&

Storing Matrices on Disk
for Efficient Row and Column Retrieval
TR-99 /4
by

*
James R. Bitner

Department of Computer Science
University of Texas
Austin, Texas 78712

May, 1979

Revised July, 1979

*
- This work was supported in part by NSF grant MCS77-02705

Abstract: We study the problem of storing a matrix on disk assuming that

the only accessing operation allowed is retrieving an entire row or column.
The cost for retrieving a row or column is the number of different pages
containing elements of that row or column. The cost of a matrix is the sum
of the cost for retrieving each row and column. We give a lower bound on

the cost of storing a matrix. We give one algorithm that asymptotically (for
large matrices) achieves this bound if the page size is in a given set of
integers, and another that achieves it if the page size is not in the set. We

also analyze the asymptotic fraction of disk space wasted by these algorithms.

1. Introduction

We study the problem of storing a matrix on disk so it can be accessed

efficiently, assuming that only two accessine onerations are

required: retrieving an entire row or retrieving an entire column. We
measure the cost for retrieving a row or column by the number of different
pages that must be read in from disk to obtain all elements of that row or

cnlumn. The cost of a matrix is defined to be the cost of retrieving

each row and column, summed over all rows and columns. This is motivated
by the assumption that each row or column of the matrix must be retrisved

.qually often. We also use the phrase "cost of an algorithm” to mean the

cost of a matrix stored according te a given algorithm.

Totation: M and n will always denote respectively the number of rows and

colurmms in the matrix. s will denote the maximum number of matrix elements

that can be stored on a page on disk.

nefinition 1.1: Let COST{(m,n,s) be the cost of a given algorithm and let

.

cnet (m,n,s) be the optimal cost. Then the algorithm is asymptotically

pwtimal for s 1iff

1im COST{(m,n,s) _ 1
g e
m, o COBT (m,n,s)

®

Note that we are interested in an algorithm which is asymptotically

optimal for a fixed s; we are not interested in the limit as s».

nefinition 1.2: Let WASTE {(m,n,s) be the number of unused locations in

partially full pages for a given algorithm. Then

1im WASTE{(m,n,s . . . -
“1§m --£é~l—iwl is the asymptotic fraction oI space wasted by the
m,T

algorithm.

jro

This paper has the following organization: Section 2 will give a lower

bound (approximately EEE) on the cost of storing a matrix. Section 3 will
s

give an algorithm (Algorithm A) that asymptotically achieves the lower bound
(and hence is asymptotically optimal) for all s in a specified set (see
Theorem 2.2). Section 4 gives Algorithm B, which is asymptotically optimal
for all s not in this set. The fact that two different strategies must be
used to achieve the optimum is dictated by the form of the lower bound (see
Theorem 2.1) which actually is the minimum of two quantities. One quantity

is minimized by Algorithm A and the other by Algorithm B. Using the condition
provided in Theorem 2.2 will allow us to easily tell which algorithm will give

the best results for a given s. We also analyze the asymptotic fraction of

space wasted by these algorithms. For Algorithm A, it is at most 1

Lys.

(which is 4 or 5% for reasonable s), and for Algorithm B, it is zero.
However, the storage scheme using Algorithm B is more complicated,
requiring more calculation to determine which pages contain elements of
a desired row or column. We also discuss this important aspect of the
problem.

For purposes of comparison, we calculate the cost for storing the
matrix in row major ordering, which is defined by visiting the elements
of the matrix row-by-row (starting from the first row) and visiting the
elements of each row from left to right. Elements j(s-1)-1 to js are stored
in page j. The cost of this method is computed as follows (assume s < n):
Each of the n columns will have cost m, and each of the m rows will have

cost at least Fg]. The total is then at least nmtm [S]E_nm(l+<§) compared

to Zmn for the optimal method.
/s

a]

Pa—

o

2. A Lower Bound

In this section we derive a lower bound for cost of a matrix. Later,
we will derive algorithms that asymptotically achieve this bound, proving
it is tight. The first step is to assume the elements of the matrix are
numbered 1,...,k (according to the page on which they are stored)} and

rewrite the cost which was defined to be

m
COST = Z number of different numbers in rvow 1
i=1
n
iy M s .
+) number of different numbers in column i
i=1

as

k
COST = Z (the number of rows in which number i occurs + the number of
i
colums in which it occurs)
. - . .th - , ' . . .
We refer to the i— glement of this sum as "the contribution of number
i to the COST" (or just "the contribution of i), We first derive a lower
tound for this.
The following function is useful in defining the lower bound (see
Tigure 2.1},

Definition 2.1: Let x = kz + j where 1 < j < 2k + 1 (note k+l = f%g-?}. Then

a(x) is defined by

P

M+ bxd= w1 if 9 <k

oMx T = 2k if 3>k

Values of x such that g(x) < g{xt+l) are especially important, motivating
the following definition.

e se s . . c . 2
Definition 2.2: x is a square number iff it is of form k" for some k > 1. x

. S 2 .
is a rectangle number iff it is of form k"+ k for some k > 1. (This notation

is somewhat unfortunate; the sets of square and rectangle numbers are disjoint.}

g(x)

|~

The function g(x)

N

9 + 00 o

8 4 e 0 o o

74 ° 2oy

6 4 o0 0

5 4 P

4 1 * 8

34 °

2 49
1 ; . : : >
12 4 6 9 12 16 20

Figure 2.1

¥ 1

frmm

fun

Lemma 2.1: Let number i occur t times, then the contribution of i is at
least glt).
Proof: Suppose i occurs in a rows and b columns. The contribution of i
is then a + b. Also, since each number i occurs at the intersection of
one of these a rows and one of these b columns, there can be at most ab
number i's and hence t < ab, We obtain a lower bound on the contribution
of i by solving the following problem:

Minimize a + b

Subject to ab > t and a,b integer

t

Obviously for a given a, choose b =§i;? . The problem becomes:

Minimize a + E—E

s.t. a > 1, a integer
. . t
Define f(x) = x + -

Foer) - £60 = 1+ [] -T5]

Claim 1: If x > y and -y < 1

f

A{x)

then 1 +§~y'§—~ ?X“% >0
Proof: Divide the real line into unit intervals Iﬂxix n-1 < x < n}
{Note, if % & In9 then Tx? = n, We know fx} Z_?y? . Since x -~y <1, xand ¥y

are in the same or adjacent intervals. Hence T=1- {yi < 1

Claim 2: If x >y and x -y > 1 then 1 + ggyu?—-?xﬁi G

b

roof: Here x and y cannot be in the same interval and ?xiaﬂfyg >

Claim 3 If = -, < 1 then A(x) >0
t 4 R
If " ~-§+1‘i 1 then A(x) <0

Proof: From claims 1 and 2

jon

Claim 4: If for a given integer m,

A(x) <0 for all x < m
A(x) > 0 for all x > m
then m is a minimum of f.
x-1
Proof: Note f(x) = f(1) + z A(L)
i=1
m-1
If x <m then f(x) - f(m) = - z A(d) > O
i=x
x-1
If x > m then £(x) - £f(m) =) A(i) >0
i=m
so f(x) > f(m) for all x.
Claim 5: If for a given m
% - §41 >1 if x < m and
t t .
Pl x+l-i 1 ifx>m

then x is a minimum of f
Proof: By Claim 3, such an m satisfies the conditions of Claim 4.
t t t

So we study the function h(x) = 3 %+ ='§(x+l)

Since we suspect that values of a around Yt will give us the minimum, we

evaluate h at these points:

Notation: Let t k2 + j where 1 < j < 2k + 1 (then rV~£1 =k + 1)

2 2
kK +j K+
h(k-1) = =
-1k~ 2
W) = R
k(D) 2
2 2t
h(k+l) = e =

(k+1) (k+2) k2 3%+ 2

R, |

|~

We observe that:

1. h(k-1) > 1 (because j > 1 > - k) and h{x) > 1 for x < k - 1 because
h 1is decreasing

2. h(k+l) <1 (because j < Zk+l < 3k + 2) andh(x) < lfor x > k + 1

3. h(k) <1 4if j <k and h(k) > 1 4if j > k
k+ 1 if 3 > k

Let a =
k if 3 <k

then & is a minimum of f by Claim 5 and hence is a solution to our original

T

problem. It is easy to see that b = ?—a—sé =k + 1 {regardless of whether

a is k or k + 1). The contribution of i is at least a + b which is equal

to glt}). D

oo

Theorem 2.1: The cost m X n matrix for page size s is at least

)

min(gigl,-giz—)' mn where p is the largest square or rectangle number

less than or equal to s.

Proof: Let Vs be the number of pages with j elements. Since each page of j

elements has cost at least g(j), we can get a lower bound on the total

cost by solving?

s
minimize z v.g(3)
j=1
s.t. 0 <y,
-]

s
and z jy. = m
j=1

We now lift the restriction that the yj be integers. This cannot
increase the minimum value of the objective function, and hence, solving

this modified problem will still give a lower bound on the total cost

of the matrix. If we view each yj as a number of objects (where we can

take a fraction of an object) with size j and weight g(j) that are to be

put into a knapsack of size mn, the objective is to fill the knapsack

while minimizing the weight. This can clearly be done by using only

the type of object with lowest weight to size ratio. This is proven

in the following claim:

o

Claim 1: Let j@ be the dinteger that minimizes

Eéil-. Then a solution to the above problem 1s

J
{y. =8 y.=0 for j # j,}
ig dg 3 73 0
) N -4 .y _ glh)
Proof: Define zj~3yj and h{j) = 3
{Note that jO minimizes h{i))
The problem becomes:
8
mimimize) 2z ,h(3)
j=1
s
s.t § z, =m ; z, >0
3=1 3 3
Because
s s
]z >) zh(@y =hGy - om,
j=1 j=1 -

h(js}e mn is a lower bound on the cost of any solution. Since the solution
stated in the claim achieves this cost, it is an optimal solution,
proving this claim.

The problem now is to determine jQ for a given s. This is dome in the
following claim:

. . . g(i) .. . o .

Claim 2: If 1 <3 <s, E iz minimized by either s or the largest square
or rectangle number less than or equal to s.
Proof: 1If j is meither a square number nor a rectangle number nor s, then
Bence j does not minimize Eéii“ Suppose

3 J

i i5 a scuare or rectangle number, but not the largest one less than or
, 3

. . g(3+1) _ gld)
1) = gf ar .
g(j+1) = g(j) and] < =

equal to s. Let r be the next largest square oFY rectangle number. We
consider two cases:

. 2 . .2 .
Case 1 (j is a square number, say k™, and r is k +k.): Then

g() _ &) 22 1 g

r ¥ K4k (k2+K)

4
<

Case 2 (j is a rectangle number, say k2 + k, and r is (k + 1)2): Then

>0

3§j) _ g(r) _ 2k+l _ 2k+2 _ 1
J

r 2

Wk (k1) K4k

In any case, Ei%l > gir)

Therefore, the only possibilities for the minimum are s and p, where
p denotes the largest square or rectangle number less than or equal to s.

g(iy) , : s .
Therefore .O = min g(s) , g(p))‘ Substituting this and Claim 1 in
Jg P
S (s) g(p)
Yy, &) gives min (822, BBy, mp 0
3=1] s p
The following theorem gives a simple condition for whether

&ls) _ g(p)
S p

Theorem 2.2: Let s = kz +3j; 1 <j <2k + 1, let p be the largest square

or rectangle number less than or equal to s and suppose s#p. Then

2) If p is a square number then g;p) < gés) iff j : § (with equality

occurring if k is even and j =-§)

b) If p is a rectangle number then §é£l,< g(s) iff j < k(3k+2)

s I D

Proof:

Case 1 (p is a square, say kz, and s=k2+j; 1 <j<k-1) Then

g(p) _g(s) _ 2k _ 2krl _ 2j-k

P s K k% kA9

Case 2: (p is a rectangle number, say k2+k, and s = k2~+ jsy W1 < j < 2k) :
Then

g(p) _g(s) _ 2kl _ 2kk2 _ (2k+1)j-k(3kt+2)

)
P s Kk k] (K2 K) (K% §)

In either case, the theorem is obviously true. E]

11

Note that g(p) < Eéﬁl-fsr sbout half the values of s. The following

two sections will give algorithms that asymptotically achieve the lower

bound in Theorem 2.1. Algorithm A is asymptotically optimal if Ség}_j—ﬁéﬁl .

Otherwise Algorithm B is optimal.

12

3. An Asymptotically Optimal Algorithm

In this section, we give an algorithm that is asymptotically optimal

if 8(®) <~5£§l , where p is the largest square or rectangle number less
P — 8

ihan or equal to s. This algorithm also causes a fraction (at most

Lié}) of the disk space to be wasted.

The strategy we must employ is clear from the proof of Theorem 2.1;
the elements with a given number should be grouped into rectangles of
Jdimension a x b such that a =L/g} and b = L/sd or r7§7 , whichever
=11 give ab=p. The algorithm follows this heuristic as much as possible.

lntation: Let p be the largest square or rectangle number less than or equal

s. Define a = LfEJ and 'b = r/§1

ard let y = mmod a and z = n mod b.

Algorithm A:

P m
1. Partition the submatrix consisting of the first l;:j-a rows and

t%s L columns into blocks of dimension axb. (See Figure 3.1). (We say these
ilocks are "type A".) Put each block on a different page on disk.

2. If y # 0, partition the elements in the last y rows into blocks
{tyne B) of dimension ¥ X tsj - Put all the left-over elements (if any)
in a separate block (type C). (If y = 0, step 1 will have left no rows
to be partitioned and step 2 does nothing.)

3. Partition the elements in the last z columns (except the last y rows)
into blocks (type D) of dimension L—Sijx z. (If z = 0, step 3 does nothing).
Again, put all the left over elements into a separate block (type E).
Ehggzgm_ggl:‘\Let p be the largest square or rectangle number less than or

212l s, Then Algorithm A has cost at most
%mwnm+0m+n+v5)

which is asymptotically optimal if =

g(p) < g(s)
P - .

oo o v e o

A
e wm am oe o

L SR sy g

s s wen s e o

B

i

(b

Figure

o s wem e ew e s we

o e wm omm aw W,

i
H
4
i
§
i
£

- s wes b e o e om

How Algorithm A partitions a matrix

Block type Number Dimensions Zero If

A Lg] L % J axb never

oy

y

C 1 yx{(n mod [—;—J) y=0 or n mod l§j= 0
D LU 51 xz z=0

E 1 ((m~y)mod LEJ) Xz z=0 or (m-y) mod [—2-J= 0

Table 3.1
The number and dimensions of blocks of each type. If the condition in
the "Zero If" column is true then the "Number" and '"Dimension'" columns should

be ignored and there are zero blocks of that type.

15

Proof: Table 3.1 is easily seen from Figure 3.1. ILet CGSTAﬁCOSTB,,,Q be

the total cost for blocks of that type. {To get these costs, we take the
cost for the given block type {the sum of the dimensions for a block of that
type) and multiply by the number of blocks of that type.) the total cost is
then given by

COST = COST, + COSTB~+ COST

A + COST, + COST, (1)

C
We first observe that

08T = wyl B Rg oo oo
COST <3%D}£§aji§b§ = (akb)e ab {23
e next examine COSTB-% COSTC . Substituting the values given by Table 3.1

sives:

] n] i
+CoST =(y + | £ et Rl nmoéi-—é} (3)
COST +COST = (y Ly}) Fj ¥+ (5 }
LY
if v # 0, and zero if y = 0. We only consider the case where v = 0 since the

positive upper bound we obtain will also be an upper bound when v = 0.

(3} equals.

i n

gg Sl ¢ nmea |2 + v ¢ {“§“§ + 1) (4)
g_?i ;yg Esyj gsé

y

The first parenthesized expression is simply n. The rest is increasing with
respect to y. Since y = mmod a, y < a-1. Therefore {4) 4is less than or

equal to

=

3
since a = Ll@;j , we have a-1 < /s and ia—ljui 2

n+ {a-1%e (é + 13 (5)

Substituting this last inequality, removing the last floor sign and
simplifying gives (5) is less than or equal

Za-1

(

J oo+ (a-1) < 2n + (a-1)

flence COST, + COST, < 2n + (a-1) ' (6)

This analysis also holds for COSTD-»i-»(v’IOrSiTE (a and b are interchanged, and
m and z take the place of respectively, n and y). The expression equivalent

to (5) is

w4 (b-1) (|2 | +D (7)

=
b
s
Cince b < r/s.-, , we have b-1 < /s and L-B—-—j > L/g_\ > b-1.
Putting this into (7) gives:
COSTD+COSTE < 2m + (b-1) (8)

cubstituting (2), (6), and (8) into (1) gives

(atb) M 4+ 2n + (a-1) + 2m + (b-1)

COST ab

I A

=_g£91, mn+0(m+n+/§)

P O

“heorem 3.2 The wasted space‘ for Algorithm A is at most (s-—ab)—i’%—;l +ntmt2s.

. . s-a . . 1
Asymptotically, the fraction of wasted space b which is at most — .
sl
»roof: Let w(m,n) be the number of locations wasted for storing an mxn

ntrix., Table 3.1 is used to calculate the waste due to each type of block.

{The waste is s minus the area of the block.) This gives

win,n) < (s-ab) L—EJ‘L%J + (s mod y)- 2\ 4+ s+ (s mod z')-\'m} + s

5] B

A
~
]

i
o
=3
~

|

i

mn n m
ab+y. --—-Ej + s + z [f’.)
[5 z
"ais is maximized when y = a-1 and z = b-1. Using the inequalities

s s ,
l_é‘:i_]i a and _b—lJ > b-1 gives

v(m,n) < (s-ab) %% +n+m+ 2s

Finally, since s < (atl)b, sS-ab <
ab

1
a

,.
5 I
| N,
0

. . . g-ab . .
Note that the size of = depends on how close s is to the next

larger square or rectangle number. In fact, if s is a square or rectangle

. . 1]
number, the waste is 0. In any case, the waste is no more than —— which

L/l

is 4 or 5% for reasonable s.

Finally, a desirable property of Algorithm A is that it is very
easy to compute which blocks need to be retrieved to obtain a given
row and then assign the proper elements from each block to the appropriate
positions in an array. Figure 3.2 gives a PASCAL procedure for retrieving
a row: retrieving a column is similar. This procedure assumes that the
blocks labeled "A" are numbered comsecutively (row-by-row from left
to right) then those labeled "B" are numbered, then "C", "D" and E"

and that the elements in each block are stored in row major order.

18

(* The value of global variable dstart is the number of the first block

labeled "D". It is defined as follows. *)
dstart :=[m/al*|n/b];
if y <> 0 then begin
dstart := y*|s/y|;
if n mod [s/yJ <> 0 then dstart := dstart+l;
end;
(* Procedure rowget retrieves row r from disk and assigns it to
*)

array A[O0..n-1]

procedure rowget(r : integer);
var 1,j,blocklen : integer;
begin
j = 0;
if r <=|m/aj*a-1 then begin
for 1 :=[r/aJ*|n/b} to (|r/al+1)*|n/bJ-1 do begin
RETRIEVE block i
ASSIGN elements (r mod a)*b to (r mod a + 1)*b-1
of this block to positions j to j+b-1 of A;
j = 3 + b;
end;
if z <> 0 then begin
RETRIEVE block dstart +|r/ls/z}];
ASSIGN elements (r mod |[s/z])*z to (r mod [s/z]+1)*z-1
of this block to positions j to n-1 of A;

end;
end
else begin
for 1 :=Lm/aJ*ln/b) to dstart-2 do begin
RETRIEVE block 1i;
ASSIGN elements (r-|m/aj*a)*|s/ylto
(r-Lm/al*a+1)*[s/y]-1
to positions j to j+|s/yl-1 of A;
j o= j+ls/yl;
end;
(* retrieve the final block, which might be shorter
than the others *)
if n mod Ls/yd= 0 then blocklen := Ls/yl
else blocklen := n mod Ls/y];
RETRIEVE block dstart-1;
ASSIGN elements (r-|[m/a}*a)*blocklen to
(r-lm/aj*a+1)*blocklen~1
to positions j to n-1 of Aj
end;
end;

Figure 3.2
Retrieving a row from disk if the matrix is stored using Algorithm A.
m,n,a,b,y,z are global constants whose values are defined
at the beginning of this section.

4. Another Asymptotically Optimal Algorithm

We now discuss an algorithm that is asymptotically optimal if

o{s) . 4
BAS) <-5i2z~ where p is the largest square or rectangle number less than

or equal to s. The strategy of the previous section will not give an

. - , , s
asymptotically optimal result here. Because §§~24f_§é2i3 the elements must
be grouped as much as possible into pages of size s with each page having

cost g(s). This can be done by partitioning the matrix into rectangles

of gize axb where b = ?¢2.7 and a = E_#gjif { i¥§;j f:/gﬁﬁ > s) or

oo

E Ja‘é (otherwise). Clearly, if s is not a square or rectangle number,
there will be elements inside of this rectangle that cannot be put in this
page. In order for the algorithm to be asymptotically optimal, these left-
over elements must also be assigned to pages in an efficient manner. The
algorithm does this by grouping all the left-over elements together and
recursively applying itself to the submatrix formed of these elements.

. 2. . .
otation: Assume s = k™+] where 1 < j < Zk+l.

jet b = Tﬁgﬁi and

L/sd if 3 <k
25 e
1/s | if 3 > k
(lote: a and b are defined differently in Section 3.) Further let y = m mod &

and z = n mod b

Aloorithm B: (see Figure 4.3 for a sample partitioning.)

Tf m< aorn< b then execute case 1

else execute case 2
Case 1: (Without loss of generality assume m < n.) Partition the matrix
into hlocls marked "A"™ in Figure 4.1 of dimension m xgwiﬁg with any remaining

columns partitioned into a separate block(marked Yy, If {(-s) mod m # O,

T T
' t

P e 0 A
! t

1

‘ [}

Figure 4.1 (a)

How Algorithm B partitions a matrix if m < a.

R R

L J. B ..

L 4

Figure 4.1 (b)

How Algorithm B partitions a matrix if n < b.

21

= o e o om we

3
e L

Figure &

and nn > b).

atriz {(m > a

i a large m

1008

tit

B par

thm

gori

How Al

22

there will be left-over elements. Further partition each block so that
the last (-s) mod m elements in the last row are in a separate block
(marked"B'"), These blocks are grouped together to form a submatrix, and
Algorithm B is recursively called to partition it. (The algorithm does
not require that the submatrix it is partitioning be contiguous, only
that the coordinates of the elements of submatrix can be described as a
Cartesian product of indices. This is because permuting the rows and
columns of a matrix will not change its cost, and hence, any such sub-
matrix can be permuted into a contiguous submatrix.)
Case 2: Partition the submatrix consisting of the first [g;la rows and
L%-Ib columns (again, a and b are different from those in Section 3.) into
blocks (marked "A" in Figure 4.2) of dimension a x b. If ab#s there will
be left-over elements. Further partition each block so that the last s-ab
elements in the last row are in a separate block (marked "B'"). Group these
blocks together (as in (1)) and recursively call Algorithm B to partition
the resulting submatrix. If y#0 call Algorithm B to partition the last
y rows (marked '"C", and if z#0 call Algorithm B to partition the last z
columns except the last y rows (marked 'D").
Notation: Let COST (m,n) be the cost of Algorithm B.
Clearly, we have the following recurrence relations for COST.
1) If m>aandn >b
cost(mn) = ()|] §) + costab-) | 2], [2]>

+ COST (y,n) + COST (m~y,z)

2) If0<m¢<a

COST(m,n) = (Mf—%])‘:E‘,;--.l + (m + n mod [%7)
m

Bk

+ COST {(-s) mod m, l

where the second parenthesized expression should be omitted if n medgﬂi.i = 0,
3) If 0 <n < b (similar to 2)
4y €O0sT (O,n) = 0 and COST {(m,0) = 0 for all m and n.

We now derive a bound on COST . The difference from the lower bound
will be §{m¥§»% n} instead of O{m + n + %gé for Algorithm A because now the
"edge effects’ occur not only near the edges, but also during recursive calls
of Algovithm B.

Lemma 4.1: If m < a and n > m, COST(m,n) < 6ém.
Proof: We first dispose of some trivial cases:

Case 1: (a = 1) m=0 and COST{(m,n) = 0 < 6m.

Case 2: (a = 2): Either m=0 (and COST(m,n} = 0 again), or m=1 and

COST {(m,n) j'{1+s}%~§ll + {1+s mod n)

za+i%j+}_i3§z

Case 3 (a > 3): Here we proceed by induction on m. If m=0, the lemma is

rrivial, For m » 0, we have

1
i

COST(m n) < {(m + T%?}%éiw + (m 4

H

}-

=

5]

2
A
g lo
-

S

&3}

n
COST{(~3) = i
+ \J{}VT\(87 mod m, ?"S"’; }
iﬁﬁ" sj
X . 8 . .
where we have equality unless n m@di.gﬁg = { in which case the second term
H

is an upper bound on zero. (1) equals

n 4+ m{l + - . Y + COST{{~s) mod m, zyg

(=]

1
< §n 4+ mtm = + 6

[5] (=1

by induction. The third and fourth terms are maximized when m = a-1, and

)

I T RS

1
a

E

0

fod
—Mw? > a-1. Hence

COST(m,n) < ntmt(a-1) - %_ +6 - I

—

W
[

b

n
3n + 6 i1 =

y 0

]

because a >

Lemma 4.2: If n <b and m > n, COST(m,n) < 6m.

Proof: Same as Lemma 4.1. []

Theorem 4.1: COST(m,n) f.g(z) e m + 0 (m/s + n)

which is asymptotically optimal if g(:) i.g(g)

Proof: We show COST(m,n) < » mn + 6am + 12n.

g(s)
s

We first dispose of the case where b=1. If b=1, then a=l, s=1, and

COST(m,n) is obviously 2mn, and the theorem is true. We consider any b > 2.

The proof is by induction of n. At each step, we show the theorem is

true for a given n and all m. The basis (for n < b) is given by Lemmas

4.1 and 4.2. Both bounds are less than the bound given in the theorem. We

now assume n > b. For any m,

(at+b) LE—J L%J + COST((ab-s) L-Z-J ’l%J)

+ COST(y,n) + COST(m-y,z)

i

COST (m,n)

By Lemmas 4.1 and 4.2, the last two terms are bounded by 6n and 6m, respectively.
Then by induction,

COST (m,n) < (a+b)-‘;“;b + %?’-— - (ab-s) 5“3‘-&

+ 6a(ab-s) - «‘-;‘-+ 12 %+ 6m + 6n

i~5£§l- mn +~[6(a—1)+6‘J-m + (%Z+ 6)n
because ab-s < a~l. Hence
COST (m,n) f_gig)- m + 6am + 12n
because b > 2. Cj

We now show that this algorithm uses disk space very efficiently.

25 T

?ﬁeare%iﬁlé: 1f n >b>1 the wasted space for Algorithm B is at éést
Qsia%b}lsg%n. (If b=1, no space is wasted.) Asymptotically, the fraction
of wasted space is zero.

Proof: Assume b > 1, otherwise the theorem is trivial. Let w(m,n) be the
number of wasted locations for storing an mxn matrix.

flaim 1: If m < a, w(m,n) < sm.

Proof: {(by induction on my: If m=0, w(O,m) =0 and the claim is true.
Otherwise we have

)

. \ n
wim,n) i4<5”1> + w{{-s} mod msi ——
181

because no waste results from the blocks marked "A" in F

feobo

gure 4.1, at most

s-1 locations are wasted in the block marked "C' and the final term gives

. N e .) 7 , R
+he waste in the partitiom constructed by the recursive call. Let m = {(—-8) mod W,
2 y

. i . .

cince m < m-1, we have by induction
< o 7

wim,n) s + sm < sm

nroving the claim.

e
‘».ejs ',‘

. If n < b, wim,n) < sn.

Ny

Proof: Same as Claim L.

We now consider general case. Because the blocks marked "A" in Figure 4,2 waste

no disk space, we have

m n ,
wim,n) = w({ab-s) i,gféﬁi,?lﬁ+‘wiﬁ“ysz} + wiy,n)

>

Ve prove the theorem by induction on 1

] , 2 oL . .
nasis: (b <n <b Y Then %ﬁ < b. Using Claims 1 and 2,

ﬁ &
vim,n} < 8 z~:§+ sy + sz < 2sb + sa

A
A
iy
N
o
o
o
S’
§w
]
a9
o
]

Induction: (n > b7) Using induction on the first term and Claims 1 and 2 on

the second and third give

Zs(a+%}10gb i%;i% sy + sz

S At
LAQHIR Y,

I A

< 25{3%%}10gbﬁ - 7s(atb) + satsb

I A

Zs{a%%}iogbn
nroving the theorem. Dividing by mn and letting m and n + = proves the

et atie waste fraction is zero.

J

We now describe a procedure for retrieving a row or column of a matrix
according to Algorithm B. In this discussion it is more convenient to
work with the following equivalent form of Algorithm B:

A modified (but equivalent) version of Algorithm B:

1. Divide the matrix into regions A,B,C and D as shown in Figure 4.2,
2. Divide regions C (if non-empty) and D (if non-empty) as shown in

Figure 4.1 producing regions C,, C_, C, and D,, D

A % Cc a* P D¢
3. Call the algorithm recursively for each of the regions B, CB and DB
which are non-empty.

This reformulation allows the following useful definition:

Definition: The level of a block of a matrix stored using Algorithm B is

defined to be the depth of the recursion (i.e. the number of calls) in
the modified version of Algorithm B when this block is created. A group
is defined to be the set of all blocks at the same level created by the
same recursive call of the modified version of Algorithm B. (see Figure
4.3).

A small data structure, a ternary tree (see Figure 4.4), is required
to store information about each group. The root of the tree contains
information about the group at level 0, and the left, middle and right
sons of a node for a given group contain, respectively, the information
about the groups resulting from the partitioning region B, CB and DB in
the modified version of Algorithm B. This data structure is initially
constructed for the given m, n and s and is then used to direct the

algorithm for accessing the rows and columns.

Lad
Lad
fad
o
g
i
L
W
A
ot
L

21

3 3118 4 16116

g
-
o
Ly
L
[™)
Lo

6| 6lt9) 71 719! 8 819}16]21

1212112012 112]13 |13 {13}13]13}14

Figure 4.3
A 9x11 matrix stored using Algorithm B.
We assume a page size of 5 elements. The pumber in a given square is the

block to which that element is assigned. There are four groups:

blocks 0-17 {level 0)
blecks 18 and 19 {level 1)
hiock 20 {(level 2}

Llock 21 {level 1}

28

m = 9
n =11
start = 0
step =1
offset= 0
m = 4 m = 2
n = 3 n = 1
start = 0 start =11
step = 3 step =1
offset=18 offset=21
m = 2 Ej/// [g \\t]
n = 1
start = 0
step = 9
offset=20
Figure 4.4

The ternary tree used by Algorithm B for storing information about
the matrix in Figure 4.3.
The group of blocks 18 and 19 corresponds to the leftmost node at

level 1, and the group consisting of block 21 corresponds to the rightmost.

We make the assumption that all the blocks in a group are numbered
as in the accessing scheme for Algorithm A (see Figure 4.3). Outside of
this restriction, the numbering may be arbitrary. We also assume that

the elements of a block labeled A, CA or CC are stored in column major

order (due to the fact that elements in the last column of such blocks

have been removed.) Elements of a block labeled D, or D, are stored in
£2 kw3

row major order.

We now describe the method for retrieving a row (shown in the Appendix),
Accessing a column is similar, but slightlv more complicated. Most
of the work is done in procedure getgroup (Figure A.2) which retrieves
11 the blocks in a given group. Due to our numbering assumptions, the
accessing scheme for Algorithm A (with the-following modifications) can
be used to determine which blocks from a given group must be retrieved.

n Section 4, and

f
s

The values used for a and b must.be those define

(SR EC]

? respectively. Further,

<

s . . he
{‘§f§”§d é—-j must be replaced by (27 ana
Y ol 4 : §
the number of the first block in the group (called the group's offset)
must be added into every block number. This is one of the pieces of

information about the group stored in the tree. The algorithm is further

omplicated by the fact that the elements of some blocks are stored in

3

row major order while others are stored in column major order; requiring
two procedures, getblockrm and getblockem for accessing elements within

H 2

a block. The modified algorithm, getgroup, is shown in Figure A.Z.
Getgroup is driven by procedure getrow (Figure A.1). Imitially

getrow is called with the root of the tree as one of its parameters

Getrow retrieves all blocks in the group at level 0, then calls itself

recursively (if necessary) to retrieve groups from lower levels. Since

these groups results from partitioning regions B, CB or BB; the dimensions

of the matrix we are dealing with decrease as recursive calls are made,
and therefore the number of rows and columns in the region is stored in
fields m and n in the tree.

The other complication in getrow is that as recursive calls are
made, the row number must be recalculated with respect to the reduced
matrix. For example, to retrieve row 3 (with the row numbers starting
at zero) of the matrix in Figure 4.3, getrow will first call getgroup,
which retrieves blocks 3,4,5 and 16, then call itself recursively to
retrieve the blocks from region B. r' (the row to be retrieved from
region B) will be 1 in this case. Note that region B (blocks 18, 19 and
20) is a 4x3 matrix as given by the m and n fields of the left son of
the root of the tree.

As the correct blocks are retrieved, the proper elements of each
block must be stored in correct position in an array, A, such that Ali]
is the ith element in the given row. To illustrate this process, consider
accessing row 5 in Figure 4.3. Getrow will call getgroup which retrieves
blocks 6,7,8 and 16. Getblockem will be called to store the
proper two elements from blocks 6,7 .and 8 in array A and leave one position
empty after each pair. Then getblockrm will store the appropriate
element from block 16. Getrow is now called twice recursively, once to

fill in region B (block 19) and once to fill in DB (block 21). These

" fields in the tree.

operations are controlled by the "start" and "'step
The positioms to be filled by a call are always those i such that

i - start = (step-1) mod step. The call to fill in region B will reference
the node with start = 0 and step = 3 and hence will fill in positions

2,5 and 8, and similarly for the call for region DB. It is easily seen

that the set of positions to be filled in by a given call can be described

in this manner by start and step and that these two fields can eagily
be calculated when the tree is built.

A final issue is the amocunt of space required by this data structure.
The following theorem shows it requires a very modest amount of storage.
For reasonable m,n and s it is negligible compared to storage for a single
row otv column.

Theorem 4.3: For an mxn matrix, the tree described above will have at

most
{(a + b - i}lag%ﬁ + (b-1)
nodes., For large m and n this is approximately ZV§>iegbna

Proof: Let d{m,n) be the number of nodes in the tree for an mxn matrix.

1t 4s clear from the modified version of Algorithm B that
d{myn) <n <b if n < b, {1

n this case, regions A,B and C will be empty. The algorithm will be

ot

T

ecursively called to partition region Dy whose width decreases by at

In

least one at each call. Similarly,

ps

<agifm< a ‘ (23

e,
iz

d{m,n} <

»

pe
Q
4
k4
fda
bedy
P
i

> a and n > b, region A will be non-trivial. The tree

will consist of a root, the tree for region B,

.. 3 i m in o . .
whose dimensions are {ab«s}i;;tgx E}E? and the trees for € and D whose
size is bounded by (1) and (2). This gives

d(m,n) < 1+d((ab-s)| 7 |, Ei%,,%) + (a-1)+(b-1) if m > a and n > b

o

£z

from which the result clearly follows. {i}

5. Acknowledgement

I would like to thank Jay Misra for his helpful discussions

on this paper.

APPENDIX

(* We assume the following declarations for the tree:

type node = record
m,n,start,step,offset : integer;
b,cb,db : Tnode
end
ptnode = Tnode; Y
{(# Procedure getrow retrieves row r from disk and assigns it to
array A[0..n-1] *)

procedure getrow(r :

begin

getgroup (1,
if r does no

end

integer; p : ptnode);

Vs
L
t

intersect region C then begin

if r intersects region B then begin
calculate 1’73
getrow(r ,pT.b);

end;

if v intersects region Dg then begin
calculate r”7;
getrow(r’ " ,pT.db);

end;

else begin

end;
end;

if r intersects region C, then begin

s

calculate ¥°°

getrow(r™ " ,p

H
F.cbhbis

Figure A.l
T

Procedure getrow

To retrieve row ¥ from a matrix stored according to Algorithm B,

Getrow(r,rootptr)

of the
at the

£ & &

re

is called where rootptr 1is
rree. a,b and s are global constants w
beginning of Section &,

and r’°°
gions B,

give the number of the row th
Dg and Cg respectively.

a pointer te the root
hose values are defined

at corresponds to row

34

(* We assume the global declaration:
type blocktype = array[0..s=1] of T;
where elements are of type T *)

(* procedure getgroup retrieves all elements in row r in the group
assoclated with the node in the tree pointed to by p. *)

procedure getgroup(r : integer; p : ptnode);
var i,j,dstart,y,z,blocklen : integer;
m,n,start,step,offset : integer;
block : blocktype;
begin
m
n
start
step
offset

pT.m;
pT.n;
pT.start;

pT.step;
pT.offset;

o0

I |

y := m mod a;
z := n mod b;
j := start+step-1;

dstart :=|m/a}*|n/b);
if y <> 0 then begin

dstart := y*[s/yl;

if n mod {s/y1l <> 0 then dstart := dstart+l;
end;

if r <={m/a}*a-1 then begin
for 1 :=|r/aJ*[n/b) to (|r/al+1)*[n/b]-1 do begin
RETRIEVE block i+offset;
getblockem(a,b,j,step,r mod a,block);
j = j + step*b;
end;
1f z <> 0 then begin
RETRIEVE block dstart +|r/[s/z1]+offset;
getblockrm([s/z1,z,j,step,r mod [s/z7,block);
end;
end
else begin
for i := Lm/al*{n/bJ to dstart-2 do begin
RETRIEVE block i+4offset;
getblockem(y, Is/y1,j,step,r-|m/a)*a,block);
j 1= j + step*[s/y];
end;
if n mod [s/yl= 0 then blocklen
else blocklen
RETRIEVE block dstart-l+offset;
getblockcm(y,blocklen,j,step,r—Lm/aJ*a,block);

[s/y7
n mod [s/yl

/]

end;
end;

Figure A.2
Procedure getgroup

35

i

(* Access all elements in row r of a block of dimension m X n
where the elements are stored in row major order *)

procedure getblockrm(m,n,jO,step,r : integer; block : blocktype);
var col,k : integer;
- begin o '
k := r * nj
col := 0
. while (k <= 8) and (col < n) do begin
' ' A[j0] := block[k];
k := k + 13 ‘
jo := j0 + step;
col = col + 1;
end;
end;

(* Access all elements in row r of a block of dimensions m x n
where the elements are stored in column major order *)

procedure getblockcm(m,n,jO,step,r : integer; block : blocktype);
var col,k : integer; '
begin
k := r; : o
col := 0; S ‘
while (k <= s) and (col < n) do begin
A[jO0] := blockl[k];
k =k + my
30 = 30 + step;
col := col + 1;
end;
end;

Figure A.3
Procedures getblockrm and getblockem

