An Axiomatic Proof Technique for
*

Networks of Communicating Processes

K. M. Chandy
J. Misra

TR-98 May 1979

* Work partially supported by NSF Grant MCS77-09812.

* The reproduction of this report was supported by Hitachi Corporation.

1. Networks of Processes

This paper suggests methods for proving the correctness of networks
of processes which communicate exclusively through messages.

1.1 Fundamental definitions

A network is a collection of processes which communicate exclusively
through messages. A process is either a network, or a program in the
conventional sense, with special primitives for message transmission.

For purposes of exposition we suggest the following primitives

based on Hoare [4] for message transmission. We emphasize that these

primitives are suggested merely for ease of exposition; our proof

techniques are not restricted to these primitives. (For instance,
input commands appearing in guards as in Hoare [4] are amenable to
this form of analysis.) A process h may have two types of statements
for message transmission.

Input statements have the form

and output statements have the form

7:=y,

where x and y are variables lccal to h. x is called an input variable

and v an output variable of h.

Each output (input) variable of a process is bound to at most one
input (output) variable of another process.
The binding is external to the processes. Let x be an output

variable of process h, and let x be bound to y, an input variable of

1

Then h, will wait at an output statement

process h2 . 1

'?-::X‘

. e 5

until control in h2 reaches a corresponding input statement
yi=7;
A message transmission will take place some arbitrary but bounded

time after h1 reaches the output statement and h2 reaches the corres-

ponding input statement. hl and hz will both complete executions of

their input,output statements simultaneously when the message trans-
mission 1is over; at this point y in h2 has the value of x in hl.
Of course the value of x in hl is unchanged by the message transmission.

Formally a binding is a pair of tuples of the form ((hl,x},

(h,,y)) where h,,h, are processes, h.#h,, x is an output variable of
2 1’72 1"72

h1 and v an input variable of hz.

A network N is (H,B,1,0) where

H is a set of processes {hl,hz,...,hm},

B is a set of bindings{..,((hi,x),(hj,y))...} where every input
(output) variable of a process in H is
bound to at most one output (input)
variable of a process in H,

T is a set of tuples {...(hi,x)...} where X is an input variable
of hi which is not bound and,

0 is a set of tuples {..a(hj,y)...} where v is an output variable
of hj which is not bound.

If (hi,x) is in I then variable x of hi ig assigned values by a process

external to N. Similarly, if {hj,y) ig in O tb = wvariable y of hj assigns

values to a variable in a process external to N.

A process h = (T,1,0) is either (1) a network T = (#,B,I,0) or
(2) a program T with input variables I and output variables O.

We associate a labelled directed graph G = (V,E,I,0) with a network
N = (H,B,I,0) such that there is a one to one correspondence between
vertices of G and processes in N and between labelled edges in G and
bindings in N: an edge corresponding to ((hi,x), (hj,y)) is directed
from the vertex corresponding to hi to the vertex corresponding to
hj and its tail is labelled x and the head y. In addition to E, we
associate an input edge of G directed to the vertex corresponding to

hi and labelled x, at its head, for every (hi,x) e I; output edges

are defined similarly. We will refer to B either as the set of labelled
edges or as the set of bindings, and also use other graph notation. No
ambiguity should arise.
We associate a sequence of messages Se with every edge

e==((hi,x),(hj,y)) which is the sequence of messages sent from hi
by the execution of all statements of the form

7:=x%.
Note that Se is also the sequence of messages received by hj by
executing all statements of the form

yr=7,
We define Se, where e belongs to I or O in the obvious way. Thus

the effect on Se of the corresponding input or output statement may

be defined as follows, where ‘l denotes string concatanation:
s =s%) 7:=x (s =s% || x}
e e e e
{s =2g° =7 =g° |
(s, = s, y:=1 {s, = s, I v}

2. Axioms
2.1 Intuition
Our proofs are hierarchic: to prove properties about a network
N = (H,B,I,0) we first prove properties about processes in H and then
deduce network properties from process properties, which are stated
as assertions over message sequences.

An assertion over a network N = (H,B8,1,0) is defined to be a

boolean function on sequences Se (where edge e is in B,I or 0) and on
free variables and constants.

Generally, it is impossible to deduce that an assertion on a
network N holds true at all times from a vroof of a single process
h in H because some other process may falsify the assertion. We must
therefore show that no process in H falsifies the assertion. The

concept of not—-falsifying is central to network proofs; hence we coin

the phrase "a process h preserves an assertion P" to denote that h

does not falsify P at any point in its execution. Preservation is the

concept of invariance for sequential programs generalized to networks.
If all processes preserve P and P is true initially, then P is true
at all times.
Generally we cannot prove properties about the inputs to a process
h from the description of h alone; hence to prove that h preserves an
assertion P we have to make assumptions about the inputs to h. A
simple (and apparently reasonable) assumption to use in proofs of h
is that P is true after every input of h; however this is an unreasonable

requirement of the sender process because if P were false prior to the

message transmission it may be impossible for the sender to reestablish
P. Therefore we will focus on proofs which show for a process h that

h preserves P provided that inputs to h preserve P. The axiom (below)
shows how to combine such process proofs into a network proof.

2.2 Definitions and axioms

We say that "edge e preserves assertion P," denoted by Ple],
if no message transmission along e falsifies P, i.e. Ple] states that if P were tru
immediately prior to the transmission of a message along e then P is true
immediately after the transmission.
Note: 1If S, is not named in P then Ple].
Notation: Let hj = (Tj,Ij,Oj) be a process in a network N = (H,B,I1,0)
and let P be an assertion over N. Pfhj‘P denotes that given §fec Ij, Ple]]
there exists a proof of hj that Bre ¢ Ij U Oj’ Ple]l]. PleP denotes
that given [fe ¢ I, Ple]] there exists a proof of N that [¢fe ¢ (BuOu1I), Ple]].
Note: P|h|P, (P|N|P) mean that if all inputs to h (N) preserve P,
then execution of h(N) never falsifies P at any point in its execution.
Note: If h is a program, then P[hIP may be demonstrated by a proof
of h showing that P holds at all program points given that (1) P holds
initially and (2) the following additional axiom may be used in the proof
of h,

{P} m {pP}

where m is an input statement. Proof techniques as in Hoare [3] and
Owicki and Gries [5] may be used to prove h.

If h is a network, the following axiom may be used to demonstrate
P|n|P.
Axiom: (Invariance of Hierarchical Composition)

et N = (H,B,I,0), and let P be an assertion over N.

Mh e H, P|h|P] ~ P|N]|P.

Note: PIN[P denotes that there exists a proof that every edge in N
preserves P given only Ple], for every e in I. The left hand side

of the axiom ¢h ¢ H, PlhlP) denotes that P is preserved by all processes
in H (i.e. by every edge in N) provided P[e] holds for all e which

are input to processes h in H, i.e. for all e in B u 1. Both the left
and right hand sides give preconditions for P to be preserved by all
edges in N; the axiom states that if "P preserved by all edges

in I and in B" is a precondition, then so is "P preserved by all

edges in I."

Intuition: A formal operational model and proofs of the soundness

of the axiom with respect to the formal model are found in [2]. Here
we only observe that the validity of the axiom follows by applying
induction on the chronological sequence of messages transmitted along
edges in N.

Note: Another way of viewing P]h]P is as follows:

Consider process h connected to another proéess h called its
complement, which represents the rest of the network. h feeds input
to, and accepts output from h. P}hJP denotes that if h guarantees
P is true after every input to h then h guarantees that P is true
after every output of h (i.e. input to h). Note that P{h[P is a
property of h alone. The axiom states that if the processes in the
network preserve P when running in isolation (i.e. with their complements)
then the network preserves P.

Definition: Let P and Q be assertions over a network N = (H,B,I1,0),

and let h be a process in H.

P|h|Q (P!N[Q) denotes that h (N) does not falsify either P or
Q at any point in its execution given that all inputs to h (N) preserve

P. Formally,

Pifel, all e input to h

P]th = Ple] and Qfel, all e incident on h

P|N|Q is defined similarly.

Note: One way of proving P]hIQ is to show P]hlP and Q‘h]Q and that
if every input to h preserves P then every input to h also preserves
Q.

If h is a program PIhIQ may be demonstrated from a proof of h
by showing that P and Q hold at all program points, given that P and
Q hold initially, and the axiom {P} m {Pl}can be used where m is an
input statement.

The following theorem which is one way of demonstrating P]N!Q,
follows directly from axiom 1.
Theorem: Let N = (H,B,I,0) and let P and Q be assertions over N.

P|h|Q for all h in H » P|N|Q

The technique proposed here leads naturally to hierarchical and
modular network design and verification. In order to design a network
N with specification P!N]Q, where P,Q only name sequences external to
or input or output of N, we will first postulate a network structure
LB, T,0) and s network invariant R where,

1. P 1s preserved on input implies R is preserved on input and,
2. R implies P and Q and,
3. R|h|R for all h in H -- this implies R|N|R.

Hierarchical design proceeds by refining h similarly. There is
an obvious similarity with hierarchical, modular design of sequential
programs: P ecorresponds to the input assertion, P and Q to the
output assertion and R to the loop invariant.

The proof technique presented here is inadequate for proving

termination or absence of deadlock; such techniques are found in [1].

3. An Example

3.1 A network to compute the factorial of a sequence of numbers

We design a network which receives a sequence of nonnegative
integers along an input edge and sends a sequence of numbers which
are factorials of corresponding numbers in the input sequence along
an output edge. We assume that every input number is
less than n. We employ three kinds of processes.

1. Buffer process: This process has one input and one output edge.
It maintains a queue of bounded or unbounded size —- the maximum
size of the queue is unimportant for proofs. The incoming messages
are appended to the rear of the queue. For output, messages from
the front of the queue are removed and sent. Since this process
is generally well understood, we do not elaborate on it.

2. Input process: It has one input edge with associated variable x
and two output edges with associated variables r and vy.

Input process:

if x#0 then y:=x-1; ?:=y endif;

ri=x; ?:=r

endloop

3. Output process: It has two input edges with associated variables
u, v and one output edge with associated variable w.

Output process:

if u=0 then w:=1 else v:=7?; w:=u¥*v endif;
7:=w

endloop

A combined process, CP, is a network constructed from 3 buffer

processes, one input process and one output process, as shown in Figure 1:

ba,bd,bu stand for buffer across, buffer down and buffer up.

The network N consists of n combined processes CPl""’CPn'
For simplicity, an edge incident on a buffer within the combined

process has the same labels at head and tail.

Any combined process CPi’ i>1, receives its inputs through variable X

delegates responsibility to CPi by an output along ti to compute

+1
the factorial of the next lower number, receives the response from CPi+l
via z, and produces its own output along W The operations are however

asynchronous in that many inputs may be read before any output is

produced. CPn is a process that receives zeroes and outputs 1's.

Notation: In the following, S,Sl,S2 denote sequences of integers.
0sS<i:: every element of S is less than i and greater thanm or equal
to O.
EH_ESZ:: Sl is an initial segment of 52; possibly Sl = 82'
red(S) :: the sequence obtained from S by removing all zeroes
and reducing the remaining elements by 1.
S! :: the sequence obtained from S by taking factorial of
each element.

Let Sxi denote the sequence associated with variable x of CPi;

Similarly, Sti’ Szi, Swi.

Note: Sti = Sx i<n.

i+1°

Sw, = Sz, i>1.

i i-1’

Initial condition on N: all sequences are initially null.

3.2 Proof of the network

Given the input specification,
0 _<.SX1<n
it 1s required to prove the output specification,
Sw1 f; le!
The methods given in this paper are inadequate for proving statements
of the form, "N will not deadlock" or "the output corresponding to every
input will eventually be produced”; see [1] for proof techniques for
such properties. In the following proof, we will often make use of
the following observations to simplify the proofs. These observations
follow directly from definitions.

Observations: 1. [P - Q and P|h|Q] » [Q]|h|Q]

2. truefh!P, if P is an assertion over sequences not
incident on h.

3. P, |h[Q and P,|h|Q, +(P; and P)|h|Q; and Q)).

4. 6, F Sz)ih';(sl[_l S, where S

or is not incident on h.

1 ig either an input to h
In order to use axiom 1, we postulate the following invariant.

. o 2 ‘ @
P:: O§le<n and Sx_, . C red(Sxi), l<i<n and SV%‘E Sx,!, l<izn.

Note: 1. 1If the input to N preserves the input specification, it
preserves P.

2. P implies the output specification.

We next show P|CPilP, for every 1<i<n, from which P‘NIP may be
deduced using axiom 1. Note that the internal structure of CPi is
of no consequence at this stage since its externally observable

~ behavior is captured by P[CPilP.

3.3 Proof of CPi

From P, we can deduce the following.
Q. , l<i<n :: 0<Sx. and St,Ered(Sx.) and Sz, L St,! and Sw, L Sx_!
i = — i — i~ i’ — 77 i — i~

Q t: 0<8x < 1 and Sw_£€ Sx !
n —n — "'n n

Using observations 1, 2, 4 of 4.2, is follows that it is sufficient to
demonstrate Qi{CPiiQi, I€i<n in order to prove PlCPi‘P, 1%i<n. The
proof of QnICPnIQn is straightforward and hence is omitted here.
Notation: We drop the subscript i, in the following discussion.

In order to show Q]CP[Q, we again have to postulate an invariant
R which relates the various internal sequences of CP.

R :: 0<Sx and Sz [St! and SrL Sx and Sy L red(Sx) and St LSy and

Sul Sr and Sv £ESz and SwESu!.

Note: 1. If Q is preserved on input to CP, R is preserved on input
to CP. Also R - Q.

Hence Q|CP|Q follows from R|CP|R which follows from R|h|R for every

process h in CP.

It is easy to prove the following facts from proofs of individual programs;
from observations in 4.2 it then follows that each process in CP preserves R.

(true Iinput [Sr £ Sx and Sy L red(Sx)), (truei bal Su E Sr),

(t}:ueibdlStQSy) and (true!bu Svg Sz). We show, RfoutputiR

formally in the next section.

3.4 Proof of output

Using the observations of (4.2), it is sufficient to show,

(Su £ Sx and 0<Su and Sv [red(Sx))]output SwC Su!

let, Rl :: Su ESx and 0<Su and SvE red(Sx)!.
.. 1
R2 :: SwlL Sul.
R3 :: SwlSu! and u = tail(Su). {tail is the last element of a nonnull
string}
R, :: |red(Su)| = |Sy|. {|Sv]| denotes the length of Sv}
RS s]red(Su)! =]SV] + 1.

It is required to show that Rlloutputhz. Note that R3 -> RZ.

Annotated proof:

{Rl and R2 and R4} [Note: R4 follows from initial conditions]

loop {Rl and R, and R4}

Z

u:=?;

{R1 and R3 and (R4 EE'RB» [Rl is preserved by input]

if u=0 then {Rl and R3 and Rl; and u=0}

wi=1 {R1 and Ry and R,

3 and R5 and u#0}

and w=u!}

else {Rl and R

vi=73

{Rl and R_ and R4 and u#0 and v = tail(Sv)}[R1 is preserved by input]

3
{v=(u-1) 1}

wi=uXvy

'
{Rl and R.3 and R,, w=ul}

4’
endif;

N
{Rl and Ry and R,, w=u!}

4’

7 =W

{R1 and R, and Ra}

2
endloop

4. Acknowledgement

The impetus for this work came from the simple, yet powerful
language proposed by Hoare [4]. The concept of non-interference
due to Owicki and Gries [5] is implicit in this work. We are

grateful to Professor D. Gries for discussions.

References
bt bt

K.M. Chandy and J. Misra, Deadlock absence proofs for networks of
communicating processes, Computer Sciences Technical Report,
University of Texas at Austin, 1979.

K.M. Chandy and J. Misra, A formal model of networks of communi-
cating processes, Computer Sciences Technical Report, University

of Texas at Austin, 1979.

C.A.R. Hoare, An axiomatic basis for computer programming, CACM
October 1969.

C.A.R. Hoare, Communicating sequential processes, CACM, August 1978.

S.8. Owicki and D. Gries, An axiomatic proof technique for parallel
programs, Acta Informatica, June 1976.

x i A\.W
input 3 ba . jAoutput I
r u /)
y v
3 Id
bd bu
AN
t\V Z

Figure 1: 1Internal Structure of a CP

CPl
Y
tl N Z
3 2 2
CP2
Voo
e N M |
CPn~1
tnrl ;Fén—l
Kp \wn
CP
n

Figure 2: The Structure of the Network

