Key Comparison Optimal 2-3 Trees
with Maximum Utilization
by
James R. Bitner*
and
Shou-Hsuan Huang*

TR -94
March 1979
Department of Computer Science

University of Texas
Austin, Texas 78712

* The work of these authors was supported in part by NSF Grant MCS 77-02705

Abstract: A class of 2-3 Trees is defined, called kcu-optimal trees which,
out of all trees with optimal key-comparison cost, have maximum utilization.
The average utilization of this class of trees is shown to be 64.7%.

This is an improvement on the key-comparison optimal trees constructed by
Rosenberg and Snyder (1) which have a utilization of 50%. Another measure,
called the expansion is defined. Kcu-optimal trees have an average
expansion of 56.77% which is near that of a random 2-3 tree. Algorithms for

constructing a kcu-optimal tree from a sorted array of keys and maintaining

them under insertions and deletions are given.

1. Introduction - Previous Work

Rosenberg and Snyder (1) have designed an algorithm that constructs from a
given set of keys, a 2-3 tree which is optimal in terms of the expected number

of key-comparison required to find a key. (We will call such trees kc-optimal,

see below). However, these 2-3 trees are poor with respect to another important

performance criterion, utilization. Asymptotically, their utilization is 50%, the

worst possible. 1In this paper we give a characterization for 2-3 trees that have
maximum utilization among all kc-optimal 2-3 trees with a given number of keys.
The utilization for these 2-3 trees averages 64.7%,a substantial improvement over

that for Rosenberg and Snyder's. We also define a new measure of space efficiency

called the exnansiop, which measures how much extra space a 2-3 tree uses
compared to a minimum space 2-3 tree. We show that the average expansion for
our 2-3 trees is 56.7% which can be compared with the expansion for random
2-3 Trees which is known to be bounded (5) between 40% and 58%. Thus, these
trees have relatively small expansion, yet are much better than random trees
in terms of key-comparison cost. We also give algorithms for constructing such
a 2-3 tree from a given set of keys and maintaining this property under
deletions and insertions. The time required by the insertion algorithm is,
unfortunately, linear. However the constant of proportionality appears to be
quite small. A simulation was run that found an insertion into an "average"
tree of height 10 required time .036n, where n is the number of nodes in
the tree. 'Time" here is measured in terms of the number of keys that must
be moved to accomplish the insertion. Thus, this algorithm can be reasonably
used if insertions are very infrequent.

We now define our terms:

Our definition of 2-3 trees is taken from Knuth (2). Note that under this

e . o 2

definition, the nodes having no sons {called leaves) do not contain informat ion

and do not count in determining the height o»f the tree. (a tree consisting of a
single node with leaves as sons has height one.) We let K and N stand for
respectively, the number of keys and nodes in a given 2-3 tree. A l-node is
defined as a node containing one key and a 2-node as a node containing two keys.

Another performance measure is the expected number of key comparisons. To

define the measure, we let ki,i =1,...K be the number of key comparisons
required to find key i. We assume one comparison will be used at each l-node on:
the path to key i. One comparison will also be used at a 2-node if we follow the

left branch. If we follow the middle or right branch, two comparisons are
K

required. The expected number of key comparisons is then Xk
i=1
. K

Definition: A 2-3 tree is kc-optimal if its key comparison cost is minimal over

all 2-3 trees having the same number of keys.
The following theorem characterizes kc-optimal 2-3 trees:

Theorem 1.1 (Rosenberg and Synder (1)): A 72-3 tree is kc-optimal iff no 2-node

has a 2-node in either its middle or right subtrees.
Definition: The utilization of a 2-3 tree is 3%— (the ratio of the number of

keys to the number of possible keys). Note the utilization is bounded between
50% and 1007%.
Definition: The expansion of a 2-3 Tree is —z% -1 and is bounded between 0%
and 100%Z. Thus, a tree with an expansion of 50% takes 50% more space than is
theoretically necessary. (We study the utilization because it is a more
intuitive measure and the expansion because it allows a comparison with random
2-3 trees.)
Definition: A 2-3 tree is kcu-optimal iff it has maximum utilization among all
kc-optimal trees having the same number of keys.

Section 2 will give a characterization theorem for kcu-optimal trees and
gsection 3 will use this theorem to calculate the average utilization and

expansion of kcu-optimal trees. Section 4 will give an efficient algorithm

for constructing a kcu-optimal tree from a sorted sequence of keys, and section
5 will give insertion and deletion algorithms that preserve the property of

kcu-optimality and analyze the efficiency of the insertion algorithm.

2. A Characterization Theorem for kcu-optimality

We begin by ruling out a large class of kc-optimal 2-3 trees that can ecasily

be shown not to have maximum utilization.

Theorem 2.1: In a kcu-optimal tree a 2-node cannot have a l-node as its

left son.

Proof: Suppose there is a 2-node having a l-node as its left son. Apply the
transform shown in Figure 2.1. This preserves the number of nodes in the tree and
the fact that the tree is kc-optimal (since S3, SA’ S5 and S6 must be completely
binary). However, the number of 2-nodes is increased by one, increasing the
utilization. Therefore the original tree did not have maximum utilization, a

contradiction. Ej

This theorem says that a kcu-optimal tree with a 2-node as its root must have

a special form:

Definition: A 2-3 tree is full iff it has the form shown in Figure 2.2,

Figure 2.1

A transformation that increases the number of 2-nodes.

Lemma 2.1: If a kcu-optimal tree of height h has a 2-node as its root, it must
+
be full. Also, it has Zh 1~-2 keys.

Proof: (by induction on h).

If h=1, the tree consists of a single 2-node, and the lemma is obviously true. If
h > 1, the middle and right subtrees of the root must be completely binary
(since the tree is kc-optimal), and the left son of the root must be a 2-mocle Ly
Theorem 2.1. Hence the left subtree is a kcu-optimal tree with a 2-node as the
root, and, by induction, must be full. Therefore, the entire tree must be full.
To calculate the number of nodes in the tree note that, by induction, the left
subtree has 2h - 2 keys. Since the middle and right subtrees are completely
binary, they have 2h_1-1 keys each. Adding the two keys in the root gives a total
of 2h+1—2, proving the lemma. D
This lemma says that every 2-node in a kcu-optimal tree is the root of a
full tree. A 2-node that has a l-node for its father (and thus is not part of

a larger full tree) is of special interest, motivating the following definition.

LTX>

Figure 2.2
A full tree: the form for a kcu-optimal tree with a 2-node as its root. In this

figure, the triangles are completely binary trees, and the squares are leaves.

Definition: A leader is a 2-node which has no 2-nodes as ancestors.

(In this definition, it will be convenient to consider leaves to behave as
2-nodes; a leaf will be a leader iff it has no 2-nodes for ancestors.)
Theorem 2.2: 1In a kcu-optimal tree, the levels of two leaders may differ by at
most one.
Proof: By Theorem 2.1 we can assume that each 2-node has a leaf or a 2-node as

its left son. Suppose there are leaders (21 and 22) at height i and j with i-j > 1.

height i

"~~~ height j+1

height i ~ =~<---

-~ --<height j+1

Figure 2.3

The two subtrees affected by the transformation are shown. Triangles renresent

compl . . ,
ompletely binary trees. Triangles with a stripe (3uch as Sl) are full trees. Shaded

trees may have arbitrary form.

Note that %. cannot be an ancestor of 22 because ll's subtree would then be full,
and 22 would not be a leader. Also note that zz's father must be a l-node and

that Ql's and 22'5 subtrees are full. We assume without loss of generality that

2. is the right son of his father.

2

We now describe the transformation shown in Figure 2.3, which will preserve
the number of keys and the kc-optimality but will increase the utilization.
Applying this transformation to the original tree will then give a contradiction.
Subtrees S1 and S4 are not affected and become trees Tl and T3 respectively.

The keys in 82 and S3 are merged to form T2, then one key is deleted from Ql.
There are 2j+l—2 keys in 22 and its subtrees. These are redistributed to form

T4 and TS' Finally, a key is added to 22'3 father. (Note that the transformation
will work even if 22 is a leaf; then SS’ S6 and S7 are empty.) In total, the
number of keys remained the same, and that the tree is still kc-optimal. Ilowever,
the number of 2-nodes has increased; originally there were i-+j 2-nodes in tue
affected subtrees and now there are 2i-1l. Hence the utilization of a kcu-optimal
tree has been increased, a contradiction. []

Theorem 2.2 establishes a necessary condition for kcu-optimality. From now
on, we only consider trees which satisfy the conditions of Theorems 2.1 and

2.2. This allows us to make the following definition:

Definition: A leader profile of a 2-3 tree is an ordered triple (1, 2,x) where h

is the height of the tree, % is the level of the leader with lowest level, and
x is the number of leaders having lowest level. 1In addition, if the tree consists
solely of l-nodes (and hence all leaders are leaves) it will be more convenient
to define the leader profile to be (h,h-1,0) instead of (h,h,Zh),

Because of Theorems 2.1 and 2.2, any kcu-optimal tree can be uniquely
described by a leader profile(up to permutations of full subtreeé. (Note that
knowning x also determines the number of leaders at the higher level, and

hence determines the position of all the leaders.)

These theorems give necessary conditions for kcu-optimality. 1In the next
section, we will show that only one leader profile is possible for a given K.
Hence these conditions are also sufficient. Thus, we have:

Theorem 2.3 A 2-3 Tree is kcu-optimal iff

(1) It is kc-optimal

(2) Every 2-node has a leaf or a 2-node as its left son.

(3) The heights of any two leaders differ by at most one.

Proof: The conditions are necessary by Theorems 2.1 and 2.2 and sufficient

by the uniqueness of the leader profile in Theorem 3.2. E]

3. Calculating the Utilization and the Expansion

Our strategy in this section is to first find a mapping from leader profiles
into K and N (obviously both these mappings are one-to-one). We then find the
inverse of the mapping into K and discover that this mapping is also one-to-one.

Therefore knowing K uniquely determines the leader profile and uniquelv determines

the tree up to permutations of the full subtrees. Therefore, any tree satisfying

Theorem 2.2 has a leader profile and must be kcu-optimal. Hence Theorem 2.2

provides a characterization of kcu-optimal trees.

Theorem 3.1: Let keys(h,%,x), nodes(h,?,x) and twos(h,%,x) be respectively

the number of keys, node and 2-nodes in a 2-3 tree with reduced leader profile

(h,2,x). Then keys(h,%,x)= ohtl o8+l ~14+x

nodes(h.2,x)= 28" C(h-p)2* 4(h-g-1)x-1

-

twos(h, x)= (h~2-1)22+l—(h-1—2)x

Proof: We break our level-by-level analysis of the tree into four parts:

Part 1 (levels 0,...,%2-1): For these levels the tree is completely binary.

Therefore level i (0 < i < & - 1) will have 2t nodes, 2t keys and zero 2-nodes.

Part 2 (level 2): Here we have the x upper leaders. The remaining nodes at

this level are l-nodes. Since there are ZQ nodes in total at this level (the

tree is completely binary above this level), there are 2£—x l-nodes. Therefore,

L
at this level there are 2 nodes, 1 - (22—x)+2~x = 22+ x keys and x two nodes .

Part 3 (level 2+1):Every l-node at level % will have two 2-nodes (lower leaders)as its.

sons, and every 2-node at level % will have onc 2-node and two l-nodes as its

sons. Thus, the inventory is 2°(22—x) + 3.x = 22+1+x nodes, 4-(22—x) + lx =2

keys and 2-(22—x) + lex = 22+1—x two nodes.

242

Part 4: (levels 2+2,...,h-1): First, note that every 2-node at level i
(1 > 2+1) has one 2-node as its son and every l-node has zero. Therefore the

number of 2-nodes at each level will remain constant at 2£+1—x after level 2+1.

10

Let ni be the number of nodes at level 1{. Since each l-node at
level i-1 (for i > 2+1) creates two nodes at level 1 and each 2-node

creates three, we have the recurrences

= 2-(n,_-(2") + 3. @"ox) for 1> wa2

ny
2+1
n2+l = 2 +x

i +
Wil —22 l+x, the number of nodes at level i. The number

L+i+1

whose solution is 2

L+i+ _22,+l+x —(22+1—x))+2(22+l—x) =2

of keys equals 1-+(2
These results are summarized in Table 3.1. Summing over each column gives

the formulas given in the theorem for £ < h-1., For 2=h-1, the last two rows

will be equal to zero. It is easy to verify that the theorem is also true in

this case. []
level number of nodes number of 2-nodes number of keys
0<i=< -1 2" 0 2*
L 22 X 22+x
1+1 2!L+1+X 22+1—x 22,+2
242 < i < h-1 L oML, 2y 2ttt
Table 3.1

A level-by-level analysis of the structure of a 2-3 tree with reduced

leader profile (h,%2,x) when £ < h-1. If £ =h-1, the last two rows should be zero.

s = 1 if j
Definition: Let 5ij =40 ;f ; i g i.e. the "reverse" of Kronecker's delta.
Lemma 3.1 Given any h > 0 and 0 < 4 < h-1,
2h+1_22+l_1+g- < 2h+1__22,+l_1+X < 2h+l_21_1
2,h-1 = =
here § < x <2t
where %.h-1 <x <
Proof: Obvious from the given inequalities E]

Lemma 3.2: Given any h > 0

YA EPEP LSS L PO LR

where 0 < £ < h-1 andvgl’h_l <x < 22 .

11

Proof: To verify the lower bound:

2h+l h

h+1 2K+ UL 2h__1

27 - l—l+x >

by Lemma 3.1. To prove the upper bound, consider any %< h-1. For this £,

h+l 2

Sl 0+l 2y

P < L8

2140t <
. h+1 .
Since £ > 0, the largest this can be is 2 ~2, proving the upper bound. []
We now give a theorem that specifies the mapping from K into the leader

profile. Since this mapping is one-to-one, the characterization theorem given
in Section 2 will be established. Corollary 3.1 provides the intuition behind
the theorem and helps to explain the derivation of the formulas in this theorem-
h is easily determined. To calculate %, we must find which of the h subsequences

K is in and to calculate x we find the position in that subsequence.

Theorem 3.2: For a given K, let

(1) h= Llog(K+l)J

(2) 2= 1og(2h+1—1-xj if k#2P-1

h-1 if K=2h—l

(3) x= 22+l_(2h+l_l_w

Then (h,%2,x) is the only leader profile with K keys.

htl 2+l

Proof: (Note that K=2 2 +x) To prove equation (1), we use Lemma 3.2:

zh—l < K < 2h+1—1. Hence h < log (K+1) < h+l, and h=!;og(K+llJ .

htl 4+

To prove equation (2) we require 2 cases. Note that 2 -K=2 -X.

Case 1 (2h+l-l—K < Zh_l; this implies & < h~1):

We have Zh—l > 22+1—x > 22+1—22=22. Hence f2<h-1.

Therefore

gLt WL 2£+1_-—6—2 h-1=22+l_1

< x < 22 and 2#h-1. Therefore

because 6£,h—l <

22 < 22+l-x=2h+l-l—K < 22+1—1 and &= llog(2h+l—l—KlJ

+ -—
Case 2 (Zh 1—1-—1(> 2h l; this implies #=h-1): We have

h-1 + +
.2 < 22 1--x < 22 1—22=2£ . Therefore h-1 < £. Since & is restricted to be at

12

most h-1, &=h-1. If K=2h—1 equation (2) is true. 1If K < 2h—l, we must

verify the r.h.s. of equation (2) equals h-1. We have:

L
2£=21+l_22 < 2 +l—x=2h+l—1—K < 2h

Therefore £ < log(2h+l—1—K) < h, and [}og(2h+l-l—Klj =h-1=2, and equation
(2) is true.

Equation (3) follows directly from K=2h+l—22+1-1+x. . []

Corollary 3.1: For a given h the sequence of leader profiles for

h+l—2 begins with (h,h,0) and then consists of h subsequence

K=2h-1,...,2
th . L
The % ' subsequence from the end consists of (h,%,1),(h,%2,2),...,(h,%,2).

(See Figure 3.1)

K Leader Profile
7 (3,2,0)

8 (3,2,1)

9 (3,2,2)
10 (3,2,3)

11 (3,2,4)

12 3,1,1)

13 3,1,2)

14 (3,0,1)

Figure 3.1

The sequence of leader profiles for h=3.

Lemma 3.3: If f(x) is monotone over [a,b] then
b

b
min(f(a),f(b)) + if(x)dx j_? f(i) < max (f(a),f(b)) + [E(x)dx

A

i=a

Hence .

b
b
X f(i) = (if(x)dx)-+€ , where min (f(a),f(b)) < € < max (f(a),£f(b))
i=a

13

Lemma 3.4 Let t be an integer > 1, let ¥ # 0, and suppose --3 ¢ [1,t] then

t
pitg _ 1 - Ps rtts
§=1 ri+s r [p(e-1) + (q- r) fn(r+s)] + €
. (p¥q_ ptiq pHq pttq
where min (r+s ‘rt+s j;é < max (r+s’ rt+s)'
Proof :
- pxtq ' = pPsSzqr : '
Let f(x) st Then f'(x) (rx+s)2 and the sign of f'(x) depends only

on ps—-qr, not x, Hence f(x) is monotone over any region not containing - T
The lemma then follows directly from Lemma 3.3 and the calculation of

t
pxtq . ' .
{ — dx using the substitution y = rx + s. []

1
From Theorem 3.2 we can calcuiate the uzilization of a kcu-optimal tree

for any K. However, we would like to calculate an "average" utilization to

indicate how well these trees perform on the average. Unfortunately, the

utiiization does not approach a limit as K+ ». For the leader profile

(h,h-1,0), the tree is completely binary, and the utilization is 507%. For

(h,h—l,Zh-l), the tree is binary except for level h-1 which consists solely

of 2-nodes. This tree, then, has a utilization of approximately 75%, and

the utilization varies cyclically between these two extremes. We choose to

average the utilization over all trees of a given height., Thus, the average is

over the range from one minimum to the next.

Theorem 3.3: Let nodes (K) be the number of nodes in a kcu-optimal tree of K keys.

- oo . K _oh_ h+l_
Then for large h, the utilization (= T nodes (K))averaged over K=2"-1,...,2 2
s T 1 m-12™%42. 2™ (ne2) ~(mt1)
s T€~+ z 2m [1+(m 2L m+2)12
m=1 27 "= (2m-1)

which can be numerically calculated as 64.7%.

h+l

2 -2 h 14
Proof: We mneed to calculate (Z h K)/2
K=2"'-1 2+nodes(K)
| h-1 2%
, k h,h- N T
By Corollary 3.1 this equals (Z?Kzée;?hlﬁ?i 0) + z z% . ke%iéi;%ﬁxg x))/zh
’ b g‘___o x= 1 ’ bl

We ignore the first term in the sum; when divided by Zh, it vanishes as
h~>w. Then, substituting m for h-2-1 and reversing the

order of the first summation gives

2h—m—l
Z 1 keys (h,h-m-1,x))/2h
=1 2 nodes(h,h-m-1,x) *

1

h-~]
Q

m=0
Substituting the values from Theorem 3.1 for keys{h,h-m-1,x) and

nodes (h,h-m-1,x) gives

, h-m-1
h-1 2 1 2h+l_2h M x 5/2h
0 1 7 5 hem ' D
m=0 x=1 2 ~(m+l)2 +mx-1
Define(xh m to be the value of the inner sum for a given h and m. We want

to take the limit of % n 28 h+», but the number of terms increases to infinity
?*

as h > «. Hence, we will consider ay o divided by the number of terms. Normalizing

= h~m~-1
the sum in this manner makes the limit exist. Define a, = o /2
h,m h,m
and a* = lim a . (Note that is the average of a number of utilizations
M e h,n h,m
and hence %-jhah o S 1. We use this fact in Lemma 3.5.)
U ~ (m+1) , -
(1) is then equal to ? ah. « 2 . To calculate the limit as h » =,
m=0 '
we use the identity
h-1 oo
lim - - (m+l)_ * _—(mtl)
0w) % o 2 = z_ @ 2 . (2)
m=0 m=0

This equality is not obvious (suppose the summand were

Gh o = 1 if h=m and 0 otherwise instead of Eh m‘ 2-(m+1?)and is proved in Lemma

*
3.5. We now cdlculate Gm for all m. If m=0, simplifies to:

a
h,m

15

ol

*
Dividing by Zh_l and taking the limit gives aO

For m > 0, we use Lemma 3.4 to give

% m- h+1 h-m
- + h- 2 - (m+1)2 -1

a = m[Zh 1 _1+(2h 1_2 M. L (2)) X
m

2h+1_(m+l)2h—m_l+m2h—m—1
ht1 h- o1 01 €
27 (mt1) 27 Pl

2n(

_ het1 hem-1
L oh=m, k1) , o2 2y 2t)i+ €

h-m-1 (m-1)2" 140
= +=2 —1+(—
5 m I

where 1/2 < €_§ 1. (the minimum and maximum utilizations)

Dividing by Zh-m_l and taking the limit as h > =« gives

mt2 m+2
* 1 (m-1)2 +2 2 - (m+2)
= Tl T R

m m 2™ (2m-1)

Y] for m > 0.

[+)

Then substituting into (2) proves the theorem. E]

— * i o
Lemma 3.5: Let %.ﬁ 4 o<1 for all h,m > 0 and let o_ = Lim *h,m. Then

i h > =

h-1 o
- - * -
;iT A (m+l) _ I oo . (D)
m=0 o m=0 T

Proof: We know that for any E>1L an HO can be found such that

- ~(mtl) T % (ml)
[T o -2 -Ja_ -2 | < €for all h > H (1)

h,m m < 9

m=0 m=0
For any given € , 1let MO = :19§Si-Note that
h-1 _ o
}“ - ‘2—(m+l) < Z 2—(m+l) <_46
m=M+1 ’ m=M +1

. v * _—(m+
Jimilarly, X o 2 (m+1) < € - Now for this M choose H, such that

_ m 4 0 0
m=M_.+1
0

*-(m+l) — ~(m+1) €

o2 % 2 | < e, for all h > H), m < L

Such an HO must exist; for every m, there exists a suitable value for HO, and we

simply pick the maximum of these values. We now have for any h > HO,

16

h-1 o
. - - (mtl * - 1
l l . m2 () z 02 (m+)l
=0 ’ m=0
M
0 = =
< 2 l&h m2_ (m+l)—(x*2 = (1) +Z &'h 2—(m+1)+ z * 2—(m+1)
m=0 ? m=M0+l ’ m=MO+l
. £ €, €
< Mo " om vy <& O

proving the lemma.

Theorem 3.4: Let nodes (K) be the number of nodes in a kcu-optimal tree of
2°*nodes (K)

K keys. Then for large h, the expansion (= __~—i?—___._1) averaged over
k=2"-1,...2"1 2 1s

B4 m+2 ™2 1~ (mHl)
2] [m-((@=1)2" +42) (=512)-1

m=0 ™2)

which can be numerically calculated as 56.7%

Proof: In a manner analagous to Theorem 3.3, we consider

h-m~1

h-1 2 ML (1) 2" ™mx-1, b
G 12 55 hem 327 -1
m=0 x=1 2 ~2 -1+x
—— * 3
and define ah’m, ah’m and a - Using Lemma 3.4 gives
@y im (2P Ly + P (i) 2P 1w (M)
2h—m—-l + 2h+l _Zh—m_l
x 2 n(1 h)] + €
1+ 2" 2"
where 1 < €< 2.
. . h-m~1 , . .
Dividing by 2 and taking the limit as h » «» gives
" m+2_
oF = 2(m-((m-1)2""242) en (1]
m m+2
o 27 °-2
x -
and substituting into Z «2 (m+l)—l proves the theorem. Note that the

m=0 m

interchange of sum and limit is still valid; an analog of Lemma 3.5 can easily

17

be proved because 1 < a < 2,
- “h,m —

As was stated before, this expansion of 56.7% is comparable to the
expansion of a random tree which is known to be bounded (5) between 407%
and 58%. Note that no such bound on the average utilization of random 2-3
trees is known, and that we cannot add one to these bounds, take their

reciprocals and get bounds on the utilization because the equality

"E(x) = 1/E(1/x)" does not hold for an arbitrary random variable x.

18

4. A Tree Construction Algorithm

In this section we describe an O(n) algorithm to construct a kcu~optimal
2-3 tree [rom a sorted array of keys (See Figure 4.1). The algorithm builds the
tree top~-down. If K, the number of keys in the tree to be built, is of the form
2h+1—2, then a full tree must be constructed. This is done in lines 5-15. 1If K
is not of this form, (lines 16-25) the root of the tree must be l-node, and the other -
keys must be partitioned into two subtrees. Many partitioning strategies are
possible. Our algorithm divides the keys as evenly as possible with the left over

key (if there is one) going into the left subtree. We now prove that the "even

splitting' tree construction algorithm actually does construct a kcu-optimal tree.

w N =

O ® N o e

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.

19

Function Build (lower,upper,height);

Var

Begin

else if upper-lower+l=2

end

kl,k2:integer;

If height=0 then return NIL

helght+1—2 then begin

allocate a node;
kl:=lower+2 height_
k2:=lower+2
node (leftkey) :=keys[kl];

node(rightkey) :=keys[k2];

node (leftson) :=Build (lower,kl-1,height-1);
node (middleson) :=Build(k1l+1,k2-1,height~-1);
node(rightson) :=Build(k2+1,upper,height-1);

2;
height ,height-1_

+2 2,

return a pointer to node;

else begin

end;

end;

Allocate a node;

k1l:= [(lower + upper)/21;

node (leftkey) :=keys[kl];

node (rightkey) :=empty;

node (leftson) :=Build(lower,kl-1,height-1);
node (middleson) :=Build(kl+1l,upper,height-1);
node (rightson) :=NIL,

return a pointer to node;

Figure 4.1

The "even splitting" algorithm for constructing a kcu-optimal tree from a given set

of keys.

We assume the n keys are stored in sorted order in position 1 through K

of array "keys". Build is a function, returning a pointer to a tree. We assume

the original invocation is Build(1,K,lLlog(K+1)}) which returns a pointer to the

root of the tree.

20

Theorem 4.1 The "even splitting" algorithm produces a kcu-optimal tree.

Proof: (by induction on K): Proving the theorem for K=1 is trivial, so consider
K> 1., If K is of the form 2h+1—2, the algorithm will construct a full tree, which
is then kcu-optimal. If K is not of this form, [(K~1)/27] keys form the left subtree
and [(K-1)/2] the right. Let (h—l,ll,xl) and (h-l,lz,xz) be, respectively, the
leader profiles of the left and right subtrees. If K is odd, [(K-1)/21 = KK—I)/%I R
and the structure of the subtrees will be identical. In this case, 21= 22. All

leaders are on level & or Zl+l and the levels of two leaders can differ by at most

1
one. Hence the tree is kcu-optimal. If K is even, the left subtree will have one
more key than the right. - It may be the case that 21=22 in which the proof for odd
K holds. 1If 21#12 Corollary 3.1 states that the leader profiles must be (h-l,ll,l)
and (h—l,£2,2£2) with 21=22—l because the number of keys in the subtrees differs by
exactly one. The left subtree has leaders on level 21 and 21+1. The right subtree

has leaders on only level 22(=Zl+l), and there can be no lower leaders at level 22+l.

Again, the levels of the leaders differ by at most one, and the tree is kcu-optimal.

O

21

5. An Insertion Algorithm

We describe an algorithm to insert a key into a kcu-optimal tree
while maintaining the property of kcu-optimality. A similar, but more
complicated, deletion algorithm can also be defined.

The algorithm uses two subroutines, Exchange and Split. The need
for Exchange is due to the fact that in the insertion algorithm, we
often cannot insert the new key into the correct subtree without destroying
the kcu-optimality of the tree. When this occurs, we will do an "Exchange"
to get a key that can be inserted into a different subtree. The Exchange
algorithm (see Figure 5.1) accomplishes this. It takes a key as input
and inserts it into the subtree pointed to by p. If flag="min'", it deletes
the smallest key in p's subtree and returns its value in keyout. If
flag="max", it returns the largest. Thus, the number of keys in p's
subtree remains the same. However, we now have a more convenient key.

We refer to this operation as ''doing an exchange."

To do an Exchange, we first check if p's sons are leaves. If they
are, the operation is particularly easy (lines 5-7). Otherwise we must
call the algorithm recursively to exchange the key. Suppose flag="min."
(The case for flag="max" is similar.) If key has to be inserted into
the right subtree (lines 12-15), we must exchange it with the minimum
key in the right subtree. The key replaces the current right key of
p, and the current right key of p becomes the new key to be inserted.

This key is then exchanged with the minimum key in the middle subtree

(lines 16-20) and the resulting key is exchanged with the minimum

22

key in the left subtree (line 21). This final key is returned as the
value of keyout. A similar (though less complex) operation occurs if

the original key to be inserted fell in the left or middle subtree.

The Split algorithm (Figure 5.2) takes a subtree pointed to by p which
must be a full subtree and a key to be inserted. It splits the subtree into
two completely binary trees (pointed to by lptr and rptr) plus a key
(returned in keyout) whose value is between the two trees. We first
check for the trivial case (lines 3-9). If the tree is non-~trivial,
the middle and right subtrees, together with the p's right key, form
one completely binary tree. To form the other, exchanges are done
(lines 11-20) until the key to be inserted lies in the left subtree.

We then call Split recursively (line 21) to split this full subtree.

We define a node to be open if it has a lower-leader in its
subtrees. Otherwise it is said to be closed. (Note that if all leaders
are on the same level, all are considered to be lower leaders.) If
a node is open, a key can be inserted somewhere into its subtree.
Otherwise, exchanges must be done to allow us to insert into some other
subtrees. We assume that a bit denoting whether a node is open or closed
is stored with each node and is updated as necessary as insertions are
made.

We now describe the insertion algorithm. It first check if the
root is a 2-node (lines 4-10), in which case the Split algorithm is
called to split the entire tree. Otherwise the root is a l-node,and

we descend in the tree. If the branch the current key forces us to take

23

is closed (lines 17-23), we must exchange and take the other branch.
It is easy to see that because we are always following an open branch,
p will always be open at line 12. Eventually p's sons will be leaves
(which is easily handled in line 11) or p's sons will both be 2-nodes.
In the latter case, we exchange if necessary (lines 31-35) to allow us
to insert into the right subtree. We then take the key to be inserted
and split the right subtree (creating two binary trees) and making
p a 2-node (lines 36-39).

A simulation was run to determine the average cost of an insertiom
with the average, as before, over trees with K = Zh—l,...,2h+1-2 keys.
A run in the simulation began with a completely binary tree of height h
(in our simulation h=10). Random keys were then inserted one by one into
the tree until a full tree of height h was obtained. Each key was chosen
under the usual assumption that each of the K+l gaps between, before and
after the keys in the tree was equally likely. The average reorganization

required (the number of keys that had to be moved) ranged from 3.09% to

4,23%, and the average of the 10 runs was 3.62%.

O 0ONONUD & WN -~

BN DO NI DO NN = bt b et ot et s et b
LN W,V UL WND O

27

24

Procedure Exchange(key,keyout,p,flag);
var temp : keytype;

begin

if p’s sons are leaves then begin
let keyout = the minimum (or maximum, depending on flag) out

of key and p“s keys.

put the remaining keys into p.

end
else
if flag = "min" then begin
if p is a 2-node and key > p(rightkey) then begin
Exchange (key, temp,p(rightson), "min");
key := p(rightkey);
p(rightkey) := temp;
end
if key > p(leftkey) then begin
Exchange(key,temp,p(middleson),"min");
key := p(leftkey);
p(leftkey) = temp,
end
Exchange(key,keyout,p(leftson), "min");
end
else begin
{similar to lines 11 - 21}
end;
end;
end,

Figure 5.1

CONOULMEWN —

25

Procedure Split(key,keyout,lptr,rptr,p);
var lptrl,rptrl : ptrtype;
begin
if p’s sons are leaves then begin
Allocate two new nodes, pointed to by lptr and rptr.
Put the largest of key and p’s two keys into the node
pointed to by rptr.
Put the smallest into that pointed to by lptr.
Return the remaining key in keyout.
end ’
else begin
if key > p(rightkey) then begin
Exchange(key, temp,p(rightson),"min");
key := p(rightkey);
p(rightkey) := temp;
end;
if key > p(leftkey) then begin
Exchange(key, temp,p(middleson), "min");
key := p(leftkey);
p(leftkey) := temp;
end;
Split(key,keyout,lptrl rptrl,p(leftson));
Allocate a node. Point lptr to it.
Build the trees as shown in Figure 5.3.
end;
end;

Figure 5.2

T

[4
Iptri1 keyout ptrl

e,

Xe =)

lptr

s

Figure 5.3
The final building of the trees in the Split algorithm

:rptr=p

26

O E~NOWNE WN -

30
31
32
33
34
35
36
37
38
39
40
41

Procedure Insert(key,p):

var temp,keyout : keytype;

begin
if p is the root and a 2-node th

Split(key,keyout,lptr,rp

27

en begin
tr,p);

Allocate a new node which becomes the root of the tree.

node(leftkey) := keyout;
node(leftson) := lptr;
node(middleson) := rptr;
end
else if p’s sons are leaves then
else if at least one of p’s sons
{p is an open l=-node}
if key < p(leftkey) then
if p(leftson) is
then Ins
else beg

end

end
else begin
{similar to line
end
end

else begin
{p is open and both sons

insert key into p.
is a l-node then begin

begin
open
ert(key,p(leftson))
in
{right subtree is open}
Exchange (key, temp,p(leftson), "max");
key := p(leftkey);
p(leftkey) := temp;
Insert(key,p(middleson));

s 15 ~ 23}

are 2-nodes}

if key < p(leftkey) then begin
Exchange(key, temp,p(leftson) "max");

key &= p(rightkey);

p(rightkey) := t
end,
Split(key,temp,lptr,rptr
p(rightkey) := temp,
p(middleson) := lptr,
p(rightson) := rptr;

end;
end;

emp;

,p(middleson));

Figure 5.4

¢))

(2)
(3)

(4
(5)

28

References

A.L. Rosenberg and L. Snyder, Minimal comparison 2-3 Trees SIAM J.
Comput. Nov. 1978.

D.E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, 1973.

R.E. Miller, N. Pippenger, A.L. Rosenberg, L. Snyder. Optimal 2-3 Trees,
SIAM J. Comput., to appear. Feb. 1979.

A.L. Rosenberg and L. Snyder, Compact 2-3 Trees, IBM Tech. Rept. RC-7343.

A.C. Yao, Random 3-2 Trees, Acta Informatica.

