CHARACTERISTIC FUNCTIONS AS A BASIS OF
DATA SPECIFICATION AND PROOF+

by

Jayadev Misra

TR~-96a. March 1979

+ Research partially supported by NSF Grant DCR75-09842.

University of Texas, Austin, TX 78712



ABSTRACT

A method for specification of data abstraction, using charac-
teristic functions, is proposed in this paper. It is shown that the
notion of characteristic functions is a generalization of V-function of
Parnas[7]. This technique provides specifications which are simple to
understand, yet rigorous enough for formal proofs. Verification of

implementation is illustrated with examples.



Introduction

A method of data specification is proposed in this paper which
uses a generalization of Parnas V-functions [7], called characteristic
functions. Characteristic functions are shown to provide a rigorous speci-
fication of data, which could be a basis for formal proofs about the data.
At the same time the notion of characteristic functions appeals to intui-
tion so that the specification can be understood and comstructed quite
easily. We provide several examples of specification using characteristic
functions. Finally, we show that characteristic functions provide a basis
for construction of mappings, for proving data representations similar to
that of Hoare [3].

Liskov and Zilles [5] list six criteria for evaluating specifi-
cation methods: formality, constructability, comprehensibility, minimality,
wide range of applicability, extensibility. Axiomatic approach [5] has
advantages as a formal, representation independent scheme. However, the
specifications are often incomprehensible unless the reader is familiar with
the data being designed. Axiomatic approach also creates its own problems

of completeness and consistency. Finally, a problem of mutual reference

arises; a function is never specified all by itself; a set of functions are
specified in terms of each other. Hence a group of functions have to be under-
stood simultaneously. Proof rules have to be applied to a group of functionms.
Abstract model approach of Liskov and Berzin [6] represents the data
in terms of other, well understood data. This approach has the advantage
that the specification is simple to construct and understand. However, the
specification turns out to be fairly long and requires an understanding of
other types of data. Proofs using this scheme will tend to be quite involved.
even though the steps are straightforward.
State machine approach of Parnas [7] has long been a useful tool

for specification and design. However, it was not adequate as a basis for



3
formal proofs. The original idea of the method is to divide the set of func-
tions operating on data into two types: O-function (operating function) and
V-function (value returning function). The effect of application of every
O-function is described by the changes in the values of the V-function.
A user may rely only on the values returned by V-functions to access and
examine the data. This scheme ié however inadequate, since certain O-functions
may not immediately affect the values of V-function, but may have a delayed
effect. A notion of hidden V-functions has been introduced in [8] to over~
come of this difficulty.

Characteristic functions may be viewed as a generalization of
V~functions. The attempt here is to provide a rigorcus definition mechanism,
based on the notion of equality of data objects of the given type. Every
operation's semantic is defined in terms of its effect on characteristic
functions values. It can be shown that if the characteristic functions are
sufficient to define equality, then they constitute a complete mechanism for
specification. Several examples illustrate the application of this technique.
Several aspects of verification are considered. It is shown that an imple-
mentation may be proven correct, by axiomatizing the characteristic functions
in terms of the operations that manipulate the representation; this provides
a mapping from representation to the abstract object in the sense of Hoare [3].
Some theoretical aspects regarding alternate characteristic functions are

considered.



Basic Notion

Consider two sets S15 S,- These two sets are defined to be equal

on the basis of classical set theory, when their membership tests are iden-—
tical. If ¢ denotes the membership function [¢(i,s) = true if and only if

i is a member of s],

5, = 8, <=> e(i,sl) = €(i,82), for all 4.

1 2

In other words, a set can be uniquely described by specifying the values of

€(i,s), for all i. Semantic of an operation on set can be specified by de-

scribing the changes in the values of ¢. We call € a characteristic function

and define the operations on set by describing their effects on €.



Example 1

Data type:
operations:
INIT:

ADD:
DELETE:

SEARCH:

Characteristic Function:

SET (of elements of type T)

- SET
T x SET - SET
T x SET - SET
T x SET - boolean

€

Definition of Equality:

51

=S

2 <=2 E(i,Sl) = 6(5—;82) vi

of type T.

Note that we assume that a notion of equality has been defined on

elements of type T.

In the following description, only those values of € which are changed are

specified; 1,5 denote arbitrary objects of type T and SET respectively.

Operation

INIT(S)
ADD{(1,S)

DELETE(i,S)

SEARCH(i,S8)

Remark

S is now the null set.

LI |

i' dis added to S.

'i'

is removed from S.
[Note: i may not be in

S when this is applied.]
returns true if i is

in S.

Semantic

€(i,5) = false, vi of type T.
e(d,8) = true.

e(i,8) = false.

SEARCH (i,S) = e(i,3)



6

It is important to note that there is no particular semantic or con~-

dition attached to €.

In the notation of Parnas, ¢ may be considered a V-function. Then
Example 1 is a restatement of a Parnas module for SET. However, it is
often impossible for the V-functions alone to specify the data typé, i.e.
the notion of equality can not be defined solely on the basis of given
V-functions. Equivalently, V-function values are insufficient to recon-
struct the data object. Characteristic functions can be viewed as a gen-
eralization of V-functions which alleviate this difficulty. Next example

illustrates these ideas on a STACK.



Example 2:

Data type: STACK (of elements of type T)
Operations:
INIT: - = STACK

PUSH: T x STACK - STACK

POP: STACK - STACK
TOP: STACK » T
NULL: STACK » boolean

V-functions: TOP, NULL

It is impossible to uniquely reconstruct a stack S given only
TOP(S) and NULL(S).

We introduce two characteristic functions:

DEPTH(S), returns the length of stack §

€(i,8), returns the ith element from top,
1 £ 41 < DEPTH(S).

Note that the above description of meanings of DEPTH, € are for intui-
tive understanding only. It may be seen that a stack S can be unique-

ly reconstructed given DEPTH(S) and ¢(i,S), 1 £ i < DEPTH(S).

Definition of Equality:

S, =8

1 9 <=2 DEPTH(Sl) = DEPTH(SZ) A 6(1,51) = 6(1,82), vi

1 £4i¢g DEPTH(Sl).



OEeration

INIT(S)

PUSH(x,S)

POP(S)

TOP (S)

NULL(S)

Semantic

DEPTH(S) = 0

DEPTH(S) = DEPTH(S') + 1
€(1,8) = x

e(it+l,Ss) = «(i,s"),

1 £ i < DEPTH(S")

if DEPTH(S') > O then

DEPTH(S) = DEPTH(S') - 1

1

e(i,8) e (i+1,8%),

1

IN

i < DEPTH(S)

endif

if DEPTH(S') > O then
TOP(S) = €(1,S)

endif

NULL = (DEPTH(S') = 0)

Remark

S' denotes the stack before

the operation.

Specification says nothing
regarding popping off an
empty stack, thus we may
assume nothing about the

resulting stack.



Description of the Method

The method of specification may then be summarized as follows.

1. Choose a set of characteristic functions. Intuitively, these should be
chosen in such a manner that any instance of the given data type can be
uniquely reconstructed given the values of characteristic function; conversely,
characteristic function values must be defined for each valid instance of the
data type. Note that no particular meaning is attached to the characteristic
functions. Thus we need not assume any specific property nor verify that

such properties are preserved. We restrict the characteristic function values
to be of some simpler type for which equality (and other axioms) already
exist. It is however possible to let characteristic functions return values
of the same type, which is being defined; this line of approach will not be

persued in this paper.

2. Define equality on the given data type, in terms of characteristic
functions. This rigorously specifies the condition under which two instances
of the data type may be considered equal; this is necessary for verification
purposes as well as for informal validation that the chosen characteristic
functions are sufficient. Note that the definition of equality may make use
of equality on the element types (such as T) out of which this data type is

created.
3. Define syntax of each operation, by specifying the domain and the range.
In terms of implementation, this specifies those properties of the input,

output parameters, which can be checked by a compiler.

4. Define semantic of each operation by specifying changes in the values of



10
characteristic functions. This may follow the notations given in Examples
1 and 2. A somewhat different notation is suggested in a later section, which
is useful for proving facts about data and stating the error conditions.
The effects section may be written as a set of assertions on characteristic
function values, using conditionals and recursion. Furthermore, the use of
new functions, defined in terms of characteristic functions is allowed.

There are two different ways of looking at the proposed scheme. Charac-
teristic functions may be viewed solely as functions and each operation is
shown to modify or extract information from the function values. Alternately,
it may be imagined that the characteristic functions provide a basis for the
representation of the data type and each operation modifies the representation.
For instance in Example 1, we may imagine that every set is represented by
an (infinite) boolean Vector € ; €(i,S) represents the value of the ith com-
ponent. Every operation either accesses or modifies the values of some
elements of the vector. Example 2 illustrates that an unbounded number of
elements may be modified by a single operation. This view of data is especially
useful for an intuitive understanding, though it provides little clue for an
efficient implementation. This latter property is required if we have. to
construct représentation - independent specifications.

The proposed method, we believe, meets the criteria for specification
set forth in the introduction. This scheme can be made as precise and
rigorous as the axiomatic approach, by choosing a proper notation. Further-
more, it is almost representation independent as is the axiomatic scheme.
However, the proposed scheme is much more intuitively appealing, since it
makes use of an implicit model of the data. Axiomatic approach requires
considerable care to produce a complete and consistent specification. Char-
acteristic functions are usually simple to invent; if a particular choice is
incomplete, it becomes evident during specification. We suspect that pro-

grammers tend to think in terms of representations, which may not be real-



11

izable on a computer. Finally, the mutual reference problem has been
avoided. This helps us to study each operation alone at a time.

V-functions of state-machine approach are always inadequate when they
return a finite number of values from an (a priori) unbounded object.
Characteristic functions, though finite is number, have usually proper
arguments to enable them to return all possible information about the
data object.

The abstract model approach is similar to the proposed scheme, if
we view the characteristic functions as a means of representation. However,
the former approach involves a finite representation using a specific data
structure for representation (such as tuples, sequences, etc.). Hence a
proof by this method requires axioms regarding the underlying represent-

ation, which is avoided in the proposed scheme.



4,

12

Notational aspects

We propose a notation below, which we have found convenient both for

description of and proofs about data types. This notation is quite simi-

lar to that of Parnas except for the implicit description of error condi-

tions.

€Y)

(2)

Description of Module:
Name of data type being defined, types of elementary objects, charac-
teristic functions, statement of equality condition.

N
Description of operations:
This has three parts for each operation.
(1) Name and type of the function (if it returns a value) and types of
arguments.
(ii) TInput specification in terms of characteristic function values.
This specifies a condition for valid inputs to this operation. All
other inputs result in an error condition, which is not explicitly
stated. We will sometimes use assertions of the type (S = S'), which
simply denotes that S' is the data object before the operation started.
(iii) Specifiation of output in terms of the effect on the values of

characteristic functions. Conditionals, recursion, and definition of

new functions using characteristic functions are permitted.

It is straightforward to mechanically generate preconditions and post-

conditions, for an axiomatic definition of each operation, from the above

description. In particular, all the unchanged values of characteristic func-

tions will have to be mentioned.



13

5. Some examples:

We give two examples to illustrate the various aspects of the proposed
scheme. One of the examples is considered in a later section in connection

with proofs of implementation.



14
Example 3 [1]

Symbol table for a block structured language is being defined. There
are operations to enter a new block, leave an old block and retrieve the
attribute of a symbol. In the following, LEVEL denotes the depth of nest-
ing and GET gives the attribute of a given symbol from a given level (UN-

DEFINED, if the symbol is not defined at that level).

Data type: SYMBOL TABLE (of element type ID and attributes from
ATT U {UNDEFINED}).
Characteristic function: LEVEL: SYMBOL TABLE - INTEGER
GET: SYMBOL TABLE x INTEGER x ID -
ATT U {UNDEFINED}
Equality condition:
S;» S,: SYMBOL TABLE, id: ID;
S, = 8§

1 , <=>LEVEL(S;) = LEVEL (S,),

GET(S,, j, id) = GET(S,, j, id) 1 < j < LEVEL(S), vid.



15
Procedure INIT(S:SYMBOL TABLE);
input spec.:
output spec.: LEVEL(S) = 1;

GET(S,1,id) = UNDEFINED,vid:TD

procedure ENTERBLOCK(S:SYMBOL TABLE);
input spec.: § = §';
output spec.: LEVEL(S) = LEVEL(S') + 1;
GET(S,LEVEL(S),id) = UNDEFINED, ¥id:ID;
{GET(S,t,id) = GET(S',t,id), vid:ID, 1 < t < LEVEL(S");

is implicit}.

procedure ADDID(S:SYMBOL TABLE, id:ID, att:ATT);
input spec.:
output spec.: GET(S,LEVEL(S),id) = att;
{In case of multiple definition of an identifier,

only the last definition is retained}.

procedure LEAVE BLOCK(S:SYMBOL TABLE);
input spec.: LEVEL(S) > 1, S = S';

output spec.: LEVEL(S) = LEVEL(S') - 1;

function ISINBLOCK(S:SYMBOL TABLE, id:ID): boolean;
input spec.:

output spec.: ISINBLOCK = (GET(S,LEVEL(S),id) # UNDEFINED);



16
function RETRIEVE(S:SYMBOL TABLE, id:ID): ATT U{UNDEFINED};
input spec.:
output spec.:
define, find (S,t,id) : {t < LEVEL(S)}
if t = 1 then GET(S,1,id)

else if GET(S,t,id) = UNDEFINED

then find (S,t-1,id) else GET(S,t,id);

RETRIEVE = find (S,LEVEL(S),id);

0



17
Example 4
A data type sorted list (SL) in ascending order is being defined. There
are operations to initialize, insert a new element and search for the posi-
tion of a given element in the list. Two characteristic functions give the

length of the list and the value of the element at a given position.

Data type: SL (of integer)
Characteristic functions:
LENGTH: §SL - INTEGER;
GET: INTEGER x SL - INTEGER
Equality condition:
SL

Sl,Sz:
- == -_— A
Sl 82 <=> LENGTH(Sl) LENGTH(SZ)

GET(j,Sl) = GET(j,Sz), 1 <3< LENGTH(Sl);

procedure INIT(S:SL);
input spec.:

output spec.: LENGTH(S) = 0;



18
procedure INSERT(x: INTEGER,S:SL);
input spec.: S = S'; GET(j,S) # x, 1 € j < LENGTH(S);
output spec.:
LENGTH(S) = LENGTH(S') +»l,
LENGTH(S') = 0 => GET(1,S) = x,
x < GET(1,S') => GET(1,8) = x A GET(i+1,S) = GET(i,S'):
1 < i < LENGTH(S'),
x > GET(LENGTH(S'),S') => GET(LENGTH(S),S) = x;
GET(i,S') < x < GET(i+1,S") => GET(j,S) = GET(j,S"),
1< <i;

GET (i+1,S)

it

x5

GET(j+1,8) GET(j,S8"), 1 < j < LENGTH(S'),
procedure SEARCH(x:INTEGER,S:SL,p:INTEGER)
input spec.: LENGTH(S) > 0, GET(j,S) = x 3j, 1 £ j < LENGTH(S);

output spec.: p = j;

Note that SEARCH could have been used as a characteristic function, in

place of GET. . 0



19

Existence of characteristic functions

Two theoretical questions in connection with the proposed method are,
(1) whether there always exist a finite set of characteristic functions;
(2) whether the effect of any operation can be described in a finite manner

in terms of a set of characteristic functions.

These questions can be answered by appealing to a representation which
is a finite description in terms of a finite number of operations. We
sketch an alternate proof of (i), which we have found to be a useful intui-
tive basis for construction of characteristic functions.

Suppose that the value returning functions are inadequate to describe
the effect of the operations Fl’ FZ""Fr' . For instance, POP is the only
operation in case of stack, whose effect on TOP and NULL can not be described.
We then consider the following expressions, whose values must be possible
to get from characteristic functions.

TOP (POP (POP...POP(S)...))

i - 1 times

NULL(POP(POP...POP(S)...))

7
-~
i- 1 times

In general, we must consider all possible expressions consisting of Fi's in

all possible manners. Now if we define characteristic functions,

E(i,S8) = TOP(POP(POP...POP(S)...))
S _J
v
i~ 1 times
N({i,S) = NULL{?OP(POP...POP{ﬁ}...)) = (DEPTH = 1 - 1)

Y—'
i - 1 times

then we can capture the values of all such expressions. In general with
several functions Fi’ the arguments of characteristic functions should pro-
vide for expressing all possible combinations of these functions. Then a

characteristic function is a super function whose argument is a sequence of



20

{1..r} which denotes the order in which the functions have been applied.



21

Some aspects of proofs about data

We consider the notion of data invariant introduced by Hoare [3]. We
propose rules for verification of data invariant which in our case is a pro-
position over the values of characteristic functions. Data invariant is used
as a basis for proving theorems about the data. Next, we introduce the
notion of data descriptor, a proposition that is true for all and only those
values of characteristic functions which represent valid data instances.

We show that a descriptor is the strongest data invariant. A character—
ization for alternate set of characteristic functions is given in terms of

data descriptor.



7.1

22

Data invariant

A data invariant is a proposition over the values of characteristic

functions which is true of all values of characteristic functions repre-
senting valid instances of data. Note that the data invariant may be true
for some values of characteristic function, which do not represent any
valid instance of data.

Proof of a data invariant I can be accomplished as follows. TFirst, we
sho& that the initializing operation creates values for which I is true;
next, we!show that assuming I and the input specs. of an operation F,
output specs. of F imply I. Sometimes, this proof will be impossible if
I is a "weak' invariant -- in.such a case, a stronger invariant I* needs to
be invented, such that I*‘=> I and the invariance of I*can be proven.

Data invariants are useful for proving theorems about data in general,
gsince in addition to the input specification of an operation F, we can

assume that I is true on input.



23
Example 5 (Contd. from Example 4)
We show that
LENGTH(S) 2 0 is a data invariant.
Then we need to prove the following theorems.
(i) T{INIT(S) }LENGTH(S) = 0
(ii) LENGTH(S) 2 0 A S = S' A GET(j,S') # x, 1 < j < LENGTH(S)
{INSERT(x,S)}
LENGTH(S) 2 O
(iii) ©LENGTH(S) 2 0 A S = S' A GET(j,S') = X, 3j, 1 £ 3 < LENGTH(S)
{SEARCH(x,S,p)}
LENGTH(S) = 0.
Each of the above theorems follows from the output specifications of the
corresponding operations. A somewhat harder invariant to prove is
GET(i,S) < GET(i+1,S), vi, 1 < j < LENGTH(S).
The proof reduces to showing that the output specification of INSERT, for

each of the four possible cases, preserve this invariant.



24

7.2 Proofs of theorems about data

Theorems about data can be proven by successively considering the out-
put specifications of each operation. The method is straightforward and is

illustrated with an example.



25
Example 6 (Contd. from Examples 4 and 5)
The following theorem states that the position of an element remains

unchanged following the insertion of a larger element.

IN
=
A

x <y, x = get(k,S), Ik, 1 LENGTH(S)

A
e
IA

y # get(i,S), vi, 1 LENGTH(S)
{INSERT (y,S);
SEARCH (x,S,p)}

P =k

The theorem can be proven by constructing the output specification follow-
ing INSERT. |

We need the following data invariant, which is not explicitly stated
in the following proof.

LENGTH(S) 2 0 Avi, 1 < i < LENGTH(S), GET(i,S) < GET(i+1,S).
Now, x <y, x = GET(k,S), y # GET(i,S), S =S', Ik, 1 < k < LENGTH(S)

vi, 1 <1

IA

LENGTH(S)
{ INSERT (y,S) }
LENGTH(S) = LENGTH(S') + 1 A

[y > GET(LENGTH(S'),S') => GET(i,S) = GET(i,S'), 1

IA
[

i < LENGTH(S') A
GET(LENGTH(S),S) = y] A
[GET(i,S') <y < GET(i+l,S') = GET(j,S) = GET(j,S"), ¥j, 1 < j < i

GET (i+1,S)

y

GET(3+1,5)

GET(3,S'), i < j < LENGTH(S')]

U

LENGTH(S) LENGTH(S') + 1;

i

GET(k,S);

il

X
{SEARCH (x,S,p)}

p=k O



26
We note that often it would be necessary to assume the truth of some

particular data invariant in the precondition of an operation.



27

7.3 Data descriptor and alternate specifications

A data descriptor is a proposition on the values of characteristic
functions, which is true of all and only those values which represent valid
instances of data. It follows that every data descriptor is a data invar-

iant though not conversely.



28
Example 7 (Contd. from Example 4)
LENGTH(S) =2 0 is a data invariant.
However, we also require for a valid data instance that,

GET(i,S) < GET(i+l1,S) vi, 1 < i < LENGTH(S).



29
We say that a propcsition P is stronger than Q if P => Q; in such a case
Q is weaker than P. It may be noticed that if Il and 12 are data invariants
then so are

I, A~ 1

1M I I

v 1,.

1V I

The next theorem shows that a data descriptor D is a strongest data invariant.
An important part of the theorem is to show that the set of characteristic

function values satisfying D is nonnull, i.e. the data invariants are con-

sistent, provided the output specifications are.



30
Theorem 1:
Suppose that the input, output specifications are consistent, i.e. there
are values of characteristic functions satisfying both input and output. Then

the data descriptor D is the strongest invariant.

Sketch of a Proof:

Clearly D is an invariant, since every operation gives us a valid data
instance. Conversely, we show that for any other invariant I, D => I, If
not, then there exists a set of characteristic function values v for which,

D(v) A T I(v).

This contradicts the fact that I is true of all valid data instances.

Next step is to show that D # false. Clearly D represents the set of
all valid data instances, in particular including the initial set of wvalues
specified by the INIT operation. Hence, if all input output specifications

are consistent then D represents a nonnull set of values. O



31
Example 8 (Example 4 contd.)
LENGTH(S) = 0 A GET(i,S) < GET(i+1,S) vi, 1 < i < LENGTH(S) can be

shown to be a data descriptor.



32

ﬁrglziis usually simple to come up with a data descriptor; however, it is often
difficult to show that a given proposition is indeed a descriptor.

First, it should be shown that D is an invariant, Next, we may use
induction on some partial order on the data objects (in terms of character-
istic function values which satisfy the descriptor). In example 8, a
partial order might be

S < S' => LENGTH(S) < LENGTH(S') and
for every i, 1 < i < LENGTH(S), there exists j
i < j < LENGTH(S') such that,
GET(i,S) = GET(j,S").
The partial order should have as the smallest element INIT(S), which is true
in this case.

It should now be shown that all the abstract objects satisfying D could
be conceivably created starting with INIT(S). Tt is sufficient to consider
only functions such as INSERT which create larger objects (larger being with
respect to < ). Thus it should be shown that any given object S could be
created by INSERT starting with some smaller object.

Descriptors could be used to provide conditions fof implementation and
alternate characteristic functions. We do not persue this line of research
here, since finding a descriptor seems to be a difficult practical problem.
We state an obvious theorem on alternate specifications using different

characteristic functiomns.



33
Theorem 2:

Let Dl’ D2 be two descriptors corresponding to alternate specifications
of the same data object, using different characteristic functions. Further-
more, let the equality definition in both specifications be identical; i.e.
Sl = S2 in one specification if and only if Sl = S2 in the other specifi-
cation. Then there exists a 1:1 and unto mapping between the set of values

satisfying D1 and those satisfying D2.



34

Proving implementations

Hoare[3] has proposed a scheme for proving data representation, in which
the concrete representations are mapped to abstract objects through some map-
ping function. Then the proof of implementation reduces to showing that the
operations transform the abstract data in the manner required in the specifi-
cation.

We adapt this scheme to apply to characteristic functions. We further-
more show that the proof complexity can be considerably reduced by axiomatizing
the characteristic functions in the domain of representation. A rather com-
plex example is given to’illustrate these ideas.

The intuitive idea behind the method can be explained as follows, with
reference to example 4. Given a particular implementation of the operations
INIT, INSERT and SEARCH, we are required to show that the implementations meet
the specifications. 1In order to do that, we define the characteristic func-
tions LENGTH and GET in terms of the representation. For instance, if the
sorted list is represented by an ordered linked list with a pointer, then we
may define LENGIH as a function which returns the length of this linked list
and GET as a procedure which retrieves the element from a given position.

There is, at this stage, no restriction on what functions we may choose for
LENGTH and GET. Intuitively of course we should choose them to denote
whatever the characteristic functions were supposed to denote.

At the next step, it is necessary to show that assuming input specifications
are true for an operation in terms of the defined characteristic function, then
output specifications will also hold, again in terms of the definitions of the
characteristic function.

An important practical difficulty, which will become evident in the follow-
ing example, is that a procedural definition of the characteristic functions
would lead to an unmanageable problem of verification. It is found to be much

easier to verify, when the characteristic functions are defined axiomatically;



35
for instance, we may say that insertion of an element in the ordered linked
list, increases the LENGTH by 1. A set of such axioms can be written down
showing the effects of each primitive operation in the representation, on the
characteristic functions. Then the method of proof may be summarized as

follows:

1. Define a set of axioms, which denote the effect of executing the primitive
operations in the representation, on the values of characteristic functions.
2. Prove the implementation of an operation by assuming that the correspond-
ing input specifications hold (plus any implementation invariant) and showing
that on termination, the values of characteristic functions imply the output

specification.

An example in the next section illustrates these ideas. We should remark
here that the proof in most cases turns out to be extremely long and laborious.
It can be more easily accomplished by proving several levels of representation,

each one being a refinement of the previous one.



36

Examples of Proofs of Implementation

We consider the implementation of a stack by‘a one-way linked list and
implementation of a sorted list by a binary search tree. The first problem
is simple; the second one invloves complex update mechanisms. In each case,

a sketch of a proof is given by specifying the effects of primitive operations
in the representation on the characteristic functions values. An important
step, which has not been proven, is to show that the above axioms are consis-
tent. Currently, we have no simple method for such a proof except noting that
the axioms will be consistent, if each axiom involves a single, primitive, in-
dependent operation in the representation.

Programs are written in a Pascal-like notation: new(p) reserves an area
in memory and makes pointer p point to that area; pt designates the data to
which pointer p is currently pointing; Var p:+node, denotes that p is a var-
iable of type pointer which always points to an object of type node; pt.v re-

presents the v-component of a record that p is pointing to.



37
Example 9 (Example 2 contd.)
A stack will be represented by a one-way linked list of nodes; t will

be pointer to the top node of the stack.

module STACK (of type T)
type node = record
elem: T;
next: *‘node
end;
Var t: *node;
Proc init;
begin
t:= nil
end init;
proc push (x:T);

Var p: *node;

begin
new(p);
pt.elem:= x;
pt.next:= t;
t:=p
end;
Proc pop;
begin
if t # nil then t:= t+.next
end;

function top: T;

begin
if t # nil then top:= tt.elem .

end;



38
function null: boolean;
null:= (t = nil)

end;

The following axioms about DEPTH and € are sufficient to prove the implementation.
1. t = nil <=> DEPTH = 0

2. DEPTH = k, pt.next = t {t:= p} DEPTH = k + 1

3. x = €(i), pt.next = t {t:=p} x=€e(i + 1), tt.elem = € (1)

4. DEPTH = k, t # nil {t:= tt.next} DEPTH = k -~ 1

5. x = e(i), i > 1, t # nil {t:= tt.next} x=€(d - 1) 0

The above example is somewhat misleading in the sense that the abstract
object, characteristic functions and the implementation are all alike and
represent similar ideas. Next example illustrates a rather complex imple-

mentation.



39
Example 10 (Example 4 contd.)

We represent a sorted list by a binary search tree, using an idea
essentially due to Crane [4]. The binary search tree has the following struc-
ture. Every node in the tree has a value v and a size s associated with it.

v represents some element of the sorted list and s denotes the number of
nodes in the left subtree of this node plus 1. For any node with value v,
the values in its left subtree are all smaller than v and those in its
right subtree are all larger than v.

The following tree is a valid representation of the sorted list

(10 20 30 40 45 50).
30(3)
/\
/ 0\
10(1) 50(3)
\ /
\ /
20(1) 40(1L)
: \
\
\45(1)

The number outside brackets represents the value and the one inside the brackets

represents the size.

Such a representation admits of efficient impiementation of the operations.
We first introduce two sentinels (sentl, sent2), which are reaily dummy nodes,
designed to make sure that the tree has at least 2 nodes at any time. Sentl
behaves like the root; its right son is the actual root; sent2 behaves as a
sink; every left and right link not pointing to any node, point to sent2. The

values and sizes associated with  sentinels are irrelevant.



\30(3)

/\

/ A\
/N

<mmmm- 10(1) 50(3)---------- >

\ /
\ /
\ /
20(1) 40(1)
I

I

INIT creates both sentinels and links them properly. INSERT works as fol-
lows. We initiate a binary tree search starting from the right son of sentl,
with the input value x. If x is smaller than the values at this node, we pro-
ceed left, otherwise we proceed right. Whenever we proceed left, we increase
the size of that node, since the value x would ultimately be inserted somewhere
in the left subtree of that node. We stop on reaching the sentinel sent2 and
insert x as a new node and link it properly to the last node seen. SEARCH for
a value a proceeds similarly, however whenever a right branch is'taken from a
node with size s, s is added to a running sum. Finally the size of the node with

value x is added to this sum, which gives the position of x.



41
Consider the effect of
INSERT (42).
The path taken is cross hatched. Note that the size of every node, wherever
a left branch was taken is increased by 1.

sentl
X
X
30(3)
/X
/ X
----- 10(1) 50(4)--=--=-----nmu--
\ X |
\ X I
\ X |
~---20(1) 40(1)--~-~=====-~- |

S

Next consider the effect of

SEARCH(45) .

The sequence of nodes where right branches were taken are
30 with -size 3
40 with size 1
45 has a size of 2.

Hence the position of 45 = 6.

A Pascal-like program implementing this structure is given below.



42
module SL
type node = record
v: integer;
left, right: tnode;
gize: integer
end;
Var sentl, sent2: +node;
Proc init;
begin
new (sentl); new (sent2);
sentlt.left:= sent2; sentlt.right:= sent2;
sentlt.vi= 0

end init;




43

ggggw insert (x: integer);
Var p, q, r: +tnode;
sent2+.vi= x; q:= sentl; p:= q+t.right;
{sent2 holds x, so that we are assured x is in the tree;
q is the father of p}
while p # sent2 do
begin
-q:= p;
if x < pt.v then begin
pt.size:= pt.size + 1;

p:= pt. left

else

p:= pt.right

rt.vi= x; rt.left:= sent2; rt.right:= sent2; ri.size:= 1;

if qt.v then gq+.left:= r else qt.right:= rj

end insert;



44
Proc Search (x: integer, pos: integer);
Var p: tnode;
begin
pos:i= 0; p:= sentlt.right;
while pt.v # x do
begin
if x < pt.v then p:= pt.left
pos:= pos + pt.size
p:= pt.right
end
end;
pos:= pos -+ pt.size
end search

end SL;



45

LENGTH can be defined as a function whose value is the number of nodes in
the tree. Similarly, GET(i,x) can be defined to return the value v at the
root, if the size s at the root equals i, else if i < s then apply GET(i,x) to
the left subtree of the root, otherwise (i > s) apply GET(i-s,x) to the right
subtree of the root. These procedures can be defined in the same language,
used to describe the representation.

It however becomes extremely difficult to verify the implementation with
such a definition of LENGTH and GET. 1Instead, we consider the primitive
operations in the representation and describe their effects on LENGTH and
GET.

We need the following axioms about LENGTH.

1. Sentlt. right = sent2 <=> LENGTH = 0O

2. for p, a pointer to any node in the tree p # sent2, LENGTH = k, pt.left =
sent2, r # sent2 {pt.left:= r} LENGTH = k + 1

3. LENGTH = k, pt.right = sent2, r # sent2{pt.right:= r} LENGTH = k + 1

4. All other primitive operations keep LENGTH invariant.



46
We need one more axiom about new.
sent2 # nil {new(r)} r # sent2.
It can now be shown that
T {init} LENGTH = 0
LENGTH = k {insert (x)} LENGTH = k + 1
fhe first theorem follows by using axiom 1. The second follows by using for
insert,
input spec.: sentlt.v = 0, x > 0, LENGTH = k
loop invariant: ([x < qt.v => p = gqt.left] A [x > qt.v => p = qt.right]
Then axioms 2, 3 can be applied to show that since a link (left/right) of q
that previously pointed to sent2 now points to r, r # sent2, LENGTH is increased
by 1. Note that termination of the loop needs to be proven.
It follows by axiom 4 that LENGTH remains invariant as a result of search.
We next prove the theorems about the effect of insert on GET. A sketch
of proof will be given. We need the following axioms: tersub(p) denotes that

t is a pointer to a node in the right subtree of p or t = p.



47

GET(0)

0

CET(i) = x, x = t4.v, t ¢ rsub(p)
{pt.size:= pt.size + 1}

GET(i + 1) = x

GET(i) = x, x = t+.v, t £ rsub(p)

{pt.size:= pt.size + 1}

i

GET (1) X

GET (i) qt.v, qt.left = sent2, r # sent2, GET(j) =
{gt.left:= r}

GET(i - 1) = v4.v, GET(i) = q+.v, GET(j) =y, i # i

GET(i) = q+.v, qt. right = sent2, r # sent2, GET(J)
{qt.right:= r}

GET(i + 1) = r4.v, GET(i) = q+.v, GET(§) = v, j # 1

<



48

Four theorems need to be proven corresponding to insertion into an
empty list, insertion of a smallest element, insertion of a largest element
and insertion of an element which is neither largest nor smallest. The
loop invariant would basically say that all nodes not in the subtree of p
(or equal to p), have already attained their final positions. The remaining
portion of the program following the loop, would either use axiom (4) or
(5) above to show that the inserted element has the correct position.

In addition to the axioms, several invariants on implementation have
been used implicitly: all values in the tree are distinct; size is'equal to
the number of nodes in the left subtree plus 1 etc. Furthermore termination

needs to be proven along with every partial correctness proof.



49

The axioms themselves ne=d to be proven consistent. This can be done by
suggesting implementations for each of the characteristic functions and proving
that the axioms are satisfied. This however has turned out to be a fairly
difficult problem. If .every axiom involves an independent, primitive operation
of the representation, they will be guaranteed consistent since they will not
conflict with each other.

This example was worked out to illustrate the difficulty of a formal or
semiformal proof, with the available tools. Hoare's mapping function becomes
extremely difficult to state when the representation is considerably different
from the implicit model used in the specification. One possible solution is
to implement each characteristic function and then verify theorems of the form

“LENGTH = k {insert (x)} LENGTH = k + 1,
by sequentially writing the three programs corresponding to LENGTH, insert,
LENGTH (renaming local variables to avoid any naming conflict); attaching asser-
tions LENGTH = k at the end of the first program and LENGTH = k + 1 at the end
of the last program. Thus the problem has been converted to a general program
proving problem. Needless to say, this technique buys nothing in terms of
simplicity, intuitivity or improvement on the suggested methods.

We have found that the axiomatic approach, proposed here, is suitable in
most cases arising in practice. It may justifiably be argued that the example
studied was quite complex and must therefore have a complex verification process.

The only method for simplifying the verification process, we believe, is
to consider several levels of implementation, each being a refinement of the

previous one.



50

Conclusion and summary

A method of specification of data abstraction is suggested in this paper,
using characteristic functions as a basis. Semantic of each operation on data
is specified by describing its effect on the values of characteristic functions.
Given a complete set of characteristic functions, a rigorous definition of
equality can be given. The proposed method is shown to be both rigorous and
intuitively appealing.

Some aspects of verification are considered with emphasis on proving
theorems about data,independent of the representation. Data invariant,
expressed in terms of values of characteristic functions; is an important
concept in any such proof methodology. Finally, proofs of implementation are
considered. It is suggested that the proof can be accomplished by stating
certain axioms describing the effect of the primitive operations in the repre-
sentation, on the values of characteristic functions. A sketch of a proof is
presented for a complex implementation of a sorted list.

It has been our experience that specification should not only be
rigorous but it should be intuitively justifiable, so that it can serve as an
effective means of communication between the specifier, implementer and the
user. Rigorous mechanisms, which defeat intuition, are often found to lead to
errors in their usage. The proposed method, we believe, meets most of the

objective criteria for good specification.

Acknowledgement: Author is indebted to Prof. R. T. Yeh, Univ. of Texas at

Austin, for his enthusiasm and encouragement of this work.



51

References

1. Guttag, J.V., D. Musser, E. Horowitz, "Abstract Data Types and Software
Validation," Information Sciences Institute, ISI/RR-76-48, August 1976.

2. Hoare, C.A.R, "An Axiomatic Basis for Computer Programming,'" Comm. ACM,
Vol. 12, No. 10 (Oct. 1969), pp. 576-583.

3. Hoare, C.A.R., "Proof of Correctness of Data Representations,'" Acta
Informatica, Vol. 1, No. 4 (1972), pp. 271-281.

4. Knuth, D.E., "The Art of Computer Programming, Vol. 3, Sorting and Searching,"”

Addison-Wesley, 1973.

5. Liskov, B.H., S. Zilles, "Specification Techniques for Data Abstractions,"
IEEE Trans. On Software Engineering, SE-1, Vol. 1 (1975), pp. 7-19.

6. Liskov, B.H., V. Berzins, "An Appraisal of Program Specifications,"
unpublished manuscript.

7. Parnas, D.L., "A Technique for the Specification of Software Modules with
Examples," Comm. ACM, Vol. 15, No. 5 (May 1972), pp. 330-336.

8. Robinson, L. et al, "On Attaining Reliable Software for a Secure Operating

System," Proc. of Intl. Conf. on Reliable Software (1975), pp. 267-284.



