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1.0 Introduction

A major application of syntactic pattern recognition 1is the
analysis of two-dimensional shape. 1In order to adopt the syntactic
approach, the shapes to be analyzed must be segmented into pieces
which correspond to the terminal symbols of some grammar, and these
pieces must subsequently be analyzed by a parsing mechanism. Many
syntactic methods assume that the pieces can be found easily (top-down
methods provide a wide class of exceptions, e.g., see Stockman [S1]).
However, in most real problems, the design of a segmentation procedure
that can find (almost) all of the pieces will require the acceptance
of a high false alarm rate - i.e., many of the hypothesized pieces may

not, in fact, be part of a "grammatical" description of the shape.

This paper discusses a general parsing procedure which has been
designed specifically to overcome this problem. Shapes are modeled by
hierarchical, or stratified grammars. These grammars are designed in
such a way that local contextual constraints can be automatically
compiled from the grammar at all levels of description of the shape.
These constraints can then be iteratively applied to an initial set of
hypotheses by a relaxation procedure (see Davis [Dl1] or Davis and
Rosenfeld [D3}]). In what follows, we will describe algorithms
designed to compile these constraints and to employ the constraints to

analyze shapes.

We will first introduce a class of shape grammers, called
stratified context-free shape grammars, which provide a strict
hierarchical structure for vocabulary symbols. Both syntactic- and

semantic contextual constraints for all the vocabulary symbols can be
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generated automatically from such grammars.

These contextual constraints can be exploited by a hierarchical
relaxation process. Such a process constitutes a bottom-up,
constraint-based parsing method and attempts to overcome the
combinatorial explosion in parsing the shape implied by the

segmentation.

Examples of the application of this hierarchical system to

airplane recognition are described.
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2.0 Grammatical Shape Models

Grammatical models for shape analysis have been developed and
investigated by Fu [F2] among others. With some simple modifications,
these models can be integrated in a natural way with relaxation
techniques. An extension of the geometrical grammars of Vamos [V1]

and Gallo [G1l] will be used to model shapes.

A STRATIFIED CONTEXT-FREE GRAMMAR, G, is a quadruple (T, N, P,

S ), where

T is the set of terminal symbols,
N is the set of non-terminal symbols,
P is the set of productions, and

S is the set of start symbols.

Let V.= ( NU T ) be the set of vocabulary symbols.

Associated with every symbol v € V is a level number, 1In(v) : v

-> {0,1,...n}. For every v € T, In(v) = 0.

1) T - corresponds to relatively 1large pieces of the shapes
modeled by the grammar, e.g., straight-edge approximations to the

boundary of the shape.
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2) N - consists of a set of symbols each of which has a level
number from 1 to n associated with it. A start symbol has level
number n, and in any rule v := a (the rewrite part of a production),
if In(v) =k, 1 < k < n, then every symbol in the string a is at level

k-1. Furthermore, for every v€ V

v := <name part> {attachment part} [semantic part], where

a) <name part> is a unique name by which the symbol v
is known

b) {attachment part} is a set of attachment points of
the symbol, '

c) [semantic part] is a set of predicates which
describe certain aspects of the symbol.

3) P - consists of productions of the form (v:=a,A,C,Ga,Gs),
where

a) v:=a 1is the rewrite part that indicates the replacement
of the symbol v by the group of symbols a, where

v € N and
a = vliv2...vk (vi€ V and 1ln(vi) =
In(v)-1l), i = 1,k )

b) A - set of applicability conditions on the syntactic
arrangement of the vi, i = 1,k.
c) C - semantic consistency of the vi, i = 1,k, and.

consists of various predicates describing geometric and
other properties of the vi.

d) Ga - rules for generating the attachment part for v.

e) Gs - rules for generating the semantic part of v.

As an example of the productions of the grammar, consider how

engines are formed:

< engine > { el,e2 } [ a,span ] :=
< engine side > { el',e2" } [ a' ] +
< engine front > { el'',e2'" } [ a'" ] +
< engine side > { el'''",e2''" } [ a''"' ]
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A : [ Join(el' or e2',el'') and Join(el''"' or e2''',e2'?")
or Join(el''' or e2''',el'') and Join(el' or e2',e2'') ]

C : [ Parallel(a',a''') and Length(a')=Length(a''"')
and Perpendicular(a',a'"')

and Parallel(a'',Vector (Midpt(a'), , Midpt(a''"'))) 1
Ga : [ el := Unjoined(el',e2') and e2 := Unjoined(el''',e2''"')
or el := Unjoined(el''',e2''') and e2 := Unjoined(el',e2') ]
Gs : [ a := (a'+a'"'")/2 and span := a'' ]

This rule specifies that an "engine" is composed of two "engine
side" symbols and an "engine front" symbol. A, C, Ga and Gs can be
viewed as a program for producing "engine" from symbols on the
right-hand side of the rewrite rule. A specifies the physical
connections of the symbols on the right-hand side, i.e., that each end
of the "engine front" has an "engine side" attached to it, but the
"engine side" symbols are not connected to each other (see Fig.l). C
indicates that the two "engine side" symbols should be parallel, of
the same length, perpehdicular to the "engine front" symbol, and on
the same side of the "engine front". Ga and Gs describe the
detivation of the attachment points and semantic features for
"engine"; the unjoined end points of the "engine side" symbols can be
given either attachment point name due to the symmetry of the symbol.
The main axis 1is the average of those of the "engine side" symbols,

and the span is exactly that of "engine front".

Stratified grammars naturally give rise to a large set of
contextual constraints on the organization of a shape. It is these
constraints which the hierarchical relaxation process will utilize to

analyze shapes.
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3.0 Hierarchical Relaxation

As discussed in the introduction, a major problem associated with
syntactic pattern recognition is the segmentation of the object into
pieces which correspond to the terminal symbols of the grammar. A
high false alarm rate implies that many primitives will be generated,
and correspondingly many terminal symbols hypothesized from them, thus
implying a large search space. In order to overcome these

difficulties, a hierarchical relaxation process (HRP) uses

hierarchical models of objects and uses model derived constraints to
eliminate inconsistent hypotheses at each 1level of the model. In
particular, using the stratified context-free grammars already
described, syntactic (e.g., spatial concatenation) and semantic (e.g.,
symmetry, collinearity, etc.) <constraints can be automatically

generated to guide the analysis of the shape.

Primitives for the grammatical analysis are generated by
computing several piecewise linear approximations to the boundary of
the shape. A modified split-and-merge algorithm ( Pavlidis [Pl] and
Horowitz [H2] ) fits straight edges to the boundary wusing the
cornerity measure proposed by Freeman and Davis [Fl] to choose break
points. For éach point on the original boundary, an error measure
defined as the minimum distance from that boundary point ﬁo the 1line
segment which approximates a boundary segment containing that boundary
point is computed. Then, an error measure for the line segment is
defined to be the sum of the errors of each underlying boundary point.
Primitives are generated at various error thresholds; even though

stricter thresholds are applied to segmentations already generated,
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this is not the same as applying the stricter thresholds to each
segment which would result in a hierarchical set of primitives.
Neighboring primitives from different thresholds are not guaranteed to
have endpoints that meet exactly, but primitives are now defined as
neighbors if they have endpoints that lie within some disk of fixed
size. By computing several segmentations, it is hoped that all the
necessary primitives will be found. The search will be made feasible
by the constraints implied in the grammar and imposed by the

relaxation techniques.

The association of terminal symbols with primitives will (in the
limit)- be to hypothesize every terminal for each primitive. However,
methods for reducing the number of hypotheses are being studied and
include wusing a more global analysis to derive indications of
appropriate scale, orientation, etc. from simple global properties,
e.g., histogramming selected features of the primitives themselves and

using the model to infer properties of particular terminal symbols.

Before discussing the organization of the hierarchical relaxation
system, we must discuss the procedures for deriving the local
constraints from the shape grammar. Let G = (T,N,P,S), let v, w and
x € V, let at(v) denote the attachment points of v, and let av €

at{(v). We define,

1) v ancestor:av,aw w iff there exists p € P such that the

rewrite rule of p is v := ...w... and there exists an awé&€ at(w) such
that aw is identified with av in Ga of p. That is, the attachment

point av of the left-hand side symbol, v, is associated with endpoint
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aw of the right-hand side symbol w. For example, 1in Fig. 1 the
attachment points for the symbol "engine" are associated with the

unjoined attachment points of the "engine side" symbols.

2) w descendent:aw,av v iff v ancestor:av,aw w.

3) v neighbor:av,aw w iff

a) there exists p € P such that the rewrite rule of p is
X 1T v aVeaeWauo and aw 1s specified as being joined to av in the

applicability conditions, A, of p, or

b) there exists x € V with ax € at(x), and there exists y € V
with ay € at(y) such that x ancestor:ax,av v, and y neighbor:ay,ax x,
and w descendent:aw,ay y. Note that computing the neighbor relation
for 1level k symbols assumes knowing the neighbor relation for all

levels greater than k.

Using matrix representations for these relations, the descendents
and neighbors of a symbol at a particular attachment point can be
computed ( see Gries [Gl] for an introduction to binary relations,
their representation using matrices and their manipulation ). The
notation w R:aw,av v indicates that w is in relation R to v through
endpoint aw of w and av of v. Given k attachment points per
vocabulary symbol, the neighbor:i,j relation (assuming an ordered set
of attachment points and i,j are in the range 1 to k) is computed by

iterating the following computation n-1 times:
k
neighbor:i,j = neighbor:i,j +Z:bﬂescendent:i,m *
K m=1
z:(neighbor:m,n * ancestor:n,j)]}.
n=1
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Semanticyconstraints can be generated in exactly the same way,i.e., by
defining binary relations and compiling their transitive closure. For
example, the axes of two symbols are parallel if a production states
this explicitly, or if each symbol has an ancestor parallel to itself
and these ancestors are explicitly parallel. Such semantic

constraints have not yet been incorporated.

The hierarchical relaxation system computes a bottom-up parse of
the shape by applying the constraints to a network of low-level
hypotheses about pieces of the shape. The processing of this network
can be easily described by specifying three simple procedures and two

sets which these procedures manipulate.

BUILD - given level k of the network, BUILD uses the
productions of the grammar to construct nodes corresponding to level
k+l hypotheses. Any level k symbols which are used to generate a node
at level k+l are associated with that level k+l node as supporting it,
and it, in turn, is recorded as supported by them. After all nodes
are denerated, nodes corresponding to boundary segments sharing an
endpoint are linked only if the constraints allow the symbols
hypothesized for each node to be adjacent at that endpoint. Building
level 0 involves applying the segmentation strategy to the shape to

generate the level 0 nodes.

RELAX - since each node corresponds to a2 single hypothesis, and
since nodes are only linked to compatible nodes, the within layer
relaxation simply involves removing a node if it has no neighbor at

some endpoint.
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REDUCE - after BUILD generates level k+1, any level k node
which does not support a 1level k+l node will be removed. For any
level k node which is removed, all level k-1 nodes which support only
it are removed. If a level k node is removed, any level k+1 node it

supports is removed.

These procedures operate on two sets of nodes, Rx and Rc, both of
which are initially empty. When at level k with Rx and Rc empty,
BUILD produces the level k+l hypotheses (or stops if k =n), and puts
them into Rx while putting all level k nodes into Rc. RELAX then
removes nodes from Rx, taking no action if the node has a neighbor at
all endpoints, but otherwise deleting the node from the network and
putting its same level neighbors in Rx and its across level neighbors
in Rc. REDUCE removes nodes from Rc, taking no action if all the
node's original supporting nodes still exist at level k-1 and the node
still supports at 1least one level k+1 node (1f level k+1 has been
built);otherwise, REDUCE deletes the node from the network and puts
its same level neighbors in Rx and its across level neighbors in Rc.
Of course, constraints can be generated from grammars that are not
stratified, but the application of the constraints will not prevent
the repeated production of symbols which fail to satisfy the
constraints, whereas stratification insures a symbol will be built

only once.
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4.0. HRP vs. Top-down parsing

An important decision facing the designer of a syntactic pattern
recognition system 1is the choice of a parsing mechanism. In this
paper, we have proposed a constraint-based, bottom-up parsing
mechanism which compiles local contextual constraints from a
stratified shape grammar. In this section we would 1like to discuss
two important dimensions, data complexity and model constraint level,
which should affect the choice of HRP vs. some other parsing
mechanism. A more detailed discussion of these problems, along with
results on the comparative complexity of HRP and top-down parsers can

be found in Davis and Korner [D2].

The first dimension is what we call data complexity and is meant

to reflect the relative difficulty of computing the correct
segmentation of the input pattern into the segments needed for the
syntax analysis. Clearly, if this segmentation can be done with no
errors, then one of the major motivations for adopting HRP 1is lost.
As the reliability of primitive detection decreases, it seems
reasonable to assume that the desirability for a parsing mechanism
like HRP should increase. However, this depends on yet another

factor.

We call the second dimension which determines the choice of

parsers the model constraint level. Very simply, it reflects how much

the presence of an arbitrary symbol associated with some part of the
pattern constrains the ©possible symbols that can be associated with

other, nearby parts of the pattern. Again, if the model has a low
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contraint level, then HRP will have only very weak constraints to
apply through RELAX, and so, even if the data has high complexity, it
might still be advantageous to apply a top-down parsing mechanism.
Clearly, if the model has a very high level of constraint, then HRP
will be more efficient in analyzing patterns, but then of course, the

predictive power of the top-down parser will also increase.

The important question 1is : Are there areas in. this
two-dimensional space of data reliability vs. model constraint level
where it is clearly advantageous to adopt HRP as a parsing mechanism,
and are there areas where it is clearly better to choose a top-down
parser? We do not'yet have clear-cut answers to this question, but it
is obviously a central issue in the evaluation of HRP (or, indeed, of

any parsing algorithm).
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5.0 Examples

A PASCAL program (4600 lines, 50k) implementing HRP has been
written and runs on the DEC-10 computer at the University of Texas.
Input to HRP consists of a stratified shape grammar defining the class
of shapes to be analyzed and a set of primitives, i.e., line segment
descriptions including orientation, length and endpoints. HRP
produces a (possibly empty) network of hypotheses relating primitives
to the vocabulary symbols at each level of the grammar . Thus, any

level n hypothesis corresponds to a complete shape in the grammar.

A grammar describing the top view of airplane shapes (down to the
level of detail of engines) has been developed. The grammar consists
of 33 productions and has seven levels of vocabulary symbols. Note
that the grammar was not designed to describe a particular airplane
(such as a 747), but rather to model a wide class of airplanes. We do
not view parsing as a recognition procedure but rather as a process
which imposes organization on the shape (by forming engines, wings,
etc.) Recognition is subsequently performed by analyzing the

organization.

We will describe the application of HRP to the top view of the
airbus in Fig. 2 (traced from You and Fu [Y1]). The split-and-merge
algorithm was used to obtain piecewise linear approximations to the
boundary of the airbus at several thresholds of goodness of fit. For
this shape using three thresholds, a total of 35 primitives were

found, of which only 27 were needed to define the shape of the airbus.
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Once the primitives are generated, each one must be associated
with an initial set of 1level =zero hypotheses. Analysis of the
histograms of segment lengths and orientations allows meny hypotheses
to be rejected, e.g., the very longest segments, if substantially
longer than the rest, are not very likely to be wing tips. When the
initial set of labels was restricted to only the correct hypotheses, a
total of 87 nodes were generated during a complete parse, and HRP
required 1 minute and 11 seconds of CPU time to analyze the shape.
Table 1 describes the results of runs with 1, 2 and 3 initial
hypotheses per primitive. At each level Relax and Reduce eliminated
unsupported hypotheses, and Table 1 shows the complete stable network.
Run times for these sets of initial hypotheses were 1 minute 11

seconds, 2 minutes 22 seconds, and 4 minutes 51 seconds, respectively.
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6.0 Conclusions

HRP has been successfully used to recognize silhouettes of
airplanes. A system of programs has been developed which
automatically generates syntactic constraints for a given stratified
shape grammar and applies them and the grammar to analyze a set of low
level hypotheses about a shape. For a more detailed discussion of HRP

and its application to shape recognition, see Henderson [H1l].

The design and debugging of shape grammars is one major
difficulty in wusing HRP. Errors in the grammar are often confused
with errors in HRP itself. Furthermore, there are no strict «criteria
for a "best" or even a "good" grammar, e.g., no indication of the
trade off between the number of symbols in the right-hand side of a
rewrite rule vs. the number of levels in the grammar. Automated
grammatical inference can certainly be helpful in these respects, but
the desirability of decomposing a shape into natural pieces may

require an interactive approach.

An area under active investigation is the use of derived sgmantic
constraints which are implicit in the grammar. A set of procedures to
compute the semantic constraints will include facilities for
describing relative orientation, length and nearness of vocabulary
symbols. One would like to know, for example, when it is possible to
determine (at any given level of the grammar) the possible relative
orientations of the vocabulary symbols. Is it possible to derive
across level relations between vocabulary symbols? One possible

approach is to construct transitive relations that are known to exist
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(by way of the applicability condition and Gs, the semantic generation
part of a production) and then take the transitive closure of the
relation to determine the implicit relations. For example, parallel
is a transitive relation, and if vl is parallel to v2, and v2 is
parallel to v3, where vl, v2 and v3 are vocabulary symbols, then it
can be deduced that vl is parallel to v3. Across level relations can
also be generated in this manner since axis orientation is independent
of level. Semantic information of this type can be used to aid in
hypothesis formation if any specific knowledge is available about the
shape to be parsed, for instance, the orientation of the main axis of

the plane.

Another goal to be realized 1is the wuse and specification of
strategy trees to control the application of HRP to the data. A
strategy tree will function much as a hierarchical «classifier (see
Kulkarni and Kanal [Kl1]). Each non-leaf node of the tree is comprised
of three parts. First is a method of generating semantic constraints
in the given context, i.e., location in the tree. This will provide a
basis for the second part which describes the application of the
grammar to the remaining pieces of the shape. The third component is
the decision rule to be used in choosing the next node of the strategy
tree. A leaf of the tree corresponds to a complete analysis of the
shape. Such an approach allows a coarser primary analysis of the data
and subsequent directed search for detail in the shape. Another
possibility is to search for specific pieces of the shape, e.g.,
search for wings present in the data. The derived semantic
constraints would then play a key role in predicting the size and

location of other pieces of the shape. HRP could then take advantage
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of this information to direct the search.
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