

1) the polygon intersections can be computed quickly using
the computer's logical operations, and

2) the intersection of two polygons may have many
components. Since the descriptions of the individual components are not
needed by the algorithm, the bit vector representation is computationally
much more convenient.

The disadvantages, of course, are the storage of the bit vectors and

the need to possibly scale the shapes to keep the necessary storage within

limits. We should point out that there are many special purpose machines



(e.g., CLIP [32], PICAP [33]) which could easily support the algorithm

using this "iconic" representation.



5. Summary

The notion of an isovist was introduced and defined as the set of
all points in a polygonal region P visible from a point x in P. This
led to consideration of the number of isovists required to "see" the
whole region and the definition of sufficient and minimal sets and

paths. Isovist fields were defined as the fields of (position-dependent)

values of some measure of the shape or size (or other feature) of
isovists distributed throughout P.

These basic ideas defined, a technique for computing isovists at
given (or all) points in given P's with arbitrary barriers and holes was
presented. The computation of various scalar fields was outlined and

illustrated; these were: the area field, 4, perimeter, P, visible

perimeter, VP, occlusivity, 0, compactness, C, and two radial moment

fields, variance, Mys and skewness, My.

Having outlined the nature of isovists and isovist fields, their
relevance to the design of buildings was briefly discussed and parallels
in computer vision and pattern recognition suggested.

We concluded with a more thorough examination of the problem of
computing minimal sets. The theorem was proved that the branch points
of the skeleton of a polygon constitute a sufficient, though not
necessarily a minimal, set. Propositions as to the upper and Tower

bounds on the size of a minimal set are proved and a {sub-optimal)

algorithm presented that approaches minimality closely.
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