APPROXIMATE PATTERN MATCHING
IN A PATTERN DATABASE SYSTEM

Larry S. Davis™
Nicholas Roussopoulos™

TR-99 June, 1979

*Computer Sciences Department, The University of Texas at Austin,
Austin, Texas 78712.

This research was supported in part by the National Science Foundation
under Grant ENG 74-04986.

1. Introduction

Pyramidal representations for images have, over the last few years,
received a considerable amount of attention as a tool for computer
vision. For example, the VISIONS system developed at the University of
Massachusetts (see Hanson and Riseman [1]) does almost all of its
lTow-level vision processing in a pyramid. The pyramid, in this case,
leads to great computational savings since an analysis at a high level
of the pyramid (which contains only a coarse approximation to the
underlying image) can serve as a plan for analyzing lower levels in the
pyramid (see also Kelly [2]).

Much of the early, fundamental analysis of pyramids, or regular
picture decompositions, was done by Klinger and Dyer [3] and by
Tanimoto and Pavlidis [4]. Recently, Nakamura and Dyer [5] have
investigated the power of pyramids as control structures, and Hunter [6]
has discussed complexity issues for certain binary picture operations
using pyramid representations.

This paper is also concerned with the complexity of picture operations
using pyramid-like data structures. In particular, we are interested in
discovering that two binary pictures (normalized for size, rotation, and
position) "almost" match. Our motivation for studying this problem is the
design of error-tolerant pattern database systems. Too often, in pattern
analysis, matching algorithms are proposed without regard to the global
organization of the representations of the models they are to match.
Consequently, the algorithms are only practical for small databases.

This paper will discuss the matching problem along with the design

of a pattern database system. Section 2 contains definitions. Section 3
describes both depth-first and breadth-first approximate matching
algorithms. Section 4 contains a probabilistic analysis of approximate
matching both with and without pyramids. Section 5 describes the
organization of the pattern database. Finally, Section 6 contains

conclusions.

2. Definitions

Definition: A binary image, I, is a 22" array of 0's and 1's.

Given a binary image, or sjmp]y a picture, I, we will refer to
I(1,j) as the (i,j)th position of I. We can then define what it means

for two images to approximately match.

Definition: Let I and I' be two binary images. Then we say that I and

I' match within k if

DIG,3) -1 (5,3) | < k.
i

Two images match within k if they disagree in at most k positions.

The pyramid representation used in the next section differs
somewhat from the standard one ordinarily used for represenfing binary
images (called a quad tree). Ordinarily, a node in a quad tree is
labeled with a 1 when at least one of its descendants is labeled with a 1,
i.e., the Tabel at a node is the maximum label of its sons. In contrast

to this, we will define a sum-quad tree (or SQT) where the label of a

node is the sum of the Tabels of its sons. If n is a node in an SQT,
then v(n) is the value marking node n.

The lowest ievel of the SQT corresponds to the individual pixels

th Tevel (i.e., node m at level n implies v(m) =0 or v(m)=1).

h

and is the n

level of the SQT correspond to sums of 2N dxph"d picture
th

Nodes at the jt
points, so that the 0" Tevel contains the number of 1's in the image.

An SQT can be compactly represented by removing the descendants of any

level j node, m, with either

1) v(m)=0, or

2) v(m) = RSSO LN
since in either case, the values of all the pixels in the Zn-szn—j
neighborhood underlying m are known. If this is done we say that the SQT

is in compact form.

Storing images as SQT's may require more storage than storing just
the original picture. A node at level j must be capable of encoding a
number from 0 to 22("'3), and so requires 2n-2j+1 bits of storage. There
are at most ZjXZj nodes at the jth level, so that the total amount of
image storage, PS, for an n level tree is
S2j .
PS(n) =) 2°7(2n-2j+1) (1)
Jj=0
as opposed to 22n bits of storage for the original image. So, for
example, for a 16x16 image (n=4) the original image requires 256 bits
while the SQT requires 1x9+4x7 + 16x5 + 64x3 + 256x1 = 565 bits. The
following two remarks are relevant:
1) Equation 1 does not take into account the savings achieved
when a node, m, at level j has v(m) =0 or v(m) = 22(n—j), and
2) In the case where the SQT is stored in compact form, pointers
must be maintained to move from one level in the tree to another. Note
that if the SQT is not stored in compact form, then, since the size of
any node is known, priori, the SQT can be linearized and any node at
any level could be addressed directly.
To illustrate this, suppose we store the SQT using a top~down,

feft-right raster scan of the SQT. That is, if S(k,i,j) represents the

)th

(i, node at level k, then the SQT would be stored sequentially as

S(l,l,l),5(2,1,1),5(2,1,2),...,3(2,2,2),5(3,1,1),...,S(n,Zn,Zn).
In this case, S(k,i,j) can be found at the offset,

kel o k
22K (ono2k41) + (i-1) 25 (2n-2k+1) + §(2n-2k+1)

k' =1
from the base address of S(1,1,1). The choice of whether to store an
SQT in Tinked, compact form or directly depends on how many nodes are

pruned from the SQT by the compaction operation.

3. Approximate Matching Using SQT's

This section will consider the problem of matching SQT's within k.
In order to simplify the notation, we will consider the matching problem
for binary strings rather than arrays. A1l of the results can be easily
extended to arrays. Since a node in a pyramid representation for a string
will only have two sons (which we call Left and Right), we will refer to
these pyramids as sum-binary trees, or SBT's.

We start with the obvious procedure for matching two strings S and T

th

within k and we let S(j) refer to the j~ position of the string in its

standard representation as a one level bit string.

Boolean Procedure
STRINGMATCH (S,T,K,N)
binary array S[1:N], T{1:Nl;
integer K, N, NEXTBIT;
integer MISMATCH;
boclean MATCH;
begin
MISMATCH:=0;
MATCH:=true;
NEXTBIT:=1;
while (NEXTBIT <N) and MATCH=true) do
begin
MISMATCH:=MISMATCH + exclusive-or (S(NEXTBIT), T(NEXTBIT)):
if (MISMATCH >K) then MATCH:=false;
NEXTBIT:=NEXTBIT+ 1
end
return (MATCH)
end.

Algorithm STRINGMATCH simply examines pairs of elements of S and T,
incrementing a counter whenever a mismatch occurs. In the worst case,
STRINGMATCH would have to examine all n pairs of bits from S and T.

The next procedure, DFSBT, performs a depth-first match using the

SBT's of the two strings, S and T. In the following, we Tet S[k,i] denote

th node at the kth

the i level of the SBT. Given any node m, we refer to
L(m) and R(m), the left and right subtrees of m. The original string

occupies positions S[n,l],S[n,Z],...,S{Zn,n] in the SBT.

Boolean Procedure

DFSBT (S,T,K,MISMATCH)
SBT S,T;
integer K, MISMATCH, LEFTMISMATCH, RIGHTMISMATCH;
begin
if K< 0 then return (false);
MISMATCH:=|v(S)-v(T) |3
if MISMATCH >K then return (false);
if TIP(S) or TIP(T) then return (true);
/*compute mismatch to leftx/
if DFSBT (L(S), L(T), K, LEFTMISMATCH)=false then return (false);
/*compute mismatch to right*/
if DFSBT (R(S), R(T), K-LEFTMISMATCH, RIGHTMISMATCH)=false
then return (false);
MISMATCH :=LEFTMISMATCH + RIGHTMISMATCH;
return (true);
end.

Algorithm DFSBT works by first computing the mismatch of S and T in the
left subtrees. If this mismatch is greater than k, then the procedure
halts. If the mismatch is less than or equal to k, or either S or T is
a tipnode, then DFSBT returns true. Otherwise, if m is the mismatch
between L(S) and L(T), then R(S) and R(T) are compared to determine if
their mismatch is within k-m. Figure 1 displays two applications of
Algorithm DFSBT, one for a pair of strings which do match within k, and
one for a pair which do not. In the diagrams representing the sequence
of calls to DFSBT, downward arrows represent procedure calls and are
labeled with a number representing the chronological order of the call;

upward dashed arrows are labeled with results which are ordered pairs

(true/false, mismatch value). The nodes are marked with the names of the
subtrees being matched and the allowable number of mismatches, e.g.,
(5122, T122, 2) is a request to determine if the trees rooted at 5122 and

T122 match to within 2.

A shortcoming of algorithm DFSBT is that it can only take advantage
of lower bound estimates on mismatch, i.e., at a node (S,T,k), if
Iv(S)-v(T)| >k, then we know that the trees rooted at S and T do not match
within k, because

IV(S)-v(T)] < [v(L(S))-v(L(T))] + [v(R(S))-v(R(T))].
However, we can also compute upper bounds on the mismatch of two SBT's,

and these upper bounds can be used by a breadth-first matching procedure.

Let S and T be the roots of SBT's for strings of length n. Then,

if M(S,T) is the true mismatch of S and T we have, from above,
M(S,T) > [v(S)-v(T)].

However, it is also the case that
M(S,T) < min{v(S)+v(T), 2n-(v(S)+v(T))}.

The following argument shows why this is true. First, it is clear
that if v(S)+v(T) <2n-(v(S)+v(T)), then v(S)+v(T) <n, i.e., there are
fewer 1's than O's in S and T combined. Let us suppose that this is the
case. Then what ordering of v(S) 1's and n-v(S) 0's in S, and v(T) 1's
and n-v{T) O's in T gives the maximal mismatch of S with T? Obviously,
the one that pairs the most 1's of S with 0's of T, and 1's of T with
0's of S. Now, assume without Toss of generality that v(S) <v(T). Then

v(S) <n/2, since if v(S)>n/2, then v(S)+v(T)>n. Then the configuration

v(S) n-v(S)
e N N

S 111...1... 000...0
T 000...0...0111 ...1
Nz

n-v(T) > v(S) v(T)

yields the maximal number of mismatches. This is the configuration
where all of the 1's of S are placed at the head and all of the 1's of T
are placed at the tail. Clearly, the total number of mismatches is

v(S) +v(T). If v(S)+v(T) > 2n-(v(S) +v(T)), then we simply complement
S and T, and the above argument shows that the mismatch is then
(n-v(S)) + (n-(v(T)), the sum of the numbers of 1's in the complemented
versions of S and T. (Note: compiementing S and T obviously doesn't
affect their match.)

The following algorithm, BFSBT, makes use of both the lower and
upper bounds to solve the approximate matching problem. The main
argument to procedure BFSBT is QUADSET, a set of records (QRECS) of the
form (Tl,TZ,u,K), where T1 and T2 are the roots of two SBT's and u and £
are upper and lower bounds on the match of T1 to T2. Clearly, if u=4£,
then we know exactly to what extent T1 and T2 match. Also note that if
either T1 or TZ is a leaf (or tip), then it must be the case that u=2,
so that BFSBT does not have to check explicitly for tip nodes.

Figure 2 contains two traces of the application of BFSBT to the

patterns in Figure 1.

Boolean Procedure: BFSBT (QUADSET, K)
set of QRECS: QUADSET, NEWSET;
record QRECS
begin
T1:SBT;
T2:SBT;
UP: integer;
LOW: 1integer;
end;
integer K, LOWERSUM, UPPERSUM;
type QRECS Q1;
type SBT LT1, LT2, RT1, RT2;
begin
LOWERSUM: =UPPERSUM:=0;
for each Q1 in QUADSET do
begin
LOWERSUM: =LOWERSUM + LOW(Q1) ;
UPPERSUM:=UPPERSUM + UP(Q1);
end;
if UPPERSUM<K then return (true);
if LOWERSUM > K then return (false);
NEWSET:=0;
for each Q1 in QUADSET do
if UP(Q1) = LOW(Q1l) then NEWSET:=NEWSET U {Q1}
else begin
LTl:= ()a
LT2:= L(T2(Q1)),
ng(Ql)%,
NEWSET =NEWSET U {(LT1,LT2,UPBOUND(LT1,LT2),LOWBOUND(LT1,LT2))
U {(RT1,RT2,UPBOUND{RT1,RT2) ,LOWBOUND(RT1,RT2))

end
return (BFSBT (NEWSET,K))
end.

}
}

4, A Probabilistic Analysis of STRINGMATCH and BFSBT

In this section we will present a probabilistic model for the number
of comparisons that will be made by procedures STRINGMATCH and BFSBT in
performing an approximate match of two strings. We will assume that
strings are formed by randomly assinging a 1 to a string position with
probability p, and randomly assigning a 0 to a string position with
probability q = 1-p. Note that this model ignores the spatial dependence
one ordinarily finds in real patterns.

Suppose we are given two such strings of length n, b=b.b,...b_ and

172 n
d:=d1d2...dn. Then
prob [b1.=d1.] = prob [b1.=d1.=1]+prob [b1.=d1.=0]
2

= p%+ (1-p)°

A2

=2p -2p+1

::pi

"

prob [bif«jij prob [bi=1,di=O]-+prob [bi=0,d1=l]

2p(1-p)
2p-2p2

(1-p') = q!

]

1]

Now, the probability that exactly k out of j bits from b and d don't

match, prob [k mismatches|j tries] =

(Jk> qlk pl(J"k)

Suppose that b and d do not match within k. Then procedure
STRINGMATCH will discover this when comparing bj to dj if
1) b1 . bj-l and d1 ce dj-l mismatch in exactly k positions,
and
2) by # ds.
This happens with probability

q 1

 3-1
Ly
th

If a mismatch is detected at the j~ position, then j comparisons have

)qlk+1 pl(J"k"l)

been made, so that the expected computation (measured in bit comparisons)

to discover that two strings which don't match within k fail to match is

n j-1 7 .
W (k) = 7 3()q'k+1 pr(3-k-1)
j=k+1 "\ k

Now, the probability that two random strings do match within k is

(”)qd o1 (n-3)
0

so that the total expected work of Procedure STRINGMATCH for matching

two random strings within k is

W(k) = np, + W(k)(1-p).

We will now consider the amount of work that Procedure BFSBT
performs in matching two pyramid representations. Let Sy be the random
variable corresponding to the sum of r random positions of a string.

Then

v
prob [s = m] =()pm q(r—m)
m

For large r, we can approximate the distribution of S, by a normally

distributed random variable with mean rp and variance rpg. Now, let Ar

be the r.v. SpmSye Then Ar is normally distributed with mean 0 and

variance 2rpg. So, the probability of two strings of length r mismatching

by at Teast k is

pr(k) = prob [[Arl > k] = 2*prob [A, > ki

Next, we can express the probability of two arbitrary strings matching

h

within k at the ot level of the SBT representation, denoted ps(ﬂ,k), as

p (2L;k) = prob [22"1 x |A n 1 <kl =p (k/ZK_l)

n
oA-1

2

since we have to add the mismatches of 22'1 independent nodes in the SBT,

E‘l. If we assume

each being the root of an SBT for a string of length n/2
that mismatches at adjacent levels of the tree are independent events,
then the probability of first detecting a mismatch at level £ between two

strings that don't match within k, denoted pf(ﬂ,k), is

£-1
pf(ﬁsk) = {['};1 (ps(’e' sk)):l (1‘ps(£ak))

The independence assumption will hold most closely at high levels of the
pyramid where upper bound estimates on mismatch tend to be grossly
overexaggerated.

Next, the number of comparisons required to compare £ levels of
two SBT's (ignoring compaction) is
i, - f 1 _ el

j=1

so that the total amount of work required to recognize that two strings
mismatch by k using the SBT representation is

1092n+1

and the overall work required to match two strings is

-]
Wogr(k) = p 2% + (1-p) Wepr(k).

The natural question to ask is: under what conditions does one
algorithm perform less work than the other? Notice that the probability

of detecting failure using procedure STRINGMATCH at the jth

bit position
is independent of the length, n, of the input string (i.e., n does not
appear in this formula). But the probability of failure at any level of
the SBT is a function of n. At the top level of the pyramid, the mismatch
of two random strings, An, is, we have seen, a random variable that is
normally distributed with mean 0 and variance 2npg. As n increases,

so does the variance of that random variable, so that the probability

that {An{ > k is an increasing function of n. The importance of this

observation is that for large n, mismatches will almost always be detected
at or near the root of the SBT, so that matching using the SBT representation
will be faster than using a simple string representation.

To illustrate this, Figure 3 lists the probability of failure as a
function of string position j for procedure STRINGMATCH with k=4, 5, and
6 and p=.5. Figure 4 contains pf(ﬂ,k) for SBT's of strings of length 27,
£=1,2,3 and k=4, 5, and 6. These figures indicate that the pyramid

representation should lead to much faster approximate matching than the

conventional string matching approach.

5. The Design of the Pattern Database

In this section we describe the organization of a pattern database,
which consists of binary images, and of a matching algorithm. The pattern
matching takes one of the following forms: (a) finds all images in the
database which match a given input pattern within k; or (b) finds all
images 1in the database which best match the input pattern.

Clearly, when the database is large, i.e., 300-500k bytes, a simple
straightforward Tinear matching algorithm which matches the input pattern
against the whole database is formidable in terms of execution time and
I/0 operations, assuming that most of the database will have to resfde on
secondary storage. For this reason efficient organization and matching
algorithms are necessary. Section 5.1 describes the organization of the
database and Section 5.2 describes the matching algorithms which are based

on the pyramid representation presented in Section 2.

5.1 Storage Organization

The image database is organized around a hierarchical indexing scheme
based on the SQT representation. There are n levels of indices and each
level is stored as a table. Each entry in the index table of level i is
a 3-tuple (t, p, g) where:

th

1) t = <t1,t2,...,t > s the i~ level of a subset of the

oi
database, and

2) p and g are pointers to the 1'+1St table. A1l of the entries from
p to g in the 1’+1St level table are patterns having t as their ith level.

The p and g pointers of the (n—l)St Tevel point to the images in the

th

database, which can be thought of as the n”" Tlevel in this organization.

The images in the database are thus organized using a prefix coding scheme;

j.e., if (t,p,q) is an ;th

level entry, then all patterns between p and g
at level i+l are identical up to and including Tevel i. Figure 5 shows
the indexing scheme for a set of 24 16-bit string images.

In the rest of this section we compute an upper-bound on the storage
requirements of the above organization. The analysis is pbased on a string
image database but a similar analysis for two-dimensional images is
straightforward.

Let 2" be the number of bits in each image and let N be the total

number of images stored in the database. The maximum storage required

for the index table of level i, 0<i<n-1 is
. n,oin2' i
min{N,(27/2") (2" (n-1+1) + 2p)

where 2”/21 is the largest possible integer appearing in an entry of the

s
index table of level 1, (2“/21)2 is the maximum possible number of

combinations that can be entered in the 1th

level index table which
clearly cannot exceed N, n-i+1 is the number of bits required to store
each value of the Zi-tuple entry, and p is the number of bits per pointer.
For simplicity here, we assume that all pointers have the same size which
is determined by the necessary number of bits p to represent the pointers

of the nth

index table. Since the size of the index tables is
non-decreasing, p = [1092N} would be sufficient to represent any pointer
at any level.

The total storage reguirements for the index tables are

-1 . oAl .
nz min {N,(z“/z‘)21 } (2" (n-i+1) + 2p)

TSR =
i=0
n-1 . 51 .
= 1 mindn 2" H2) (2 (n-i41) + 2p)
i=0

TSR is the maximum storage for any database of 2" bit images. For

example, if the database contains all the 216

16-bit strings, TSM is a
1ittle Tess than 30,000 bits assuming a 16-bit pointer. This is only a
small fraction of the total of over one million bits required to store

all images.

5.2 The Matching Algorithms

The first algorithm, FINDALL, described below, matches a given
pattern against the database and finds all images that match the pattern
with k or less mismatches at the pixel level. It uses the lower bound to
reject images that exceed the maximum allowed mismatch k. It returns a
list of pointers to the matching images.

The algorithm consists of three loops. The outmost loop is over all

th

index tables. When the algorithm starts examining the i index table,

th

CLIST contains a 1ist of pointers to those entries of this i table whose

lower bound, LOWSUM, did not exceed k at level i-1. The second loop goes

over all elements of CLIST and for each of them, LOWSUM is computed

(through the innermost loop). If LOWSUM does not exceed k, the p1+1 and

q1+1 pointers of the ith

table are used to construct the LIST of entries
of the 1'+1St Tevel table. At the beginning, CLIST is initialized to every
entry of the first level index table. The algorithm terminates after

constructing the final LIST which consists of pointers to the images that

match within k. If CLIST ever becomes empty at some level, then no image

in the database matches the PATTERN within k.

Note that TABLE [I, J, L] in the algorithm refers to the Lth column

h row of the Ith

th

of the Jt index table, and PATTERN [I, J] refers to the Jth

component of the I level in the pyramid representation of PATTERN.

Procedure FINDALL (PATTERN, K, LIST)
LIST, CLIST = 1ist of integers
integer K, LOWSUM, P,Q, LEVEL, I, J,L, N, NO.OF.ENTRIES.IN.TABLE.1
begin
/*initialize LIST to every entry of index table 1*/
for I:=1 to NO.OF.ENTRIES.IN.TABLE.1 do
LIST:=APPEND (LIST, I)
/*outmost loop, over all index tables*/
for LEVEL:=0 to N do
begin
/*CLIST becomes the LIST constructed at LEVEL-1
and LIST is initialized to NIL*/
CLIST:=LIST
LIST:=NIL
/*1oop over CLIST and compute the LOWSUM for each element*/
for each element L in CLIST do
begin
LOWSUM:=0
for I:=1 to 2**LEVEL do
LOWSUM:=LOWSUM + ABS({ PATTERN [LEVEL, I] - TABLE [LEVEL, L, I])
if LOWSUM < K then do
/*this constructs the LIST for the next level using
the P and Q pointers of the index tables*/
begin
P:=TABLE [LEVEL, L, 2**LEVEL + 1]
Q:=TABLE [LEVEL, L, 2*¥*LEVEL + 2]
for J:=P to Q do
LIST:=APPEND (LIST, J)
end
end
end
end.

It is worth noting here that the algorithm does not make use of the
upper bound. Whenever the upper bound becomes less than or equal to k,

then direct pointers to the images can be used and put immediately into

the final LIST rather than into the LIST of pointers to the next level.
This, in some cases, will eliminate unnecessary computation at subsequent
levels. To achieve this saving, we have to incorporate the direct
pointers to our index tables at some additional space cost. However,
since the additional space may be very large, this is only done for the

i+l and q1+1

entries whose p pointers are equal at some level i. In this
case one of the two pointers may be used as a direct pointer to the
unique image in the database.

The second algorithm, FINDBEST, finds the image (or images) which
has the smallest number of mismatches when matched against a given pattern.
It makes use of both the lower bound LOWSUM and upper bound UPSUM to
reject any candidate image whose LOWSUM becomes greater than the UPSUM of
any other candidate.

FINDBEST is very similar to the FINDALL algorithm. The main
difference is that k is assigned to the Towest UPSUM of each level. Note
that since CLIST is examined only once at each level, if a Tower UPSUM is
discovered for a later element of CLIST which would otherwise reject an
earlier element of CLIST, the constructed LIST may contain entries which

have LOWSUM greater than the late UPSUM. Those entries, however, would

be rejected at the next level because LOWSUM is a non-decreasing quantity.

Procedure FINDBEST (PATTERN, LIST)
LIST, CLIST = list of integers
integer K, LOWSUM, UPSUM, P, Q, LEVEL, I, J, L, N, NO.OF.ENTRIES.IN.TABLE.1
begin
/*initialize LIST to every entry of index table 1*/
for I:=1 to NO.OF.ENTRIES.IN.TABLE.1 do
LIST:=APPEND (LIST, I)
/*initialize K to a large number*/
K:=2%*N
/*outmost Toop over all index tables*/
for LEVEL:=0 to N do
begin
/*CLIST becomes the LIST constructed at LEVEL-1 and
LIST is initialized to NIL*/
CLIST:=LIST
LIST:=NIL
/*1oop over CLIST and compute the LOWSUM and UPSUM for
each element of CLIST*/
for each element L in CLIST do
begin
LOWSUM:=UPSUM: =0
for 1:=1 to 2**LEVEL do
begin
A:=PATTERN [LEVEL, I]
B:=TABLE [LEVEL, L, I]
LOWSUM:=LOWSUM + ABS(A-B)
UPSUM:=UPSUM + MIN(A+B, 2**(N-LEVEL)-(A+B))
end
K:=MIN (K, UPSUM)
if LOWSUM < K then do
/*this constructs the LIST for the next level using
the P and Q pointers to the index table*/
begin
P:=TABLE [LEVEL, L, 2**LEVEL + 1]
Q:=TABLE [LEVEL, L, 2**LEVEL 4+ 2]
for J:=P to Q do
LIST:=APPEND (LIST, J)
end
end
end
end.

6. Conclusions

We are currently applying the ideas described in this paper to the
design and development of a pattern database system of Chinese characters.
Eventually, we hope to be able to digitize a page of fixed-font Chinese
characters, and "translate" the characters into a form useful for real
language translation. Several major problems still have to be solved
before the goal can be reached, including:

1) generalizing the matching algorithms to allow for pattern
translation,

2) adding a model for distortion to the pattern matches (matching
within k really only accounts for noise), and

3) developing more general regular decompositions than the pyramid

which more closely reflect the spatial organization of real patterns.

References

A. Hanson and E. Riseman, "VISIONS: A computer system for interpreting
scenes," in Computer Vision Systems (A. Hanson and E. Riseman, eds.)
Academic Press, NY, 1978.

M. Kelly, "Edge detection in pictures by computer using planning,"
Machine Intelligence, 6, 379-409, 1971.

A. Klinger and C. Dyer, "Experiments in picture representation using
regular decomposition," Computer Graphics and Image Processing, &,
68-105, 1976.

S. Tanimoto and T. Pavlidis, "A hierarchical data structure for
picture processing," ibid, 4, 104-119, 1975.

A. Nakamura and C. Dyer, "Bottom-up cellular pyramids for image
analysis,”" in Proc. 4th Int. Joint Conf. on Pattern Recognition,
Kyoto, Japan, 494-496, 1978.

G. Hunter, "Efficient computation and data structures for graphics,"
Ph.D. dissertation, Dept. of Electrical Engineering and Computer
Science, Princeton University, Princeton, NJ, 1978.

¢éecl

S

Hmmmﬁm

IZARAN

12121

S

A8

1T

S 14S

*e] aunbL4

111

OTOOTOTTOOO00TTIT = S

ecl

12¢1

L

¢l

ste 1121,

1 14S

"qT 2unbL4

OTIOTOTTITOO000ITIT = 1

(true,l}/

(true,1)

(13) \(14)

(true,0)

Figure lc. DFSBT (S,T,4,mismatch)

s'=1111000011110000

Figure 1d. SBT S'

t'= 1101011100001111

T121 (i::> T122

Figure le. SBT T'

false

Figure 1f. DFSBT (S',T',4,mismatch)

1)

2)

3)

4)

MATCH ({(T,,S,,15,1)},3)

1°71°
-Uppersum = 15> 3
~Lowersum = 1<3

MATCH ({(T11,511,8,0),(T12,312,7,1)},3)
-Uppersum = 15

-Lowersum = 1

MATCH ({(T1115S171>1>1)5(Tq32051725151)5(T 915812152500 5(T 95557 555351)153)

-Uppersum = 7

~-Lowersum = 3

MATCH ({(T;71551775121)5(T119551725151)5(T1917155151720:0)
(T1212:51212>1:0)5 (T1221551221211) 5 (T1922:51222°1:0)3-3)
-Uppersum = 5

-Lowersum = 3

MATCH ({(Ty1155777°1>1)5(T172551125151)5(T51155121150:0),

S S

(T12121°512121°0°0) 5 (T1212251212220:0) > (T1 92155120151 1)

(T129212512221°020):(T1299225122720-0)353)
-Uppersum = 3

-l owersum = 3

Match = true

Figure 2a. Application of BFSBT to Figures la-b.

1)

3)

MATCH ({(S;,T;,14,2)},3)
-Uppersum = 14

~-Lowersum = 2

MATCH (6,2),(S; T'2,8 0)},3)

1811711 12°11

-Uppersum = 14

-Lowersum = 2

~-Uppersum =12

1:1)5(5112:T11203:3)5(51515T1p124:4) 5 (51552 T 93 454)33)

-Lowersum= 12 > 3

HALT - failure.

Figure 2b. Result of applying BFSBT to Figures lc-d.

k|4 5 6
j
5 .03 X X
6 .08 .02 X
7 .12 .05 .01
8 .13 .08 .03
9 .13 .11 .05
10 .12 .12 .08
Figure 3. (J:) g3 12q) (k=31 g for ' = .5
k 4 5 6
£
1 62 .5 46
2 27 .33 32
3 09 .12 15
.98 .95 .93

Figure 4. prob [fail first at level £ within k]

P

Entries

1
P

Entries

Level 1

(b)

Level 0

(a)

123456789m

12
13
14
15
16
17
18
19
20
21
22
23
24

—
Lan]

~NM<FOONDOOO
ot ot

12
13
14
15
16
17
18
19
20
21
22
23
24

Entries

Orderdrd et O Nl eed O vt A QA rd el ed O red vt O OO i O
OCOCHOONNrdrmd =t ONNON v et ed O vt el ot O r=d
OOt erd rde-d N A ed OO AN ON et NI O N et
O NOOerd rd O rd O e O e ed = OO el O et O et e O
COCOA~ANOOrdird Ortrderd Orid O et OO v~ NI
St N Ot NN A A NN A A ON - OO N e Y
Ord O OQOe=A OO rd = OO~ vt v vt O OO O

At A et O A rd e O O N = O ONNNN

HOANMNGUOONMNOOOANMMTWOWNOOYNO
e R s B R e B e e e B oY

AN ONSNOO

10

11
12
13
14
15
16
17
18
19
20
22
23
24

21

p3

A NMGTWOONOOO
Lo

12
13
14
15
16
17
18
19
20
22
23
24

21

Lan
L |

Entries

Qedr-i N el O F M N e Nr=E MMO] ed OJ et e) ed (N
Pt O N rd el NN NN ANNMD AN ANMOMMm
- OO M ANIN NN NN NO OO Nt NN <t

HN AN A NO A NNNMNM e MANNOM e e << O N

NN ONOONOANMT N ON0OO —
P e I B B B R B R I eV

od o <t
NN

Level 3

(d)

Level 2

(c)

Figure 5

Entries

Ord O A1 Oer-i OO0 Arded OQedrd O OO OO 1 O
OCOAOCOODrird et QOO r-drd O OO rd vt OO et prd
OO OO rirderdrd OO rdederd i OO OOO—~ OO
OO0t OO O rmicedrd Ordrd Ord e OO
OO riOr4rderd OO OO OrOrdrdrd O ed vd O
OO eAO O rdrd OO O v vd OO rrd vod vd oA v O vt et i
Tt Qe OO rAd i OO et Ot O A OO v od O ek vt O
OO OOOOOOrdrderdrad rd Ord Oed O oed e O 4
QOO OOAOCOOOOOrtrd vd rrd ved v O e vt +—i
OO OeIrt OO OC et Ordtradedt OOed Orted O e O v
Qrdrd OQedrAdArd rd O rd et QOO Oredrdrd rrd vt O ved vd O v
et OO O e rd O rod od poed e ed O el OO ek e e O e
O OO OO0 OO mrdrmrdt OO0 OO r vt rd O
QOO OO~mOOOOrdrdrdrd O et v et rd rd ved O rd vk
COOOO OO rdtdred Ot Ordrd ved OO O vt vod ood et O

et et At O e OO OOOC OO OO OO =t vt vt vt ol

O FOONOONO
i

Level 4

(e)

Figure 5 cont'd.

