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Abstract

We present a new approach to texture analysis based on the spatial
distribution of local features in unsegmented textures. The textures
are described using features derived from generalized cooccurrence
matrices (GCM). A GCM is determined by a spatial constraint predicate,
F, and a set of local features P = {(xi’Yi’di)’ i=1,...,m} where (Xi’yi)

is the location of the it" th

feature, and di is a description of the i
feature. The GCM of P under F, GF, is defined by GF(i,j) = number of
pairs Py:Pp such that F(pk,pz) is true and di and dj are the descriptions
of Py and pz, respectively. We discuss features derived from GCM's and

present an experimental study using natural textures.






I. Introduction

Texture models play an important role in many image analysis systems.
Textural features can be crucial for the segmentation of an image and can
serve as the basis for classifying image parts. Experience with analyzing
images containing textured regions (especially images of natural scenes)
has often led to a qualitative distinction between two classes of
textures -- micro-textures and macro-textures (see Hanson et al [1], among
others).

Both micro-textures and macro-textures are ordinarily associated with
an iﬁtuitive model of textures as being composed of "pieces" or "elements"
whose shapes, sizes, and placement are the crucial factors in their
analysis. Two common dimensions along which such textures are ordinarily
described are dimensions of coarseness and directionality. Coarseness
corresponds to the size of the texture elements, and directionality
corresponds to both the orientation of the texture elements and to their
spatial arrangement. It should be pointed out, of course, that there are
other attributes of textures (e.g. homogeneity aspects) which can, and
often should, be used in texture description. Also, this intuitive model
is not adequate for the description of many textures -- for example,
textures formed by diffusion processes cannot be naturally described as
being composed of pieces. There are many other examples.

The distinction between micro-textures and macro-textures is based
on the size of the underlying texture elements. For micro-textures, the
texture elements are assumed to be small (e.g. diameter only several

pixels), while for macro-textures, the texture elements are assumed to



be larger. Most micro-textures can be adequately described by a few
features computed from a cooccurrence matrix [2] or a difference
histogram [3]. However, as the texture elements become larger, the
analysis of the texture using such techniques becomes more tenuous since
statistics derived from cooccurrence matrices or difference histograms
will depend more on the intensity transitions within texture elements
than on the structural organization of the texture. Thus, we would
expect that the texture descriptions based on features defived from
cooccurrence matrices or difference histograms would tend to become less
useful as the texture becomes more "macro”. |
Clearly, as we "zoom" in on a micro-texture, it becomes a macro-
texture; and as we reduce the resolution with which we view a macro-
texture, it becomes a micro-texture. Thus, the distinction between micro-
and macro- textures is really a distinction between images of textures,
and not between the physical textures underlying the images. However,
models for the physical textures, while preferable to image models, are
exceptionally difficult to obtain. B S
Only a few macro-texture analysis procedures have been described in
the literature. Maleson and Feldman [ 4] suggest first segmenting the
texture to obtain the texture elements, and then directly describing
their shapes and their spatial distribution. Segmenting the textures,
however, is itself a difficu]t problem. Furthermore, our abiTit} to
compute sophisticated shape descriptions is currently very limited,
so that except for simple (e.g., convex) shapes, the shape description
problem is not necessarily less complex than the texture description

problem. So, although the approach described in [4] is very appealing,



since it attempts to directly capture our intuitive texture model, there
are many practical situations where it might be difficult to apply.

An indirect approach towards the same end is to analyze the "primal
sketch" (a rich edge map) of a texture region (see Marr [5]). Marr
suggests applying certain similarity grouping operations to the primal
sketch, while Zucker et al [6] suggests that, very often, histograms of
aspects of the primal sketch (e.g. of edge magnitude, or orientation)
can be used to discriminate between different textures. The approach
sugggested in this paper lies between these two; it attempts to capture
the spatial distribution of elements in a primal sketch, but without
resorting to the computationally complex grouping operators suggested by
Marr. This approach, based on "generalized cooccurrence matrices", is

described in the following sections.



II. Generalized Cooccurrence Matrices

In order to analyze a texture, we will replace the texture by another
image which indicates the positions of certain local properties in the
original texture image -- e.g., of edges. Ordinarily, this second image
is obtained by convolving a small set of masks with the texture image, and
assigning local feature descriptions to the peaks, or local maxima, of the
correlation surfaces. Each point corresponding to a local maxima has some
description associated with it. For example, if the masks were edge masks,
then the description might include the magnitude and orientation of the
edge. The cooccurrence matrix, as ordinarily defined, will not serve as
a useful tool for describing the distribution of these local maxima,
because most local maxima will not have other Tocal maxima at specific

relative positions.

What we require is some generalization of a cooccurrence matrix which
will capture some of the important spatial properties of the distribution
of local maxima. We will define a generalized cooccurrence matrix as
follows:

Let P = {p, = (Xi’yi’di)}? -1 where (xi,yi) is the Tocation and d;
the description of the ith local maxima, Py We assume that the di have

been quantized in some way. Let F be a spatial constraint predicate; e.g.,

F(pi,pj,k) = /?xi -xj)2 + (yi--yj)2 < k s true iff the distance between

P, and pj is less than k. Then the (1’,,]')th entry of the generalized
)

cooccurrence matrix (GCM),GF,is a count of the number of pairs (pk,pz

with F(pk,pﬁ) =T and di and dj the descriptions of Py and Pps

respectively.



We can identify several spatial constraint predicates which should
often give rise to useful GCM's:
1) Fl(pi,pjgk) is true if the distance between p, and P is
less than or equal to k.
2) Fz(pi,pj) is true if P; is the nearest neighbor of P
3) F3(pi,pj,e,a) is true if pj 1ies in the shaded area

displayed in Figure 1.

One can, of cburse, cémﬁgﬁévthé;é‘p%edicates: Fl(pi,pj,k)/\Fz(pi,pj)
finds a nearest neighbor of P; only if it is within distance k;
Fz(pi’pj) A Fz(pj,pi) counts only mutual nearest neighbors.

We can illustrate the computation of GCM's with the aid of Figure 2.

In Figure 2, we have coded the orientations of the local maxima of some
gradient operation as follows: H - horizontal, V- vertical, L -left diagonal
(\), R-right diagonal (/), blank - no local maxima at that point. Figures 3
and 4 show two GCM's for the texture of Figure 2. In Figure 3, we have
gsed F==F1(p1.,pj,2)s while in Figure 4, we have used F==F3(pi,pj,e(pi),0)A
Y pj‘{F3(pi,pj.,e(p§),0)+d(pi,pj.)zd(pispj)] -- i.e., we look in a
direction orthogonal to the orientation of P; for the closest other local
maxima.

Consider now the (R,H)th position of the GCM of Figure 3. It
represents the sum of the number of horizontal points within distance 2
of right-diagonal points. We can see how this number was arrived at by
considering the R's in the order that they would be encountered in a
left-right, top-down scan of the image of Figure 2. The first R has

no neighbors within (Manhattan) distance 2, the second has 1, the third 1,
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the fourth 2 and the fifth 1 for a total of 5. Since Fl(pi’pj’k) if and
only if Fl(pj’pi’k)’ the GCM of Figure 3 is symmetric.

Now consider the (R,H)th position of the GCM in Figure 4. To find
the nearest neighbor of any R point along a line orthogonal to R, we simply
start a symmetric, bi-directional scan along that line starting from R.
If two nearest neighbors are found, both contribute to the GCM. So, we
see that the third, fourth and fifth R of Figure 4 have H's which satisfy
the predicate used to construct the GCM of Figure 4, and so the (R,H)th
position of the GCM has value 3. Note that since F3(pi’pj’6(pi)’0) does
not by itself necessarily imply F3(pj,pi,e(pj),0), the GCM of Figure 4

is not symmetrical.



III. Operations on GCM's

In this section we will discuss a variety of operations which can
be performed on GCM's for the purpose of computing texture descriptors.
Haralick et al [ 2] describe many statistics which can be computed from
grey level cooccurrence matrices. Some of the operations which we will
describe are similar to the ones presented there. It should be pointed
out however that the interpretation of the results of the operations
depends on a) the local operator used to generate P (i.e., an edge
detector, spot detector, etc.), and b) the particular F used to compute
the GCM. In what follows, therefore, we will identify several different
operations which can be applied to GCM's and discuss the interpretations
of the results of these operations for various local operators and
spatial constraint predicates. We will use GF to denote the GCM produced
using the spatial constraint predicate F.

a) Generalized contrast - C(G)

= 3
c(6,) zd D(d;»d;) 6x(d;»dy)
i°9%

t h

where D(dﬁ,dj) is some measure of the difference between the i h and jt
descriptors. For conventional cooccurrence matrices, where di corresponds
to intensity i, D(di,dj) = |i-7J]. C reflects the homogeneity of the
spatial distribution of local features with respect to F.
Examples
1) Tlocal operator: edge detector; F = Fl(pi’pj’k) -- all

neighbors of pj within distance k of ps- The di are just the orientations



of the local maxima, -n/2 L-di < af2 D(di’dj) = sin(di<-dj).

For such GCM's, C will be high when most p; are "surrounded" by pj with
different orientations; C will be lowest if all pairs pi,pj within
distance k of one another have the same orientation. Therefore C will

be a measure of anisotropy - the lower C, the more anisotropic the texture.

2) local operator: Laplacians of various sizes - best sizes
are assigned to points by a process similar to the one described for
edges in [ 3]; F = Fl(pi‘pj’k); the di are the sizes of the Laplacian;
D(di’dj) = |i-J|. The purpose of using Laplacians of several sizes is
to collect information on the size of the texture elements. High values
of C indicate a spatial mixture of elements of various sizes. C is
lowest when all pairs pi,pj within distance k of one another have the
same size. Thus, in this case, C measure the spatial homogeneity of the
texture with respect to the size of the texture elements.

3) same as 1-2, but with F = Fz(pigpj)~~ P being the nearest
neighbor of P C.can be interpreted in much the same way in both cases.
One would use F2 in the absence of any good a priori information on the
size and density of the texture elements.

4) same as 1-2, but with F = F3(pispj,O,A) A Fl(pi’pj’k)'

A texture may have a strong directional homogeneity only in a

specific direction: Figure 5 displays a spatial distribution of
directions which exhibits strong anisotropy through C only when

F = F3(pi,pj,45°,0) A Fl(pi’pj’k) is used. Using F = Fl(pi’pj’k) would

result in a C indicating relatively high isotropy.

10
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b) Uniformity:

U= T 6.(d,.d.)?2
FYoi7j
d.,d.
i3

U measures the uniformity of the entries in GF' It is Towest when
all entries are equal.

Examples
1) local operator: edge detector; F = Fl(pi’pj’k); di = Oi.
Low values of U indicate that a) all directions occur with nearly equal
frequency, and b) the spatial distribution of directions is relatively
random. U is more difficult to interpret than C for this GCM, inasmuch
as the highly directional texture resulting in the local maxima with

orientations as shown in Figure 6 has relatively low U.

2) same as (1), but with a directionally sensitive F: allows us
to distinguish between textures giving rise to gradient orientations such

as Figure 6 and truly "uniform” textures.

c) Ratios of features derived from different GCM's.

Ratios of features derived from different GCM's can also yield useful
texture descriptors. Ordinarily the GCM's will be based on similar or
identical local operators; the differences will arise from changing F.

Examples

1) local operator: edge detector; feature: generalized contrast;
F = Fl(pi,Pj,k) , F' = Fl(pf,pj,k+~Ak). In this case we compute the
ratio C__, = CF'/CF , which reflects the extent of the anisotropy of the

FF
underlying texture. We noted before that a high value of C will ordinarily

12



correspond to an anisotropic texture. A high value of CFF' indicates
that as we increase the neighborhood size of Fl‘ the texture appears
more anisotropic; a value of CFF' near 1 indicates that the anisotropy
of the texture remains constant as we change k. Note that a plot of
CF versus k would indicate the point at which the texture become
anisotropic.

2) same as above, but with F = Fl(pi’pj’k) A F3(pi,pj,e,a) and
F' = Fl(pi’pj’k) A F3(pispj,e',a) . Here, Crp, indicates whether the
texture shows more directional consistency in direction 6 than 6'.
Note that we could fix & = o', but let A change between F and F'. In
this case we get a measure of the robustness of the directional
consistency in the general direction ¢. Note again, we can plot CFF'
as a function of e, of A, or of ¢ and A and discover useful information

about the directionality of the underlying texture.

d) Detecting clusters in GCM's. In [6], Zucker et al examined
the histograms of local maxima for peaks in order to segment an image
composed of several textures into the individual texture regions. In
much the same way, we could search GCM's for peaks in order to segment
an image. Segmentations based on peaks or clusters discovered in GCM's
should be more reliable than segmentations derived from histogram

analysis.

13



e} Texture edge detection. Suppose that we have a region which is
composed of two textures. How can this be discovered? One possible
approach is to compare the GCM's of different parts of the region.

There are at least two levels at which this can be done:

1) The GCM's can be compared directly through some metric defined
on the matrices. In fact, Chen and Pavlidis [7] have very recently
suggested this approach for grey-level cooccurrence matrices to segment
images containing textured regions using a pyramid data structure.

2) Features derived from the GCM's can be compared. We might,
for example, look at the difference in contrast, or compare contrast

"variograms."

In the next section we report the results of a classification

experiment which uses both features computed from GCM's and features

computed from grey Tevel cooccurrence matrices (GLCM's).

14



IV. CLASSIFICATION EXPERIMENT

This section describes a classification experiment comparing the
performance of various features computed from GCM's to the performance of
conventional grey level cooccurrence matrices. Two different grey level
cooccurrence matrices and four different GCM's were computed. From these,
a set of four features was computed from each of the six matrices. These
features were used singly and in pairs as features for a leave-one-out
classifier. The results of the classifier are used to compare the
performance of GCM's and grey level cooccurrence matrices.

The data set used in this study consists of five different classes
of textures: pebbles, tree bark, orchard, iron grating, and scrap iron.
Six samples of each class were used. The original photographs are
displayed in Figure 7.

Whenever different samples of the same texture type are taken from
different frames, a normalizing process should be performed to eliminate
the effect of any difference in conditions {e.g. lighting, film, or
developing) that exists between frames. In this study, all six samples
of each texture were taken from the same negative. However, in order
to prevent the different texture types from being distinguished strictly
on the basis of first-order statistics such as mean grey level, each
sample was transformed so as to have a uniform grey level histogram.

This process has the additional effect of increasing the contrast of the
image as well as enhancing the edges. Examples of the resulting images,
after grey scale normalization, are also shown in Figure 7. The

normalization procedure is described in Rosenfeld and Kak [3].

15
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On each of the 30 texture samples, six different cooccurrence
matrices were computed. Two of these were grey level cooccurrence
matrices (GLCM's) and the remaining four were GCM's.

The first GLCM (GLCM1) was based on a point and its immediate
neighborhood. The second GLCM (GLCMZ2) was based on the four points
tabeled i, j, k, and £ in Figure 8.

Four different GCM's were computed. The descriptor used was edge
orientation, quantized to four orientations. Two different edge detectors
were used and for each of these two different spatial constraint
predicates were used. Both of the edge detectors calculate gradients
for the four primary orientations: 0, 45, 90, and 135. The orientation
with the largest gradient magnitude is chosen as the most likely edge
orientation at that point. Edge orientations are computed at every
point in the image except for points near the edge of the image that do

not have complete neighborhoods.

The first edge detector was the Kirsch operator [3 1. The second
edge detector computes gradients in a similar way, only on a 5x5
neighborhood. This edge detector is less sensitive to noise. Here, the
neighborhood of a point is split into slightly more complex regions as
shown in Figure 9.

The edge detectors just discussed compute an edge orientation at
every point in the image. For macro-textures, it is highly unlikely
that there are true edges at all of these points. If texture elements
are several pixels across, then those pixels interior to the elements

should not be labeled as edge points. In order to eliminate most of the

17
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edge responses of interior points, non-maxima suppression was performed
over the results of the edge detector (see Rosenfeld and Kak [3]1).

In this study, non-maxima suppression was performed as follows.
Associated with each point in the image is some edge orientation E
and gradient magnitude M. Passing through each point are two line
segments orthogonal to E at that point. All edges on these line
segments whose magnitudes are less than M are suppressed. The length
of the line segments is a parameter of the non-maxima suppression. For
this experiment all non-maxima suppression was done with Tine segments
three pixels in length.

The GCM's in this experiment are 4x4 matrices since edge orientations
were only computed for the four principle directions. For each of the
two edge detectors two different spatial constraint predicates were used.
For both predicates there are two cone-shaped regions projecting out from
each local maxima to a distance of five pixels. The difference between
the two spatial constraint predicates is the orientation of the
cone-shaped regions. For one of the predicates the cones are oriented
orthogonal to the edge (Figure 10a) and for the other, the cones are
oriented in the direction of the edge (Figure 10b).

For each maxima in one of the cones some entry in the GCM is
incremented. If the edge at the apex of the cones is a vertical edge,
for example, and a local maxima with a horizontal edge orientation is
located within one of the cone-shaped regions, then the (vertical,
horizontal)'th entry in the GCM is incremented.

The final phase of the study consists of a classification experiment.

This study uses a leave-one-out classifier. In this method, every sample

19



in the data set except one is used as the training set (it is assumed

that the true class of each sample is known). The remaining sample is
then classified using the statistics derived from the training set. Next,
the test sample is exchanged with one of the samples in the training set.
The appropriate class statistics are updated to reflect the changes in

the training set. The entire process is repeated until each sample in the
data set has been treated as an unknown and classified. This method of
classification has the advantage of achieving maximum significance in

both class statistics and classification performance results.

Ideally, the samples from each class form distinct clusters in the
feature space. An unknown sample is classified as belonging to the class
corresponding to the nearest cluster since that class has features most
similar to those of the unknown sample. Most often Euclidean distance is
used as a measure of the "nearness" of a cluster, although other measures
of similarity are also possible. When Euclidean distance is used, some
kind of normalization of the data must be performed to prevent features
with large numerical values from dominating the distance calculations.

The normalization technique used in this study is to subtract the
mean and divide by the standard deviation. More formally, let f be the
feature values for some unknown sample and let ﬁc and 5c be the mean and
standard deviation for class ¢. The distance from the feature point of

the unknown sample to the class ¢ mean is denoted d. and defined as:

20



This normalization procedure takes into account the spread of
values within a cluster. For example, in the one-dimensional case, if
(f~u€)7= (f—uj) but TR the sample would be classified as belonging
to class i since i has more variability. Similar reasoning applies to
higher-dimensional cases.

For each of the five classes, the distances from the unknown sample
to the class mean is computed. The class for which the distance is
minimum is the class to which the unknown sample is assigned. The
results of this classification are recorded in a confusion matrix.

The six cooccurrence matrices computed in this experiment consist

of two GLCM's and four GCM's:

GLCM1 - 8 neighbors

GLCMZ - 4 neighbors of Figure 8

GCM1 - 3x3 edge detector; Spatial Constraint Predicate (scp)
of Figure 10a

GCM2 - 3x3 edge detector; SCP of Figure 10b

GCM3 - 5x5 edge detector; SCP of Figure 10a

GCM4 - 5x5 edge detector; SCP of Figure 10b

Four features were computed on each of the six cooccurrence matrices.
Angular second moment, entropy, and correlation (see Haralick [2]1) are the
same for both GLCM's and GCM's. The definition of contrast, however,
includes a difference term that represents the difference between two
descriptors. For the GLCM's, the descriptors are grey level intensities
and the difference between two grey levels i and j is taken to be |i-j|.

For the GCM's, the descriptors are edge orientations and the difference

21



between two edges is the sine of the angle between the two orientations.
The main results of the classification experiment are condensed into
Figures 11-16. For each of the four single features (the entries on the
diagonal) and each of the six pairs of features (upper triangle) there
is a table entry denoting the percentage of samples correctly classified
using those features. From these tables we can see that GCM's performed
significantly better than GLCM's (an average of 60% vs. 44% for single
features and 68% vs. 43% for pairs of features).
In the scanner plots that follow, the following notation is used for

the five classes of textures:

G = iron grating
0 = orchard

B = tree bark

P = pebbles

M = scrap metal

The confusion matrices corresponding to the three best pairs of
features for both GLCM's and GCM's are presented in Figures 17-22.
Figures 23-24 contain sample scatter plots, one for GLCM1 and one for GCM4.
The differences in clustering of the classes are readily seen in the
scatter plots. The scatter plot for the GLCM, Figure 23, shows that the
samples are highly overlapped in both dimensions, and only the grating
samples form any kind of definite cluster. However, Figure 24 indicates
very good clustering for three of the classes. Pebbles and scrap metal
are confused in both GCM's and GLCM's, but they are very similar even to
the human eye.

Of the four features used, contrast was the most useful in

22
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discriminating between textures. Of the six best pairs of features over
GCM's and GLCM's, contrast was one of the features in five of those pairs.
When the local descriptions are grey levels as in the GLCM's, contrast
reflects both the coarseness of the texture and the contrast of the edges.

In this experiment's dgta set, edge contrast was very similar between

classes, so contrast is primarily a measure of texture coarseness. %H}s
explains why orchard samples were confused with grating samples and
similarly pebbles with scrap metal. Orchard and grating are similar

in element size as are pebbles and scrap metal.

The interpretation of contrast computed on GCM's 1is not as
straightforward. Many texture characteristics such as shape, size, and
spatial arrangement of the texture elements {as well as the SCP) affect
contrast values. For example, as we have seen, contrast is Tow for
elongated textures such as tree bark using the SCP of Figure 10b. We
have seen that the samples of grating and orchard are similar in terms
of grey level cooccurrences and element size. They are largely
distinguishable on the basis of the shape of the elements (diamond
versus circular) and their arrangement (interlocked versus rows of
elements). The contrast measure of the GCM's seems to measure these
characteristics quite satisfactorily, since the orchard and grating
samples are more tightly clustered within their classes and much more
widely separated between their classes than for the GLCM's (sé;kFigure24).

Another important observation to note is that ba%k samples are
better classified using GCM4 than for GCM3. The difference is in the
spatial constraint predicate. The most distinguishing characteristics

of the bark samples are the elongation and directionality of the texture
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elements. The spatial constraint predicate of GCM4 (looking in the
direction of the edge) tends to measure elongatedness better than
GCM3 since an important characteristic of textures containing elongated

elements is the way edges are found in linear configurations.
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V. SUMMARY

The results of the experiment described in this paper have
demonstrated that GCM's are useful in discriminating between macro-
textures that are not satisfactorily distinguishable using features
derived from conventional cooccurrence matrices. Classification of
thirty texture samples from five different classes yielded 80+%
accuracy for feature pairs derived from GCM's versus 50-57% accuracy
for those derived from GLCM's. Although the results are clearly
promising, much work remains to be done. A larger data set, both in
the number of classes and in the number of samples/class, would improve
the significance of the results.

This study dealt with only one local description and two spatial
constraint predicates. The power of GCM's lies in carefully matching
the local operator and spatial constraint predicates to be able to
measure particular charaéteristics of textures. Experimentation needs
to be done with other local operators, such as spot and line detectors,
and other spatial constraint predicates. Furthermore, some of the other
ideas discussed in Section III (ratios, clustering) should be investigated.

A final suggestion concerns the study of "continuous" GCM's. These
are defined in the same way as the discrete GCM's used in this study,
with the following exception. A local operator does not deterministically
return a single descriptor, but returns instead a vector of "probabilities”
indicating the likelihoods of each of the possible descriptions. The
appropriate entries of the GCM are not simply incremented by one. Instead,
the product of the corresponding descriptor probabilities is added to the

current entry value.
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